首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of wave exposure and of tidal height on mussel (Perna perna Linnaeus) population structure (size, density, biomass and adult/juvenile correlations) was examined at 18 sites along the south coast of South Africa. Sites were classified as exposed or sheltered prior to sampling, without reference to the biota, on the basis of aspect, topography and wave regime. A single set of samples was collected from each site during three spring tide cycles. Adult mussels on these shores almost always attach directly to the rocks, and layering of mussels is virtually absent. Shore height always had a strong influence on population structure, but exposure had significant effects only lower on the shore, and almost exclusively on mussel sizes. Principal component analysis (PCA), based on size distribution data for each population, revealed a general upshore decrease in the modal size of the adult cohort. The effects of exposure on size distribution, however, varied with tidal height. PCA separated exposed zones, with larger mussels, from sheltered zones on the low-shore. Farther upshore the two shore types were increasingly confounded. The maximum size of mussels showed a similar pattern, with significant differences (ANOVA, p < 0.05) between exposed and sheltered sites only on the low- and mid-shores. Density was calculated from randomly placed quadrats (i.e. not necessarily from areas of 100% cover) and showed a different pattern. Adult (>15 mm) densities decreased up the shore, with low-, mid- and high-shore zones being significantly different from one another (ANOVA, p < 0.0001; followed by multiple range tests). However, exposure had no significant effect on density, nor was there a significant interaction with zone. Recruit (<15 mm) densities were positively correlated with adult (>15 mm) densities in all zones and for both exposure regimes ( p < 0.05 in all cases), but there was considerable variability and extremely low predictability in these relationships (r 2 generally <0.2). Predictability tended to be greater towards the high-shore, where adults were more clumped. As with density, biomass was not affected by exposure, but decreased upshore as mean size and density decreased. A reduction in the influence of exposure farther upshore may be caused by greater emersion overriding the effects of exposure. The presence of free space within mussel beds and significant correlations between recruit and adult densities suggest that these mussel populations are recruit limited. Received: 7 January 2000 / Accepted: 6 July 2000  相似文献   

2.
 The accumulation and depuration of Cs in the green mussels (Perna viridis) commonly found in the subtropical and tropical waters were studied under the laboratory conditions using radiotracer techniques. Following an initial rapid sorption onto the mussel's tissues, uptake of Cs exhibited linear patterns over a short exposure time (8 h) at different ambient Cs concentrations. The concentration factor was independent of ambient Cs concentration. The calculated uptake rate and initial sorption constant of Cs were directly proportional to the ambient Cs concentration. The calculated uptake rate constant from the dissolved phase in the mussels was as low as 0.026 l g−1 d−1. Uptake rates of Cs in the mussels were inversely related to the ambient salinity. Uptake increased about twofold when the salinity was reduced from 33 to 15 ppt. The effect of salinity on Cs uptake was primarily due to the change in ambient K+ concentration. The uptake rate decreased in a power function with increasing tissue dry weight of the mussels, although the initial sorption was not related to the mussel's body size. The efflux rate constant of Cs in the mussels was 0.15 to 0.18 d−1, and was the highest recorded to date among different metals in marine bivalves. The efflux rate constant also decreased in a power function with increasing tissue dry weight of mussels. A simple kinetic model predicted that the bioconcentration factor of Cs in the green mussels was 145, which was higher than measurements taken in their temperate counterparts. The bioconcentration factor also decreased in a power function with increasing tissue dry weight of mussels. Received: 27 October 1999 / Accepted: 16 June 2000  相似文献   

3.
The effects of chronic copper exposure on growth and physiological responses of the green mussel Perna viridis were investigated by exposing the mussels to 50 μg l−1 Cu for 3 mo at 17 and 25 °C. These temperatures represent, respectively, the winter and summer seawater temperatures in Hong Kong. Differences in the level of response between mussels exposed for 3 mo to 50 μg Cu l−1 generally increased with duration of exposure. The tissue concentration of copper had increased by 280 and 450% after 3 mo exposure at 17 and 25 °C, and growth performances were reduced, with the 25 °C sets suffering from larger negative impact of copper in most responses. The inhibitory effects of copper on production of the various body components generally followed the order linear shell growth (greatest) > tissue production > byssus production > shell production. There were also decreases in the condition index (43 and 35% reductions at 17 and 25 °C), clearance rates (10.3 and 18.5%), faeces production (11 and 16.3%), assimilation efficiency (6.8 and 9.2%) and oxygen consumption rate (12.8 and 24.8%). In contrast, the organic content of the faeces (9.2 and 13.2% increases at 17 and 25 °C) and rate of ammonia excretion (21 and 28.6%), increased upon chronic copper exposure. Many of the responses (e.g. changes in tissue copper content, body dry wt, shell organic content, clearance rate and oxygen consumption rate) exhibited fluctuating levels of impact during prolonged copper exposure, while others (e.g. faecal production rate, assimilation efficiency, tissue organic content) demonstrated steady decreasing trends with increasing exposure time. Received: 17 September 1999  相似文献   

4.
In an experimental set-up, a colony of the stingless bee Melipona fasciata demonstrated its ability to choose the better of two nectar sources. This colony pattern was a result of the following individual behavioural decisions: continue foraging, abandon the feeder, restart foraging and initiate foraging. Only very rarely did individuals switch from one feeder to the other. With the first combination of a rich (2.7 M) and a poor (0.8 M) feeder M. fasciata behaved differently from Apis mellifera. Recruitment occurred to both feeders and the poor feeder was not abandoned completely. When the poor feeder was set to 0.4 M, M. fasciata abandoned the poor feeder rapidly and allocated more foragers to the rich feeder. These patterns were similar to those reported for A. mellifera with the first combination of feeders. Over a sequence of 4 days, experienced bees increasingly determined the colony patterns, and the major function of communication between workers became the reactivation of experienced foragers. The foragers modulated their behaviour not only according to the profitability of the feeder, but also according to previous experience with profitability switches. Thus, experience and communication together regulated colony foraging behaviour. These findings and the results of studies with honeybees suggest that M. fasciata and honeybees use similar decision-making mechanisms and only partly different tools. Received: 21 December 1998 / Accepted: 5 January 1999  相似文献   

5.
Under laboratory conditions, the scallop Chlamys nobilis and the mussel Perna viridis were exposed to N-sulfocarbamoyl toxins (C2 toxin), a paralytic shellfish toxin (PST), by feeding a local toxic strain of the dinoflagellate Alexandrium tamarense (ATDP) that produced C2 toxin exclusively. The bivalves were subsequently depurated in the field, and their depuration kinetics, biotransformation and toxin distribution were quantified. Depuration was characterized by a rapid loss within the first day, followed by a secondary slower loss of toxins. In the fast depuration phase, scallops detoxified PSTs more quickly than the mussels (depuration rate constants for scallops and mussels were 1.16 day–1 and 0.87 day–1, respectively). In contrast, the mussels detoxified PSTs more quickly than the scallops in the slow depuration phase, and the calculated depuration rate constants (mean+SE) from day 2 to day 13 were 0.063+0.009 day–1 and 0.040+0.019 day–1 for mussels and scallops, respectively. The differences in the appearances of gonyautoxins, GTX2 and GTX3, and their decarbamoyl derivatives, dcGTX2, dcGTX3 and GTX5, which are all derivatives of C2 toxin, indicated active and species-specific biotransformation of the algal toxins in the two bivalves. In both species of bivalves, the non-viscera tissue contained fewer toxins and lower concentrations than the viscera-containing tissue compartment. In scallops, very little toxin was distributed in the adductor muscle. In mussels, most of the PSTs were found in the digestive gland with significant transport of toxins into the digestive gland from other tissues during the course of depuration. The toxin profiles of scallops and mussels differed from each other and from that of the toxic algae fed. A significant fraction of GTX5 was detected in the mussels but not in the scallops. Our study demonstrates a species specificity in the depuration kinetics, biotransformation and tissue distribution of PSTs among different bivalves.Communicated by T. Ikeda, Hakodate  相似文献   

6.
The pattern and characteristics of diving in 14 female northern rockhopper penguins, Eudyptes chrysocome moseleyi, were studied at Amsterdam Island (37°50′S; 77°31′E) during the guard stage, using electronic time–depth recorders. Twenty-nine foraging trips (27 daily foraging trips and two longer trips including one night) with a total of 16 572 dives of ≥3 m were recorded. Females typically left the colony at dawn and returned in the late afternoon, spending an average of 12 h at sea, during which they performed ∼550 dives. They were essentially inshore foragers (mean estimated foraging range 6 km), and mainly preyed upon the pelagic euphausiid Thysanoessa gregaria, fishes and squid being only minor components of the diet. Mean dive depth, dive duration, and post-dive intervals were 18.4 m (max. depth 109 m), 57 s (max. dive duration 168 s), and 21 s (37% of dive duration), respectively. Descent and ascent rates averaged 1.2 and 1.0 ms−1 and were, together with dive duration, significantly correlated with dive depth. Birds spent 18% of their total diving time in dives reaching 15 to 20 m, and the mean maximum diving efficiency (bottom time:dive cycle duration) occurred for dives reaching 15 to 35 m. The most remarkable feature of diving behaviour in northern rockhopper penguins was the high percentage of time spent diving during daily foraging trips (on average, 69% of their time at sea); this was mainly due to a high dive frequency (∼44 dives per hour), which explained the high total vertical distance travelled during one trip (18 km on average). Diving activity at night was greatly reduced, suggesting that, as other penguins, E. chrysocome moseleyi are essentially diurnal, and locate prey using visual cues. Received: 9 December 1998 / Accepted: 3 March 1999  相似文献   

7.
Common shrimp, Crangon crangon (L.), were exposed to inorganic arsenic (arsenate), trimethylarsine oxide, or arsenobetaine in sea water (100 μg As l−1) or in food (1 mg As g−1 wet wt) for up to 24 d, followed by 16 d depuration in clean sea water with undosed food, in order to determine the efficiency of uptake and retention of the compounds. Accumulation of arsenic in the tail muscle, gills, midgut gland, exoskeleton, and remaining tissues was found to depend on the chemical form of the arsenic and the route of exposure. No arsenic was accumulated by C. crangon exposed to arsenate or trimethylarsine oxide in sea water. Shrimps exposed to waterborne arsenobetaine initially accumulated a small amount of arsenic in their tail muscle and gills. After 16 d, C. crangon fed arsenate, trimethylarsine oxide, or arsenobetaine had accumulated arsenic in their tail muscle to levels ∼2-, 2-, or 40-times, respectively, that of the control group. A roughly linear rate of accumulation was shown by shrimps fed trimethylarsine oxide or arsenobetaine, but C. crangon fed arsenate accumulated arsenic for 16 d, then lost arsenic such that their concentration on Day 24 was not significantly different from that of the control group. Patterns of arsenic accumulation in the gills of shrimps fed the compounds were similar to those seen in the tail muscle. On a whole animal basis, C. crangon retained ∼1.2% of the arsenate, 1.6% of the trimethylarsine oxide, and 42% of the arsenobetaine consumed over the first 16 d of exposure, with roughly half present in the tail muscle in each case. Data obtained support the view that the direct uptake of arsenobetaine from sea water does not make a significant contribution to the relatively high concentrations of this compound in marine crustaceans, and that food is the primary source. Naturally occurring arsenic compounds in C. crangon and possible transformations of the administered arsenic compounds were examined by high performance liquid chromatography using an inductively coupled plasma mass spectrometer as the arsenic-specific detector. Control C. crangon contained arsenobetaine as the major arsenic compound (>95% of total arsenic); tetramethylarsonium ion (0.7%) and an unknown arsenic compound (1.7%) were also present as minor constituents. Shrimp ingesting arsenobetaine accumulated it unchanged. Shrimp ingesting arsenate did not form methylated arsenic compounds; they appeared to contain their accumulated arsenic as unchanged arsenate only, although the possibility that some of the arsenic was reduced to arsenite could not be excluded. C. crangon ingesting trimethylarsine oxide biotransformed the compound predominantly to dimethylarsinate. Received: 9 October 1997 / Accepted: 11 February 1998  相似文献   

8.
The uptake and depuration of the water-sol‐uble fraction (WSF) of hydrocarbons of crude petroleum by Atlantic salmon (Salmosalar) has previously been examined in terms of whole muscle. The hypothesis that the tainting WSF in the muscle was retained primarily by adipocytes has been investigated by the isolation of adipocytes and the subsequent analysis for hydrocarbons in adipocytes. After 96 h exposure of market-sized Atlantic salmon to 0.2 ppm WSF, adipocytes isolated from the belly flap region of the muscle tissue accumulated 14.3 times more WSF (59.4 ppm) than the dorsal white muscle (4.2 ppm), while 54% of the tainting WSF in the dorsal white muscle was found to be stored in associated adipocytes. When returned to clean seawater, WSF accumulated in the dorsal white muscle was released much faster than that in the adipocytes. These results indicated that the loose association of WSF with the nonlipid portion of white muscle, mainly muscle cells and intercellular fluid, is responsible for the rapid discharge of WSF from the dorsal muscle tissue in the early stages of depuration. After 4 d of depuration, the adipocytes became the principal storage site of residual WSF in white muscle and the depuration of WSF from muscle tissue then reflected the release of WSF from adipocytes in the muscle tissue. After 20 d of depuration, 10.7 ppm of tainting WSF in the form of high molecular weight aromatic hydrocarbons (mainly C4-benzenes, naphthalene and alkylated naphthalenes) were still present in adipocytes, while in the dorsal white muscle only a trace of total WSF was detected. Increases in the number of aromatic rings and the alkylations on the rings enhanced the accumulation and retention of individual hydrocarbons in both adipocytes and white muscle. From these studies we conclude that it is the adipocytes in the muscle tissue which control the actual accumulation and release of hydrocarbons in the whole muscle tissue of Atlantic salmon. Received: 21 August 1996 / Accepted: 26 September 1996  相似文献   

9.
 The effects of cadmium exposure and dietary status on cadmium accumulation, fatty acid (FA) content and profiles were investigated in two colour forms of the shore crab Carcinus maenas. Groups of shore crabs were either starved or fed with blue mussels, Mytilus edulis, during a 40 d exposure period to 2 or 6 μM Cd2+ (as CdCl2). Starved green individuals accumulated more cadmium in haemolymph and hepatopancreas than did red crabs and green crabs fed during the experiments. In the red colour form, no difference in cadmium accumulation was observed between starved and fed individuals. In both colour forms, hepatopancreas contained more FA than gills and muscle. The FAs often present in the largest amounts in the tissues were 16:0, 16:1ω7, 18:1ω7, 18:1ω9, 20:4ω6, 20:5ω3 and 22:6ω3. However, saturated (SAFA) and mono-unsaturated fatty acids (MUFAs) were dominant in hepatopancreas, whereas poly-unsaturated fatty acids (PUFAs) were dominant in gills and muscles. At the beginning of the experiment, the total FA content in the hepatopancreas was 111.6 mg g−1 (dry weight) for red crabs and 78.4 mg g−1 for green shore crabs. During the experiment, however, the FA content decreased in red crabs. This decrease was more pronounced for starved individuals than for fed individuals. Also, the decrease in FA content was more pronounced in crabs exposed to 6 μM cadmium compared to crabs exposed to 2 μM or crabs not exposed to cadmium. No change in FA content was observed in green shore crabs, irrespective of diet and cadmium exposure. For both colour forms, no change in FA content was observed for gills and muscle. In red crabs, a decrease was observed for all FAs in the hepatopancreas. This decrease, however, was more pronounced for SAFAs and MUFAs than for PUFAs, indicating that the metabolism of FAs during starvation and cadmium exposure is selective. The experiments indicate that green colour forms of shore crabs are more tolerant of natural stress such as starvation and anthropogenic stress, e.g. cadmium exposure, than are red colour forms of shore crabs. Received: 23 September 1999 / Accepted: 29 April 2000  相似文献   

10.
The copepod Calanus finmarchicus Gunnerus is a key component of the planktonic food web in the Gulf of St. Lawrence, Canada. In this region, productivity-determining biophysical interactions occur in the upper 0 to 30 m of the water column. The eggs and nauplii of C. finmarchicus are found in this layer. Measurements of the diffuse attenuation coefficients for solar ultraviolet-B radiation (280 to 320 nm, UV-B) at various locations in this region indicated maximum 10% depths (the depth to which 10% of the surface energy penetrates) of 3 to 4 m at a wavelength of 310 nm. This represents a significant percentage of the summer mixed-layer water column: organisms residing in this layer are exposed to UV-B radiation. Laboratory experiments using a Xenon-arc-lamp based solar simulator revealed that C. finmarchicus embryos exposed to UV-B exhibited high wavelength-dependent mortality. The strongest effects occurred under exposures to wavelengths below 312 nm. A significant percentage of nauplii hatched from eggs exposed to these wavelengths exhibited malformations indicative of errors in pattern formation during embryogenesis. At the shorter wavelengths (<305 nm), UV-B-induced mortality was strongly dependent on cumulative exposure. The biological weighting function (BWF) derived for UV-B-induced mortality in C. finmarchicus eggs is similar to that reported for naked DNA. This suggests that the UV-B-induced mortality effect on C. finmarchicus embryos is a direct result of DNA damage. There was no evidence of a detrimental effect of ultraviolet-A radiation (320 to 400 nm). Calculations based upon the BWF indicate that, under current noon surface irradiance, 50% of C. finmarchicus eggs located at or very near (within 10 cm) the ocean surface will be dead after 2.5 h of exposure. Under solar spectral irradiance simulating a 20% decrease in ozone layer thickness, this time drops to 2.2 h. These are first-order estimates based upon irradiance taken at a time of day during which the values would be maximal. Nonetheless, they illustrate the relative changes in UV-B effects that will result from ozone layer depletions expected over the coming decades. It is also important to point out that variability in cloud cover, water quality, and vertical distribution and displacement within the mixed layer, can all have a greater effect on the flux of UV-B radiation to which C. finmarchicus eggs are exposed than will ozone layer depletion at these latitudes. Received: 2 March 1998 / Accepted: 18 December 1998  相似文献   

11.
As a result of 210Po's previously identified association with sulphur-rich proteins, metallothioneins could have a significant effect on the behaviour and fate of 210Po in molluscs. Starved control and cadmium-exposed mussels, Mytilus edulis, were fed 210Po-labelled algae (Isochrysis galbana) for 5 d and then allowed to depurate in clean sea water. Cadmium-exposed M. edulis accumulated less 210Po in the digestive gland and the remainder of the tissue than control mussels, although this was due to a decrease in tissue weight. More than 40% of 210Po was identified as being associated with high molecular weight and heat-treated cytosol proteins in M. edulis. Mussels in a starved state are known to recycle as much as 90% of their amino acids. It is proposed that 210Po associated with these and other proteins is recycled, explaining why no significant loss of 210Po was observed from the remainder of the tissue in either control or Cd-exposed mussels. Cadmium-induced metallothioneins had no effect on the distribution of 210Po in M. edulis; <5% associated with the cytosolic fraction was considered to principally contain metallothioneins. It is suggested that 210Po's apparent relationship with metallothioneins is coincidental rather than connected with its role in the regulation of metals. Received: 30 March 1998 / Accepted: 3 August 1998  相似文献   

12.
This paper reports on the feeding biology of a predatory and of a facultatively predatory nematode, Enoploides longispiculosus and Adoncholaimus fuscus, respectively. Both species represent genera which are common and abundant in the littoral of the North Sea and in adjacent estuaries. Observations on the foraging behaviour of both species are given, and for the former species, a range of prey from its natural habitat is identified. Respiration was determined using a polarographic oxygen electrode technique and compared to consumption determined as predation rates on the monhysterid nematode Diplolaimelloides meyli. The daily C-loss due to respiration accounted for 15% of the measured C-consumption in E. longispiculosus and for 111% in A. fuscus, proving the observed feeding rates in the latter species to have been inadequate for the maintenance of its aerobic metabolism. Daily respiration rates at an average environmental temperature were 219 ng C ind−1 d−1 for adults of A. fuscus and 21.9 ng C ind−1 d−1 for adults of E. longispiculosus. Using radiotracer techniques, no uptake of bacterial cells or of organic matter in the dissolved phase was demonstrated for E. longispiculosus. In A. fuscus, however, a significant drinking of label in the dissolved or volatile fraction occurred; bacterial cells were taken up at a level insignificant to the nematode's daily C-ration. It is concluded that E. longispiculosus has a fairly strict predatory feeding strategy, while A. fuscus gains a majority of C from additional foraging strategies, among which the uptake of dissolved material and scavenging on macrofauna carcasses (as reported in the literature) may be of particular importance. Received: 28 August 1998 / Accepted: 8 March 1999  相似文献   

13.
Morphological variation and vertical distribution of Fucus vesiculosus were quantified at several sites in the Finnish archipelago (Baltic Sea). F. vesiculosus samples were obtained from skerries at geographical distances of 1 km or more (large scale) and at intervals of ca 100 m around a single island (small scale). The results were examined in relation to wave exposure, calculated by Baardseth and effective fetch cartographic methods. Despite the fact that the exposure indices were calculated differently they correlated strongly. Vegetative morphological characteristics of F. vesiculosus illustrate the morphological differences both within and between exposure gradients. The tallest and widest F. vesiculosus plants were found at the sheltered end of the large-scale exposure gradient. Those from equally sheltered sites of the island were smaller in all respects. Thus, the trend from small narrow plants to large wide sheltered plants was expressed differently over the different geographical scales. Consequently localities with similar exposure indices may have morphologically different F. vesiculosus populations. Shores with similar cartographic exposure indices can be different in nature. Underwater topography and shore locations, either close to the mainland or at the outermost sites of the archipelago, affect the exposure. Although a sheltered shore is indicated, the sublittoral zone may be quite exposed to the movements of water. In contrast, in an open shore environment underwater rocks, boulders and shallow water areas can provide sheltered habitats. The depth range of the F. vesiculosus belt exhibited two distinctive patterns. At sheltered sites, around islands in the outermost reaches of the archipelago F. vesiculosus can grow to a maximum depth of 5 m. In exposed habitats the belt becomes narrower, reaching a maximum depth of 3 m. Closer to the mainland F. vesiculosus is found at exposed sites to a maximum depth of 5 m; the depth range at sheltered sites is narrower, only reaching depths of 2 m or less. In conclusion, the changes in plant morphology and in the vertical belt distribution are similar to each other along both gradients at the exposed ends of the wave action spectrum; however, the two gradients diverge at the sheltered ends of the spectrum. Received: 10 August 1998 / Accepted: 11 January 1999  相似文献   

14.
A. S. Grutter 《Marine Biology》1999,135(3):545-552
The dynamics of infestation by parasitic juveniles of gnathiid isopods were investigated at Lizard Island in the summer of 1997/1998 to determine when, and at what rate, they infest fishes. Variation in gnathiid abundance on wild-caught fish (Hemigymnus melapterus) between dawn and sunset was examined, and unparasitized H. melapterus in cages were exposed to gnathiids in the field for 4 h (8 h for fish sampled at 06:00 h) at five different times of the day and night (10:00, 14:00, 18:00, 22:00, 06:00 hrs) on three reefs. To control for any potential effect of the cleaner-fish Labroides dimidiatus, which consumes large numbers of gnathiids each day, sampling was carried out on reefs from which all cleaner-fish had been removed. Gnathiid abundance decreased during the day. Standardized abundance per wild-caught fish was 1.9 times higher at dawn than at sunset. Gnathiids successfully infested fish in cages. Sixty-one percent of the fish in cages were infested with ≥1 gnathiids, with 51% of the fish having between 1 and 4 gnathiids after 4 h exposure. Gnathiids infested fish both day and night. The log10 (abundance +1) of gnathiids per caged fish varied significantly between time periods, with higher gnathiid numbers on fish sampled at 18:00, 22:00, and 06:00 hrs than on fish sampled at 10:00 and 14:00 hrs. In contrast to gnathiid abundance on wild-caught fish, the number of gnathiids on caged fish sampled at sunset was as high as that at dawn. The estimated mean (SE) cumulative number of gnathiids per caged fish [mean size = 13.7 cm (±0.25)] per day was 7.8 (1.1); this is similar to the estimated mean number of 7.3 gnathiids on similar-sized wild-caught fish at 6:00 hrs. The high infestation rate of gnathiids on caged fish in the late afternoon contrasted with the low numbers on wild-caught fish at this time, suggesting that factors other than infestation behaviour may be responsible for the low numbers of gnathiids on wild-caught fish in the afternoon. Received: 19 August 1998 / Accepted: 1 June 1999  相似文献   

15.
The spatial, diel and tidal variability in the abundance of piscivorous fishes and their teleost prey, and the dietary composition of predatory fishes were investigated in beds of Heterozostera tasmanica within Port Phillip Bay, Australia, from September 1997 to February 1998. Predatory and prey fish assemblages were sampled from beds of H. tasmanica at three locations during each combination of diel (day and night) and tidal (high and low) cycles. Pelagic and benthic crustaceans represented >60% by abundance of the diets of all predatory fishes. Seven species, 54% of all predatory fishes, were piscivorous. These piscivores consumed individuals from seven families, 36.8% of the fish families being associated with seagrass. Western Australian salmon, Arripis truttacea (Arripidae) (n = 174) and yank flathead, Platycephalus speculator (Platycephalidae) (n = 46) were the most abundant piscivores. A. truttacea consumed larval/post-larval atherinids, gobiids and sillaginids. P. speculator consumed late-juvenile/adult atherinids, clinids and gobiids. While the abundances of piscivores varied between locations (P < 0.001) and diel periods (P = 0.028), the relative differences in piscivore abundance between sites and diel periods were not consistent between tides. The abundances of A. truttacea varied in a complex way amongst sites, diel period and tidal cycle, as shown by a three-way interaction between these factors (P = 0.026). Only during diurnal periods at St. Leonards was the abundance of A. truttacea significantly higher during high than low tides (P < 0.001). During the other diel periods at each site, the abundance of A. truttacea did not vary. P. speculator was significantly more abundant nocturnally (P = 0.017). The abundance of small (prey) fishes varied significantly amongst sites (P < 0.001). During the day, the abundance of small fishes did not vary between high and low tides (P = 0.185), but their nocturnal abundance was greater during low tide (P < 0.001). Atherinids (n = 1732) and sillaginids (n = 1623) were the most abundant families of small fishes. Atherinids were significantly more abundant nocturnally (P = 0.005) and during low tides (P = 0.029), and varied significantly amongst sites (P < 0.001). Sillaginids varied significantly only amongst sites (P < 0.001). Seagrass beds provide a foraging habitat for a diverse assemblage of predatory fishes, many of which are piscivorous. Anti-predator behaviour and amongst-location variability in abundances of piscivorous fishes may explain some of the diel and tidal, and broad-scale spatial patterns in small-fish abundances. Received: 23 July 1999 / Accepted: 18 January 2000  相似文献   

16.
Marine invertebrates are thought to accumulate 210Po primarily from their food. In this study, a pulse-chase methodology was used to examine the assimilation and depuration of 210Po by Mytilus edulis from the common marine alga Isochrysis galbana. The digestion of 210Po from I. galbana occurred via a biphasic process, characteristic of a rapid (extracellular) and slow (intracellular) digestion typical of marine bivalves. The mantle/gill and foot have no known digestive role, yet their 210Po specific activities increased after 24 h. It is proposed that this increase in 210Po specific activity was related to 210Po being incorporated into these tissues from 210Po assimilated from I. galbana during extracellular digestion. It is proposed that the linear loss of 210Po previously accumulated by control mussels was related to the continual state of renewal and replacement of cellular proteins, with 210Po turnover and metabolism governed by protein turnover and metabolism. M. edulis' assimilation efficiency of 210Po from the 210Po-labelled alga was calculated to be 17.2 ± 2.1%, and thus similar to that of Ag, Cd, Co, Se and Zn by bivalves from other marine algae species. It is proposed that the assimilation efficiency of 210Po is a function of protein assimilation. Received: 27 August 1998 / Accepted: 3 September 1999  相似文献   

17.
This study investigates the recruitment communication mechanisms of a stingless bee, Melipona panamica, whose foragers can evidently communicate the three-dimensional location of a good food source. To determine if the bees communicate location information inside or outside the nest, we conducted removal experiments by training marked foragers to one of two identical feeders and then separating these experienced foragers from potential recruits as they left the nest. The feeders were positioned to test the communication of each dimension. The results show that recruits do not simply follow experienced foragers to the food source. Height and distance are communicated within the nest, while direction is communicated outside the nest. We then examined the pulsed sounds produced by recruiting foragers. While unloading food, recruiting foragers produced several short pulses and one or more very long pulses. On average, the longest unloading pulse per performance was 31–50% longer (P ≤ 0.018) for bees foraging on the forest floor than for bees foraging at the top of the forest canopy (40 m high). While dancing, recruiting foragers produced sound pulses whose duration was positively correlated with the distance to the food source (P < 0.001). Dancing recruiters also produced several short sound pulses followed by one or more long pulses. The longest dance pulse per performance was 291 ± 194 ms for a feeder 25 m from the nest and 1858 ± 923 ms for a feeder 360 m away from the nest. The mechanism of directional communication remains a mystery. However, the direction removal experiment demonstrates that newcomers cannot use forager-deposited scent marks for long-distance orientation (>100 m from the nest). Received: 25 September 1997 / Accepted after revision: 31 May 1998  相似文献   

18.
Copepod resting eggs are abundant in the seabed of many bays and estuaries where they provide a potential source of recruits for growth of planktonic populations. In the northeastern Gulf of Mexico the copepod Centropages hamatus (Lillejeborg) occurs in the water column only during the late fall, winter and early spring. The species produces subitaneous and diapause eggs, and both egg types have been found in the seabed. We determined the longevity of these two egg types to ascertain their potential for contributing to the growth of the planktonic population and for sustaining a persistent egg bank. Eggs were collected from females and incubated in the laboratory under temperature and oxygen conditions chosen to simulate field conditions. The diapause eggs were also exposed to sulfide. The total hatching success of subitaneous eggs in two experiments declined from highs of 78 and 97% to zero after 60 and 90 d of exposure to anoxia. The total hatching success of diapause eggs that were exposed to anoxia for 90 d however was typically greater than 80%. Some diapause eggs hatched after being incubated under anoxia for 437 d. Diapause eggs survived longer at ambient field temperatures when incubated under anoxia (437 d) compared to normoxia (118 d). Exposure to sulfide did not result in greater mortality of diapause eggs compared to anoxia alone. Diapause eggs that were incubated at ambient field temperatures did not hatch when exposed to normoxia until the temperature dropped to <20 °C. The results of this study suggest that C.␣hamatus sustain a short-term reserve of subitaneous eggs in the seabed that provides recruits for the current year's population. The greater longevity of diapause eggs suggests that they sustain the seasonal reappearance of the species year after year in the northeastern Gulf of Mexico. However, the contribution of diapause eggs of C. hamatus from the Gulf of Mexico to a persistent egg bank is questionable since hatching ceased after 437 d. Received: 30 July 1997 / Accepted: 18 January 1998  相似文献   

19.
The sea urchin Lytechinus variegatus is capable of surviving chronic exposure to sodium phosphate (inorganic phosphate) concentrations as high as 3.2 mg l−1, and triethyl phosphate (organic phosphate) concentrations of 1,000 mg l−1. However, chronic exposure to low (0.8 mg l−1 inorganic and 10 mg l−1 organic phosphate), medium (1.6 mg l−1 inorganic and 100 mg l−1 organic phosphate) or high (3.2 mg l−1 inorganic and 1,000 mg l−1 organic phosphate) sublethal concentrations of these phosphates inhibits feeding, fecal production, nutrient absorption and allocation, growth and righting behavior. Food consumption and fecal production declined significantly in individuals exposed to medium and high concentrations of inorganic phosphates and all levels of organic phosphates. Feeding absorption efficiencies for total organics and carbohydrates decreased significantly in individuals held in the highest concentration of organic phosphate. Feeding absorption efficiencies for lipids were significantly reduced in the highest inorganic phosphate concentration only, while they decreased significantly for protein with increasing phosphate exposure. Carbohydrate and lipid levels in gonad and gut tissues decreased significantly with exposure to increasing phosphate concentrations, potentially impairing both gametogenesis and nutrient storage in the gut. Moreover, gonad indices significantly decreased in individuals exposed to the highest concentrations of either phosphate. Growth rates decreased significantly under the influence of all phosphate concentrations, while increasing in seawater alone. Individuals exposed to increasing phosphate concentrations showed reduced righting responses (a measure of stress) and no acclimation in righting times during chronic exposure to phosphates over a 4 week period. These findings indicate that shallow-water populations of L. variegatus subjected to inorganic and organic phosphate pollutants will exhibit stress and be inhibited in their growth and performance due to reductions in feeding, nutrient absorption and allocation of nutrients to key somatic and reproductive tissues. Received: 10 April 2000 / Accepted: 2 October 2000  相似文献   

20.
Kinetic measurements of metal accumulation in two marine macroalgae   总被引:5,自引:0,他引:5  
 We measured the uptake kinetics of four metals (Cd, Cr, Se and Zn) in two marine macroalgae (the green alga Ulva lactuca and the red alga Gracilaria blodgettii). Metal uptake generally displayed a linear pattern with increasing exposure time. With the exception of Cr, which exhibited comparable uptake rate constants at different concentrations, uptake rate constants of Cd, Se and Zn decreased with increasing metal concentration, indicating that the seaweeds had a higher relative uptake at lower metal concentration. Uptake of Cd and Zn was higher in U. lactuca than in G. blodgettii, whereas uptake of Cr and Se was comparable between the two species. Only Cd and Zn uptake in U. lactuca was significantly inhibited by dark exposure. A decrease in salinity from 28 to 10‰ enhanced the uptake of Cd, Cr, Se and Zn in U. lactuca 1.9-, 3.0-, 3.6-, and 1.9-fold, respectively. In G. blodgettii, Cd uptake increased twofold when salinity was decreased from 28 to 10‰, whereas uptake of Cr and Zn was not significantly affected by salinity change. The calculated depuration rate constants of metals in U. lactuca were 0.01 d−1 for Cd, 0.05 to 0.08 d−1 for Cr, 0.14 to 0.16 d−1 for Se, and 0.12 to 0.15 d−1 for Zn, and were relatively independent of the metal body burden in the algae. The predicted bioconcentration factor was 3 × 104 for Cd, 2 × 103 for Cr, 40 to 150 for Se, and 1 to 2 × 104 for Zn in U. lactuca. Our kinetic study suggested that U. lactuca would be a good biomonitor of Cr and Zn contamination in coastal waters. Received: 14 September 1998 / Accepted: 29 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号