首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
为对近火源区长度进行研究,以城市公路隧道为研究对象,采用理论分析与数值模型相结合的方法,探究了大火源功率、有效顶棚高度和火源横向位置对近火源区长度的影响,对36个工况的数值模拟和温度场变化规律的研究与分析。结果表明:火焰未撞击顶棚时,火源功率对近火源区长度几乎没有影响;当火焰持续撞击顶棚并形成水平扩展火焰时,近火源区长度受火源功率和有效顶棚高度影响较大,其无量纲形式与无量纲火源功率的2/3次方呈线性关系;随着火源与侧壁距离的减小,近火源区长度呈自然指数增加趋势;火源贴壁时,近火源区长度是火源位于隧道中部时的1.866倍;提出了近火源区长度预测模型,基本揭示了烟气由过渡阶段转入一维蔓延阶段起始位置的变化规律,能够为定量研究各阶段烟气流动特性提供参考依据。  相似文献   

2.
开展了点火源引燃的上坡火蔓延实验,用刨花丝为燃料,研究不同坡度角对火蔓延速率、火线夹角、火焰长度、火焰倾斜角等的影响规律,并简要分析了火焰对火前未燃燃料的辐射传热。发现平坡条件下会形成圆形火线,而坡度条件下会形成泪滴状的火线。当坡度角高于20°时,上坡火蔓延速率随坡度的增大迅速上升。  相似文献   

3.
为探究不同受限形式对火羽流流场的影响,采用精细热电偶技术和粒子图像测速(PIV技术,监测扩散燃烧器在自由空间、侧壁空间和墙角空间下火羽流高度、温度和流场等,了解不同受限形式下火羽流流场特性。结果表明:当无量纲火源功率Q*小于1.5时,无量纲火焰高度Lf/D随之线性增加;当Q*超过1.5时,Lf/D增加幅度减小;在不同受限空间内的横向速度分布均服从近似高斯分布,且侧壁空间和墙角空间会使火焰中心产生一定偏离; Q*为1.982时,涡旋直径为3.5~8 cm,涡度大小随侧壁面的增加逐渐增大,这是因为侧壁存在时涡旋会发生脱落,这种脱落导致短时间内释放大量热量,对火羽流存在拉伸作用从而促进燃烧,并进一步产生更大的涡旋。  相似文献   

4.
为研究含坡度隧道不同火源位置情况下车厢火灾烟气蔓延特性,采用CFD数值模拟方法,建立全尺寸地铁隧道与列车数值模型,研究车厢不同火源位置情况下火灾烟气纵向温度分布规律,探讨倾斜隧道车厢火源位置对烟气蔓延的影响。研究结果表明:当火灾烟气蔓延处于纵向通风惯性力与热浮力竞争作用控制阶段时,火源位于车厢上游方向时火灾烟气向车厢方向蔓延距离小于火源位于车厢下游方向情况,且随坡度增大,火源位于车厢上游方向烟气逆流长度不断减小,位于下游方向烟气逆流长度不断增大;当纵向通风风速达到2 m/s时,火源位于车厢上下游方向2种情况下,列车车厢方向均无烟气蔓延(逆流长度为0),此时火灾烟气蔓延将主要由纵向通风控制,隧道坡度无显著影响。  相似文献   

5.
李政  刘乃安 《火灾科学》2012,21(3):109-116
多火源燃烧是森林火灾和城市群发性火灾中重要而又特殊的火灾现象,相关研究很少。通过恒定控制液面高度的实验系统,对直径0.1m、0.2m和0.4m的庚烷池火在单个火源、两火源燃烧和三火源线性排列时的火焰高度、火焰体积和燃烧速率等特性进行了实验研究。研究发现,三火源燃烧时中间火源的火焰高度、火焰体积和燃烧速率明显高于两火源燃烧和单火源燃烧,三火源燃烧时边上火源与两火源的燃烧状况难以区分。这些燃烧特性随着火源间距的减小,呈现增大趋势。热量反馈增强和空气卷吸受限这两种火源相互作用机制相互耦合,且随着火源间距的减小而增强,在S/D(S为火源间距,D为油池直径)为2~4时,两种机制强烈竞争,在其他参数范围内热量反馈增强效应占主导作用。研究还发现火焰体积与热释放速率有较好的线性相关关系,单位火焰体积的热释放速率约为1614kW/m3。  相似文献   

6.
提出了一种可精确控制燃料床填充比的方法.以刨花为燃料,开展了可燃物填充比对火蔓延影响的系统性实验研究.分析了火焰长度、火焰倾斜角、火蔓延速率、质量损失速率和热流密度随填充比的变化规律.研究发现,随填充比增大,火焰长度逐渐减小,火焰倾斜角逐渐增加,导致火焰热辐射降低、火蔓延速率减小.当填充比小于0.06时,燃料消耗率接近...  相似文献   

7.
李子龙  高威 《火灾科学》2020,29(2):71-79
腔室火流动特性是影响腔室火灾蔓延与通风状况的重要因素。通过一系列小尺度腔室火实验,研究了火源位置变化对腔室火流动特性的影响。实验结果表明,随着火源沿腔室底部从壁面向开口方向移动,在开口中性面以上,同一高度处压差与流速增大,中性面高度和烟气层高度均降低,并导致开口质量流率增大。与火源强度相比,火源位置变化对烟气层高度的影响更为显著。火源位置对中性面高度及烟气层高度的影响在壁面处及开口处更为显著,腔室中部位置变化的影响相对较小。火源由壁面向开口移动,会造成火焰高度降低和水平伸长量增加。基于实验数据,给出了考虑耦合火源位置的腔室内火焰水平伸长量的表达式。研究结果可为相关场景下的腔室火灾理论模型提供实验结果支撑。  相似文献   

8.
研究了燃烧风洞内不同纵向风速、不同火源功率条件下,隧道近火源区顶部温度沿纵向分布情况。结果表明,纵向风对不同尺寸火源条件下的顶部温度的影响呈不同特征。对较小尺寸火源,隧道顶部温升随风速增加而减小至稳定值;而对较大尺寸火源,顶部温升随风速增加先增加后减小。对于矩形火源,当纵向风较小(0.5~1.5m/s)时,长边平行于纵向风时顶部最高温升大于长边垂直于纵向风的情况;而当纵向风较大(≥2 m/s)时,两种油盘放置方式的顶部最高温升一致。纵向风作用下,顶部最高温升位置向下游呈现"两次移动"特征,即随着纵向风速增加该位置先向下游移动,当风速达到某一值时,隧道拱顶的加热机制由对流和辐射共同主控转变为辐射单独主控,最高温升位置突变回到上游后再次逐渐向下游移动。  相似文献   

9.
利用PolyU/USTC大空间实验厅内的小尺度竖井实验台,测量了开放和封闭竖井中羽流前锋上升时间,结合理论分析的结果,得到了羽流前锋上升无量纲时间和竖井无量纲高度之间的定量关系式.结果表明,在相同火源、相同竖井尺寸条件下,开放竖井和封闭竖井中的羽流前锋上升无量纲时间分别和无量纲高度的1.03次方、1.50次方成正比,与火源热释放速率的1/3次方成反比.由于烟囱效应的作用,开放竖井中的羽流前锋上升速度最快;非受限空间次之;封闭竖井内最慢.各种决定性因素对羽流前锋上升的影响程度由大到小顺序为:内外压差、壁面导热 粘滞力、空气卷吸.  相似文献   

10.
公路隧道发生火灾时易造成严重后果,纵向通风作为火场排烟降温的常用措施会改变燃烧的火源功率及相关火灾参数,影响公路隧道通风排烟的设计。利用按照弗洛德相似性原理自行设计建造的公路隧道火灾烟气输运特性研究试验台,研究了不同纵向通风风速下燃料火源功率、火焰形状和烟气层高度、距火源2 m人眼高度处一氧化碳体积分数、隧道横截面竖向温度及隧道纵向人眼高度处温度的变化规律。结果表明,所研究的火灾参数与纵向通风之间呈现非线性变化关系,火源功率在纵向通风作用下出现"双驼峰"现象,随风速增大,火源功率、火焰主体长度与亮度的变化规律相似,平均燃烧速度与一氧化碳体积分数、温度变化规律一致。  相似文献   

11.
柏跃领  刘乃安  高威 《火灾科学》2014,23(3):141-148
用防火板模拟建筑外立面,设计了可控流速和开口尺寸的气体燃烧器产生水平湍流浮力射流火焰,系统研究了外立面抑制火焰卷吸所导致的水平湍流浮力射流火焰附壁规律。将火焰流场演变分为两个阶段:(1)出口到流场水平动量衰减为零(等价点)的阶段;(2)火焰附壁或不附壁的阶段。其中,火焰附壁与否很大程度上取决于等价点到出口的水平距离LE。通过分析,我们发现雷诺应力是导致流场水平动量衰减和火焰附壁的主要原因。由此,我们基于普朗特混合长度理论推导了雷诺应力的近似表达式并结合动量控制方程,获得了LE与修正弗洛德数Fr*的线性关系,从理论上解释了出口宽高比n(n=B/H,B是开口宽度;H是开口高度)越大,火焰越容易附壁的现象,并确定了不同开口及流速条件下,火焰附壁的临界条件。  相似文献   

12.
为了给高层建筑外部火蔓延防控提供参考,利用火灾动态仿真模拟软件PyroSim对无侧墙建筑的纵向多窗口羽流火焰与侧墙建筑的纵向多窗口羽流火焰进行了数值模拟,并改变侧墙长度,引入危险温度T=540℃、T1=350℃及T2=250℃,综合分析窗口温度曲线及等温线数据。结果表明:纵向多窗口羽流火焰产生相互融合现象,无侧墙建筑纵向相邻两窗口与三窗口的危险温度高度相似,比单窗口的危险温度高度提升了2.5~3.0 m;侧墙结构引起烟囱效应的作用效果与侧墙的长度呈正比,侧墙长度为3.6 m时,纵向多窗口的危险温度高度与无侧墙建筑相比,对T1和T2,高度提升了2.0~2.5 m,而对T,高度的影响较弱,羽流火焰的形状在纵向被拉长。  相似文献   

13.
为了研究燃油流量对防火试验火焰特征的影响,为防火试验方案的设计提供参考和指导,采用Ansys Fluent软件对NexGen燃烧器进行三维定常数值模拟,分析了不同燃油流量条件下的火焰特征。结果表明:燃油流量对火焰最高温度和火焰形状几乎没有影响,但对火焰长度、监测面上温度分布、7个测量点的平均温度和热流密度有很大影响,通过分析各燃油流量条件下的火焰特征,发现当空气流量为35.8 g/s时,燃油流量在2.0~2.11 g/s——即余气系数为1.15~1.22时,能够用于防火试验。  相似文献   

14.
针对坡地建筑外立面开口火溢流行为,为了预测不同坡地角度时圆形开口建筑火溢流的外立面热羽流温度分布规律,采用1∶8缩尺寸建筑火灾模型,开展圆形开口建筑火溢流实验研究.结果 表明:在建筑火灾燃烧状态稳定下,对于确定开口尺寸、火源功率以及坡地坡度(倾斜挡墙)下,带有圆形开口的燃烧室内温度基本均匀且保持一致;针对圆形开口建筑,...  相似文献   

15.
为研究巷道火灾密闭过程中烟气的温度变化规律及流动特性,通过缩尺寸实验台和FDS数值模拟软件对12.65,18.97,25.30 kW不同火源功率及25%,50%,75%,100%不同密闭比例条件下的巷道火灾进行模拟实验。结果表明:密闭比例的增加会使火焰倾角减小,当巷道完全密闭后,火焰形状近似垂直,顶板热辐射和温度增加;巷道在50%和75%密闭比例之间存在1个突变值,当超过此突变值后,顶板温度会急剧升高,同时燃烧会更快进入衰减阶段,且火源功率越大衰减越早;密闭比例的增加会导致烟气逆流长度上升,增加纵向通风速度可有效地抑制烟气逆流现象,当实际巷道火源功率为4 MW时,纵向通风风速设定为3.8 m/s能使烟气逆流得到较好的控制。  相似文献   

16.
为得到地铁区间隧道竖井送风有效风量的无量纲计算模型,通过推导地铁区间隧道竖井送风有效风量的无量纲公式,并采用数值模拟方法明确竖井送风有效风量与火源功率、火源距离、阻塞比和竖井送风量之间的量化关系。结果表明:火源功率、火源距离与竖井送风有效风量之间不存在函数关系;阻塞比对竖井送风有效风量影响显著,随着阻塞比的增大,有效风量逐渐减小,单侧列车停靠时,无量纲有效风量Qe*与阻塞比β呈-1.08次方减小关系,两侧列车停靠时,无量纲有效风量Qe*与阻塞比β呈-0.22次方减小关系;有效风量随竖井送风风量的增大逐渐增大,且有效风量增大比例高于送风风量,单侧列车停靠时,无量纲有效风量与无量纲送风风量呈1.11次方增大关系,两侧列车停靠时,无量纲有效风量与无量纲送风风量呈1.07次方增大关系。  相似文献   

17.
随着我国能源结构低碳化的发展,天然气产业在我国得到进一步升级。在利用高压管道进行输运的过程中,因泄漏而引发的天然气火灾爆炸事故时有发生。实验以甲烷为燃料,研究不同开口特征下(长宽比n=1,2.25,4,9,16)矩形火源火焰中心轴线的温度分布。研究表明,火焰温度随热电偶相对位置的变化呈现出三段分布的规律。通过引入虚点源Z_0对经典羽流模型进行修正,发现不同长宽比下无量纲虚点源与火焰佛罗德数Fr_f呈现一定的函数关系,且无量纲温度在高度方向上仍呈现三段式分布。  相似文献   

18.
The downstream as well as the upstream oil and gas industry has for a number of years been aware of the potential for flame acceleration and overpressure generation due to obstacles in gas clouds caused by leaks of flammable substances. To a large extent the obstacles were mainly considered to be equipment, piping, structure etc. typically found in many installations. For landbased installations there may however also be a potential for flame acceleration in regions of vegetation, like trees and bushes. This is likely to have been the case for the Buncefield explosion that occurred in 2005 (Buncefield Major Incident Investigation Board, 2008), which led to the work described in the present paper. The study contains both a numerical and an experimental part and was performed in the period 2006–2008 (Bakke and Brewerton, 2008, Van Wingerden and Wilkins, 2008).The numerical analysis consisted of modelling the Buncefield tank farm and the surrounding area with FLACS. The site itself was not significantly congested and it was not expected to give rise to high overpressures in case of a hydrocarbon leak. However, alongside the roads surrounding the site (Buncefield Lane and Cherry Tree Lane), dense vegetation in the form of trees and bushes was included in the model. This was based on a site survey (which was documented by video) performed in the summer of 2006.A large, shallow, heavier-than-air gas cloud was defined to cover part of the site and surroundings. Upon ignition a flame was established in the gas cloud. This flame accelerated through the trees along the surrounding roads, and resulted in high overpressures of several barg being generated by FLACS. This is to the authors’ knowledge the first time a possible effect of vegetation on explosions has been demonstrated by 3D analyses.As a consequence of these results, and since the software had been validated against typical industrial congestion rather than dense vegetation, a set of experiments to try to demonstrate if these effects were physical was carried out as well. The test volume consisted of a plastic tunnel, 20 m long with a semi-circular cross-section 3.2 m in diameter allowing for representing lanes of vegetation. The total volume of the tent was approximately 80.4 m3. The experimental programme involved different degrees of vegetation size, vegetation density (blocking ratio) and number of vegetation lanes (over the full length of the tunnel). The experiments were performed with stoichiometric propane–air mixtures resulting in continuously accelerating flames over the full length of the tunnel for some of the scenarios investigated.The main conclusions of the study are that trees can have an influence on flame acceleration in gas–air clouds, and that advanced models such as FLACS can be used to study such influence. More research is needed, however, because even if FLACS predicts flame acceleration in dense vegetation, no evidence exists that applying the code to trees rather than rigid obstacles provides results of acceptable accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号