首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
深圳大气降水的化学组成特征   总被引:24,自引:5,他引:19  
牛文  何凌燕  胡敏 《环境科学》2008,29(4):1014-1019
为了了解近年来深圳降水的化学特征与大气污染状况,连续2 a采集了深圳降水样品,分析其化学组分.结果表明,与北京等中国北方内陆城市相比,深圳降水中离子浓度比较低,但降水的酸化程度和酸化频率非常高,雨量加权pH值在2004年和2005年分别为4.48和4.68,酸化频率分别为88%和91%,降水酸化严重;相对中国内陆酸雨城市,深圳降水中SO24-对雨水酸性贡献相对较低,而NO-3和Cl-对雨水阴离子总量及降水酸性的贡献相对较大;Cl-和Na 对雨水阴阳离子的贡献较高,深圳降水受海洋的影响显著;SO24-、NO-3、NH 4等二次组分在雨水中占有很高比例,三者之和超过离子总量的40%,表明深圳大气环境中二次污染突出;降水中不同组分的来源差别较大,Cl-、K 、Na 主要来自海洋源,而SO24-、NO-3、Ca2 、Mg2 主要来自非海洋源;甲酸、乙酸和乙二酸是深圳降水中主要的有机酸,三者之和在2004年和2005年分别占检测到的有机酸总量的94%和99%.  相似文献   

2.
东莞石马河流域水化学特征时空差异及来源辨析   总被引:5,自引:2,他引:3  
高磊  陈建耀  王江  柯志庭  朱爱萍  许凯 《环境科学》2015,36(5):1573-1581
石马河流域对东江饮用水源地城镇供水具有重要战略意义.为研究石马河水化学特征,分别于2012年2月、6月和11月采集石马河河水水样共39个,分析测定了水体主离子(K+、Na+、Ca2+、Mg2+、Cl-、SO2-4和HCO-3)及营养盐(PO3-4、NO-3和NH+4)浓度,探讨了水化学组成的时空差异、控制因素并对其来源进行了初步辨析.结果表明,水化学组成的时空差异显著,不同时期的河水TDS及营养盐平均浓度排序为11月2月6月;河水阴离子以HCO-3为主,2月和11月时,河水阳离子以Na++K+为主,为HCO-3-Na+水,6月时则以Ca2+为主,为HCO-3-Ca2+水;营养盐浓度在空间上的差异主要受人类活动导致N、P废水排放影响,3个时期的石马河出水口处(R7)N∶P为18.4,有利于浮游植物的生长,河道出现了富营养化的现象;Gibbs图显示,2月和11月的河水主离子受蒸发岩溶解的影响较为显著,而蒸发岩和碳酸盐岩风化共同控制6月的水化学组分;海盐沉降对石马河河水物质的贡献率较小;部分Na+、Mg2+、Cl-和SO2-4来自化肥的施用和工业废水的排放;NH+4-N、PO3-4-P和NO-3-N主要分别来源于家禽养殖废水和生活废水.  相似文献   

3.
中国西南酸雨区降水化学特征研究进展   总被引:10,自引:3,他引:7  
周晓得  徐志方  刘文景  武瑶  赵童  蒋浩 《环境科学》2017,38(10):4438-4446
西南酸雨区为我国主要酸雨沉降区,且是全球三大喀斯特集中分布区之一.本文将该区9个地点的降雨资料进行了总结、整理和分析,数据包括pH值和主离子成分(Cl~-、SO_4~(2-)、NO_3~-、Ca~(2+)、NH_4~+、Mg~(2+)、K~+、Na~+).该地区降雨中的主要阴离子为SO_4~(2-)和NO_3~-,主要阳离子为Ca~(2+)和NH_4~+.与我国其它地区相比,其酸性离子、碱性离子和总离子浓度均普遍高于东南地区、而低于我国北方地区.西南酸雨区主要以pH值为4.5~5.6的弱酸性降雨为主,占总降雨频次的58%左右.根据酸、碱性离子的相关性、中和因子等分析结果,该区雨水中的酸性物质可能受到了碱性离子的中和作用,其中起主要中和作用的离子为Ca~(2+)和NH_4~+.将该区雨水pH值和酸、碱性离子浓度与我国其它地区进行对比研究发现,西南酸雨区降雨受到的中和作用要强于东南地区,但弱于北方地区的降雨.通过对西南酸雨区降雨中主要离子来源的分析和估算,降雨中的酸性离子SO_4~(2-)和NO_3~-主要来自于人为污染;99.7%的Ca~(2+)和84.0%的Mg~(2+)为陆源贡献,这可能与西南地区碳酸盐岩广泛分布有关.  相似文献   

4.
黄河三角洲浅层地下水化学特征及形成作用   总被引:21,自引:5,他引:16  
黄河三角洲高效生态经济区开发建设和黄河下游生态调度均需要了解当地地下水化学特征.在沉积环境分区和补-径-排系统分区的基础上,采用数理统计与地统计、Piper三线图和离子比例系数等方法,对黄河三角洲浅层地下水化学特征及成因进行了系统研究.结果表明,①主要水化学参数Na+、Mg2+、Ca2+、Cl-、SO24-、HCO3-和TDS的质量浓度分别介于0.1~25.0g.L-1、3.6~3 815.0 mg.L-1、5.6~3 377.0 mg.L-1、0.1~45.1 g.L-1、24.2~4 947.0 mg.L-1、62.6~850.0 mg.L-1和0.4~80.7 g.L-1之间,各离子质量浓度均值进一步表明区域内Cl-、Na+和TDS质量浓度很高,而HCO 3-、CO23-和K+质量浓度很低.②Cl-和TDS质量浓度沿地下水流向逐渐增大,二者均呈现显著的方向性空间变异和空间分布一致性,揭示了Cl-是浅层地下水水质的主控离子.③从补给区到排泄区,浅层地下水水化学类型由Na+-Mg2+-Ca2+-Cl--SO42-等复杂类型快速过渡到Na+-Mg2+-Ca2+-Cl-(或Mg2+-Na+-Ca2+-Cl-)及Na+-Mg2+-Cl-型,并在海岸滩涂区演化成Na+-Cl-这一简单类型的水.④混合、蒸发浓缩、溶滤、阳离子交替吸附作用及人类活动的影响是黄河三角洲地区浅层地下水化学成分形成的主要作用.该地区浅层地下水化学特征形成的关键驱动因素是黄河入海流路的变迁和海水入侵.  相似文献   

5.
青岛大气气溶胶水溶性无机离子研究:季节分布特征   总被引:9,自引:4,他引:5  
为了全面了解当前青岛地区大气气溶胶中水溶性组分的特征及来源,于2008年1~12月在青岛市区连续采集了总悬浮颗粒物(TSP)样品,运用离子色谱法对其主要的水溶性阴阳离子进行了分析.结果表明,SO24-、NO3-、NH4+和Cl-是TSP中水溶性离子的主要成分,四者质量浓度之和占总水溶性离子质量浓度的86.9%.TSP及其水溶性组分存在明显的季节变化,其来源也存在多源性.Na+、NH4+、Ca2+、F-、Mg2+均为冬季最高,夏季最低,K+、PO34-为秋季最高,夏季最低,Cl-为冬季最高,秋季最低,NO3-则为春季最高,夏季最低,而SO24-为春季最高,秋季最低.不同天气对颗粒物和气溶胶中水溶性离子影响很大.颗粒物浓度在晴天时最低,其次是雾天,再次是烟雾和霾,沙尘天气下质量浓度最高.Na+、Mg2+、Ca2+、F-、Cl-和PO34-在烟雾天气下的平均浓度最高,而NH4+、K+、NO3-和SO24-则是在霾天气下质量浓度最高.  相似文献   

6.
安宁河河谷地区是四川省第二大粮仓,区内人口较多、矿业发达。查明流域水化学特征及物质来源,对于探讨地质背景与人为活动对河流水化学特征的影响具有重要意义。研究显示,安宁河河水整体偏弱碱性,pH均值为8.18,TDS值高于世界河流平均值。河水中阳离子浓度平均值顺序为Ca2+ > Na+ > Mg2+ > K+,阴离子浓度平均值顺序为HCO3- > Cl- > SO42- > NO3-。空间上,自上游至下游,安宁河河水的TDS值和阴阳离子含量呈整体上升的趋势,SO42-、NO3-浓度波动较大。控制流域水化学特征的主要因素是硅酸盐岩的风化,其次是碳酸盐岩的风化。流域内的NO3-主要来源于农业活动和土壤有机氮,矿业活动对安宁河河水中SO42-浓度的影响较大,人为活动对安宁河流域水化学的影响不可忽视。  相似文献   

7.
托木尔峰青冰滩72号冰川径流水化学特征初步研究   总被引:2,自引:2,他引:0  
利用2008年8月采集的样品,分析了托木尔峰青冰滩72号冰川径流水化学特征.结果表明,72号冰川水化学类型为HCO3--Ca2+型,其离子浓度顺序为:HCO3->SO24->Ca2+>Cl->Na+>NO3->Mg2+>K+>NH4+.主要离子浓度的变化趋势基本相同,影响河水离子浓度变化的原因主要是冰川表碛覆盖区和冰川侧脊区受到降水等引起的水岩相互作用使可溶性离子融入径流,而温度条件也是影响河流离子浓度的重要因素.此外,流量和离子浓度呈负相关关系.河水中离子的来源为3种类型,第一类为局地源的离子,包括Cl-、Na+、K+、Mg2+、HCO3-和SO24-;第二类为来源比较特殊,基本不受其它离子影响的NO3-;第三类为来源多样的Ca2+.岩石及土壤风化作用是控制河水离子变化的主要因素.  相似文献   

8.
沙尘天气对兰州市PM10中主要水溶性离子的影响   总被引:3,自引:3,他引:0  
王芳  陈强  张文煜  郭勇涛  赵连彪 《环境科学》2014,35(7):2477-2482
利用在线监测仪器MARGA在兰州大学盘旋路校区对兰州市大气PM10中水溶性离子进行监测,监测期间(2011-04-01~2011-06-30)有15 d出现沙尘天气.兰州市PM10中主要水溶性离子物种为Ca2+、SO2-4和NO-3.扬沙天气期间NO-3和NH+4的浓度比非沙尘期间低,说明沙尘天气对当地人为源所排放污染物具有清除作用.沙尘天气期间,作为土壤污染源标识物的Mg2+、Na+和Ca2+离子都有明显增加,Na+和Mg2+相关系数为0.520,Na+和Ca2+相关系数为0.659,Mg2+和Ca2+相关系数为0.671,而非沙尘天气期间三者的相关系数并不高,Na+和Mg2+相关系数为0.065,Na+和Ca2+相关系数为0.131,Mg2+和Ca2+相关系数为0.163,说明沙尘天气期间三者之间具有相同的污染源,主要来自于土壤风沙尘,而非沙尘天气期间三者来源不同.Cl-的浓度在扬沙天气明显高于浮尘和非沙尘天气期间,说明外来的土壤风沙尘是Cl-的主要来源.  相似文献   

9.
不同植被类型及土壤对径流水化学特征的影响   总被引:2,自引:1,他引:1  
在不同植被类型覆盖条件下,对降雨形成地表径流和地下径流的化学成分变化及其与土壤剖面性质的关系进行分析,结果表明:地表径流和地下径流的化学特征与雨水基本相同,阳离子主要以Ca2+为主,离子排序为Ca2+>K+>Na+>Mg2+>NH4+,阴离子以SO42-为主,SO42->NO3->Cl-.降雨形成地表径流和地下径流后,各成分浓度发生了明显的变化,水体中主要的阴阳离子如Ca2+、Mg2+、K+、Na+、SO42-、Cl-等浓度增加,与雨水相比为内贮型化学成分,地下径流中Ca2+、Mg2+、SO42-和Cl-增加的幅度显著高于地表径流.相关分析结果显示,地下径流pH受到土壤pH的强烈影响,受土壤胶体吸附的影响,水体中Ca2+、Mg2+、K+、Na+等阳离子与土壤交换性阳离子之间一般呈负相关的关系,由于阴离子容易随水流失,水体中SO42-、NO3-和Cl-与土壤相关离子之间普遍呈正相关关系.  相似文献   

10.
太湖流域污水排放对湖水天然水化学的影响   总被引:5,自引:0,他引:5  
代丹  张远  韩雪娇  冯胜  于涛 《环境科学学报》2015,35(10):3121-3130
为揭示太湖流域污水排放对湖水天然水化学(主要离子)的影响,对太湖上游19个污水处理厂的进水、出水及雨水、入湖河水和湖水中主要离子进行了分析,同时收集历史数据对比了太湖1950s年代和目前的天然水化学特征.结果表明,太湖水体天然水化学类型主要受流域碳酸盐岩风化作用控制,而受雨水影响较小;流域排放的污水主要离子特征类似于干旱地区的河水,部分工业污水甚至具有海水水化学特征,说明人为活动对当地淡水水质的重要影响.同时,太湖水化学已从60年前的重碳酸盐钙型水转变为目前的氯化物钠型水.进一步通过修正的完全混合断面污染物浓度模型的计算结果显示,生活污水排放可以解释对太湖多数主要离子的影响,生活和工业污水的排放可以更好地解释Cl#的变化;但太湖Ca2+和Mg2+浓度(硬度)的增长受污水影响较小,而是受流域酸沉降的影响控制.分析显示,60年来受流域不断增长的污水排放影响,太湖水体的优势阴阳离子组分均已发生了显著变化,目前湖水(Ca2++Mg2+)-HCO-3和(Na++K+)-Cl-均分布在1∶1线上侧,而(Ca2++Mg2+)/(Na++K+)比值则下降了约1半,同时湖水的Cl#/Na+比值显示出显著的升高趋势,说明流域人类活动已经成为影响太湖水化学的主要原因.本研究可为湖泊水化学演化研究及强烈人为干预条件下的水环境管理提供新的基础.  相似文献   

11.
会仙岩溶湿地地下水主要离子特征及成因分析   总被引:6,自引:6,他引:0  
以我国最大的低海拔岩溶湿地会仙岩溶湿地为研究区,对该区丰水期、平水期和枯水期共采集的27组地下水样品中常规离子进行检测和分析,在分析会仙岩溶湿地地下水主要离子化学特征和不同时期变化基础上,运用单指标污染标准指数法对不同时期地下水进行污染评价,利用多元统计、Gibbs模型和离子比例关系识别地下水主要离子成因.结果表明,研究区内岩溶地下水主要为弱碱性淡水,Ca2+和HCO3-为优势离子.不同时期地下水主要离子总浓度顺序为:平水期 > 丰水期 > 枯水期,枯水期水质优于丰水期和平水期.地下水中K+和NO3-主要受含水层空间分布差异影响,Mg2+、SO42-、NO2-、NH4+和TDS受时空尺度综合作用,Na+、Ca2+、HCO3-和Cl-为水体中较稳定离子.受碳酸盐岩控制,丰水期、平水期和枯水期地下水化学类型具有高度一致性,HCO3-Ca水占比分别为77.78%、77.78%和88.89%.地下水主要受SO42-、NO3-和NO2-污染,NO3-出现极严重程度污染样点,SO42-在丰水期和平水期出现较重污染样点.地下水化学组分主要受水岩作用控制,Ca2+和HCO3-主要来源于方解石风化溶解,少量水点受白云岩、白云质灰岩及硫铁矿控制导致Mg2+和SO42-浓度偏高,K+、Na+、SO42-、NO3-和Cl-部分来源于大气降水,Na+和Cl-部分来源于当地居民生活,K+与种植施用的钾肥相关,NO3-主要来源是化学肥料.  相似文献   

12.
海(咸)水混入是河口河水重要的地质过程,深刻地影响河水地球化学过程。本文系统采集夹河河口水样,分析海淡水混合过程的地球化学特征。结果表明,远离河口段(J10~J14)为淡水性质,主要受水-岩作用及人类活动等影响;近河口段(J1~J8)海水混入严重,F~-、Cl~-、Br~-、SO~(2-)_4、Na~+、K~+、Mg~(2+)、Ca~(2+)、盐度等明显较高,主要受海水混入影响。近河口段存在Na-Ca离子交换过程,约占Na~+总量的0.9%~1.5%,离子交换量随海水混入比例增加而增加,Na~+离子交换量与K~+,Ca~(2+)、Mg~(2+)、Br~-、F~-、SO~(2-)_4离子交换量相关,且河水离子含量与盐度回归系数略低于与盐度、Na~+交换量回归系数,表明河口段河水离子交换影响河水地球化学特征。  相似文献   

13.
树木模拟燃烧排放烟尘中水溶性离子的组成   总被引:5,自引:2,他引:3  
刘刚  黄柯  李久海  徐慧 《环境科学》2016,37(10):3737-3742
模拟林火中生物质的两种燃烧方式,明燃和闷燃,对10种乔木的干树枝和绿树枝进行室内燃烧试验,测定了排放烟尘中的水溶性离子.结果表明,干树枝明燃烟尘中水溶性离子的平均总含量为(28.88±17.54)g·kg~(-1).SO_4~(2-)、Cl~-、K~+是主要组分,其平均排放因子为101.0~118.2 mg·kg~(-1).干树枝闷烧烟尘中水溶性离子的平均总含量为(6.38±2.79)g·kg~(-1).Na~+、SO_4~(2-)、K~+、Cl~-是主要组分,其平均排放因子为101.1~245.7 mg·kg~(-1).绿树枝明燃烟尘中水溶性离子的平均总含量为(22.13±13.52)g·kg~(-1).SO_4~(2-)、Cl~-、K~+是主要组分,其平均排放因子为136.4~197.6 mg·kg~(-1).绿树枝闷燃烟尘中水溶性离子的平均总含量为(15.71±19.09)g·kg~(-1).Cl~-、SO_4~(2-)、Na~+是主要成分,其平均排放因子为298.6~869.1 mg·kg~(-1).两类树枝在每种燃烧条件下产生的烟尘中,Cl~-与K~+的含量均显著正相关.干树枝闷烧时Cl~-的排放因子与含水率显著正相关.燃烧条件、树种及含水率均对森林生物质烟尘中水溶性离子的组成及排放因子有明显的影响.这对估算大气中林火来源的污染物有参考意义.  相似文献   

14.
为调查喜马拉雅山中段北坡地表水环境特征,2015年9月在叶如藏布流域采集24个地表水体水样并对其水化学特征分析测定,研究结果表明:(1)叶如藏布流域水化学特征存在显著空间差异.随着海拔升高,地表水体p H值、TDS值呈微弱的减小趋势.24个水样中23个水样属于淡水,1个为微咸水.(2)叶如藏布流域内地表水阳离子主要为Ca~(2+),阴离子以SO_4~(2-)为主,其次为HCO_3~-,即地表水为Ca~(2+)-SO_4~(2-)型.(3)叶如藏布流域地表水中各离子之间具有不同程度的相关性.其中Cl~-、HCO_3~-、Na~+和K~+4种离子共源性好;阳离子的来源不同,Na~+和K~+主要来源于碳酸氢盐,Ca~(2+)主要来源于硫酸盐,而Mg~(2+)的来源比较广泛.(4)叶如藏布流域大部分离子主要来源于陆地,受陆源影响从小到大排列顺序为:Na~+Mg~(2+)SO_4~(2-)Ca~(2+)K~+HCO_3~-.流域水文化学过程主要受岩石风化作用控制,特别是受到碳酸盐风化影响.以强木村为界,流域下游地区地表水化学特征受人类活动影响逐渐变大,特别是畜牧活动及人类施肥的影响.  相似文献   

15.
2014年1~12月,使用URG在线及滤膜采集-实验室分析两种方法对北京市大气细颗粒物PM_(2.5)中的水溶性离子进行检测,并对春、夏、秋、冬这4种不同季节下两种测量方法的差异性进行了比对研究.全年测量结果显示,在线URG所获离子总量高于滤膜采集所获离子总量,其中两种方法所测Cl~-、NO_3~-、Mg~(2+)、Ca~(2+)年均浓度差异不大,而在线所测SO_4~(2-)、NH_4~+、Na~+、K~+结果均明显高于滤膜测试结果.4种主要的水溶性离子中SO_4~(2-)、NO_3~-和Cl~-的相关性较好,NH_4~+相关性略差;不同季节两种测量方法所获结果也略有不同,NO_3~-、SO_4~(2-)、Cl-在秋、冬季差异不显著,而NH_4~+仅在冬季拟合性较好.  相似文献   

16.
浙江宁波天童地区酸性降水化学特征研究   总被引:4,自引:0,他引:4  
为了解浙江宁波天童地区降水的化学特征、离子来源及酸性降水的成因,于2010年3月—2011年2月在该地区采集了90个降水样品,并运用离子色谱法分析其化学组分.结果显示,天童地区降水的酸化频率和酸化程度非常高,酸雨频率为97%,雨量加权pH平均值为4.37,离子浓度的大小顺序为SO24->NH4+>NO3->Ca2+>Cl->Na+>Mg2+>K+>F-,降水较清洁;降水pH值和各离子含量存在明显的季节变化,总体表现为冬、春季污染程度高于夏、秋季;SO24-/NO3-的浓度比值为1.9,表明该地区酸雨类型为硫酸和硝酸复合型;SO24-、NO3-、NH4+和部分Ca2+主要来自人为污染源,Na+、Cl-和大部分Mg2+主要来自海洋源,K+和大部分Ca2+则主要来自地壳源,海洋对天童地区降水离子组分影响较大,但对降水酸度影响并不显著;NH4+与SO42-(r=0.90)、NO3-(r=0.88)的相关性分别大于Ca2+与SO24-(r=0.67)、NO3-(r=0.73)的相关性,且NH4+/Ca2+的浓度比值为1.47,说明NH4+对降水酸性的中和作用大于Ca2+,与我国其他城市降水相比,天童地区降水中的碱性离子,尤其是Ca2+浓度较低,从而导致降水酸度高于北方地区和西南其他地区.  相似文献   

17.
为了解建筑垃圾长期堆放产生的扬尘对大气的影响,选择北京市两个拆迁建筑垃圾堆放场,于2019年夏季、秋季进行降尘连续采样.共收集拆迁原地堆放有效降尘样品11个,异地集中堆放有效降尘样品11个,利用离子色谱法对大气降尘中水溶性离子组分及质量浓度进行分析.结果表明:阳离子中质量浓度最高的是Ca2+,其次是K+,NH4+浓度最低;阴离子中质量浓度最高的是SO42-,其次是Cl-,NO3-最低,降尘样品呈碱性.建筑垃圾拆迁原地堆放场地Ca2+、Mg2+、SO42-、Cl-、Na+、NH4+平均浓度高于异地集中堆放场地对应各离子浓度.拆迁原地堆放场地中Ca2+、SO42-、Na+、Cl-受局地风向影响较大,空间分布情况与风向扩散趋势大致相同;异地集中堆放场地各离子浓度高值区域分布较原地堆放远,Ca2+、K+、SO42-、Cl-、Mg2+这5种离子空间分布与次主导风向较为相符.同时,两个场地水溶性离子平均浓度与距建筑垃圾堆放地的距离有一定的关系,采样点在距堆放中心200 m范围之内离子平均浓度最大,总体来说,距离堆放中心近的采样点位离子浓度高于距离较远的采样点位离子浓度.  相似文献   

18.
雪中阴阳离子化学记录可以提供关于大气环流、气候和环境变化的信息,喜马拉雅山因其独特的位置和丰富的冰川资源成为研究雪化学的重要地区。本论文基于两个年度(2018年2~3月和2018年12月~2019年1月)在喜马拉雅东段错那地区采集的新雪样品,对雪中主要离子的组成和浓度特征的年际变化进行分析,并结合相关分析法、海盐示踪法和气团后向轨迹法对其来源进行研究。结果表明,错那地区两年度雪中主要阳离子均为Ca2+,主要阴离子均为SO2-4。受2019年强降雪清除作用的影响,2019年度各离子的浓度明显低于2018年度。错那地区雪中Ca2+的含量明显高于喜马拉雅山其他研究区域,可能是由于其海拔较低,受近源陆地粉尘影响较大。离子来源分析结果表明,错那地区雪中离子以局地陆源物质输入为主,部分来源于海洋源(Cl-、Na+)、盐湖矿物风化(Cl-、Na+、K+和SO2-4)以及人为源(NH+4、NO-3、SO2-4)。本文可为错那地区生态建设管理及喜马拉雅地区的雪化学和大气环流特征研究提供参考。  相似文献   

19.
青藏高原淡水湖泊水化学组成特征及其演化   总被引:19,自引:12,他引:7  
青藏高原淡水湖具有高生态价值和高脆弱性并存的特点.以海拔5 080 m±10 m的打加芒错湖水为研究对象,测试及分析了湖水化学组分,探讨了其主要离子来源、控制因子和湖泊水化学演化趋势.结果表明,湖水阳离子以Ca2+和Na+为主,阴离子以HCO3-为主,为HCO3-Ca型水;TDS为71.2~199.8 mg·L-1,矿化度低;受地表径流的稀释作用和富铝贫钙的地质背景约束湖区东南部水体的EC、Ca2+和HCO3-浓度均较低.湖水的Na+/(Na++Ca2+)为0.08~0.75,Cl-/(Cl-+HCO3-)为0.11~0.35,Ca/Na值为0.58,Mg/Ca值为0.12,HCO3/Na值为1.46,据Gibbs模型和元素化学计量分析表明,其化学组成主要受硅酸盐岩风化控制.湖区流域参与风化的矿物岩石包括斜长石(钙长石、钠长石)、钾长石、云母、石膏、盐岩等,但以斜长石风化为主,湖水的K/Na值平均为0.059,表明流域钾长石风化程度较低.湖水中方解石、白云石、石英、石膏等矿物饱和指数(SI)大于0,石盐的SI则小于0,揭示了青藏高原上淡水湖泊演变成咸水湖的变化趋势.  相似文献   

20.
Theresearchofbelow-cloudscavengingofrainwaterinGuilinCityBaiYuhua;YaoRongkui;LiXin;TangXiaoyan(TheDepartmentofTechnicalPhysie...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号