首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Group living in spiders is characterised by two principle modes, the cooperative social mode and the colonial non-cooperative mode. Kin-relationships due to reduced dispersal determine population genetic structure in social spiders, but the dispersal mechanisms underlying group structure remain poorly understood in colonial spiders. Assuming similar ecological benefits of group living, we address the question whether reduced dispersal shapes population structure in a colonial spider, Cyrtophora citricola (Araneidae). We analysed dispersal by studying settling decisions under semi-natural conditions in experimental trees with and without colonies, and in natural populations, we estimated dispersal and colony structure using population genetic analyses. The propensity to disperse decreased with increasing age in experimental colonies. Adult females did not disperse in the experiment. Sub-adult female spiders preferred trees with a colony to trees without a colony. Dispersal in third instar juveniles was influenced significantly by wind but not by the presence of a colony. Thus, we showed that being in a colony did not inhibit juvenile dispersal, but pre-mating females were philopatric. Genetic differentiation among colonies in natural populations was heterogeneous, colonies being either little or highly differentiated. The heterogeneous structure is likely caused by colony founding by one or a few females followed by dispersal among perennial colonies. Gene flow, however, was slightly male-biased. The experimental and indirect, genetic approaches combined showed that dispersal and the breeding system of C. citricola resemble that of solitary spiders, with juvenile dispersal occurring in both sexes, while the colonial distribution is maintained by female philopatry.  相似文献   

2.
The extent to which marine populations are “open” (panmixia) or “closed” (self-recruitment) remains a matter of much debate, with recent reports of high levels of genetic differentiation and self-recruitment among populations of numerous species separated by short geographic. However, the interpretation of patterns of gene flow (connectivity) is often based on a stepping stone model of dispersal that can genetically homogenise even distant populations and blur genetic patterns that may better reflect realised dispersal. One way in which realised long-distance dispersal can be accurately determined is by examination of gene flow of taxa between isolated archipelagos and a mainland where there is no possible stepping stone dispersal across the open ocean. We investigated the genetic structuring of populations of the intertidal gastropod Nerita melanotragus from the subtropical Kermadec Islands and temperate New Zealand’s North Island (the mainland), separated by 750 km of open ocean and characterised by contrasting environmental conditions. Analyses of seven microsatellite markers revealed an absence of genetic structuring with low F ST and Jost’s D values (from 0.000 to 0.007 and from 0.000 to 0.015, respectively) over large geographic distances and no evidence of isolation by distance among all populations. These results indicate that the realised dispersal of N. melanotragus is of at least 750 km, this species exhibits a very “open” form of connectivity and its larvae exhibit sufficient phenotypic plasticity to settle successfully in different environmental conditions, ranging from subtropical to cool temperate.  相似文献   

3.
The genetic structure of benthic marine invertebrates is often described as “chaotic” when genetic structure cannot be explained and barriers to dispersal and gene flow cannot be identified. Here, chaotic patterns of genetic structure for the polychaete Pygospio elegans (Claparède) sampled at 16 locations from the heterogeneous Isefjord–Roskilde Fjord estuary complex in Denmark were found. There was no isolation by distance, and the geography of the estuary complex did not seem to pose a barrier to dispersal and gene flow in this species. We investigated whether characteristics of the environment could be related to the genetic structure and possibly restrict gene flow in this species. Additionally, since P. elegans is poecilogonous, producing larvae with different pelagic developmental periods, we investigated whether observed developmental modes in the samples might clarify the genetic patterns. None of the tested factors explained the population genetic structure. However, a high degree of relatedness among individuals in almost all samples was found. Samples with a larger percentage of young individuals had more related individuals, suggesting that different cohorts could be comprised of individuals with different degrees of relatedness. Relatedness within a site could be increased by limited larval dispersal, collective dispersal of related larvae, sweepstakes reproductive success, or asexual reproduction, but distinguishing between these requires further study. Using a “seascape genetics” approach allowed us to investigate some of the numerous potential factors that could influence population genetic structure in a poecilogonous species.  相似文献   

4.
Modelling gene flow across natural landscapes is a current challenge of population genetics. Models are essential to make clear predictions about conditions that cause genetic differentiation or maintain connectivity between populations. River networks are a special case of landscape matrix. They represent stretches of habitat connected according to a branching pattern where dispersal is usually limited to upstream or downstream movements. Because of their peculiar topology, and the increasing concern about conservation issues in hydrosystems, there has been a recent revival of interest in modelling dispersal in river networks. Network complexity has been shown to influence global population differentiation. However, geometric characteristics are likely to interact with the way individuals move across space. Studies have focused on in-stream movements. None of the work published so far took into consideration the ability of many species to disperse overland between branches of the same network though. We predicted that the relative contribution of these two dispersal modalities (in-stream and overland) would affect the overall genetic structure. We simulated dispersal in synthetic river networks using an individual-based model. We tested the effect of dispersal modalities, i.e. the ratio of overland/in-stream dispersal, and two geometric parameters, bifurcation angle between branches and network complexity. Data revealed that if geometrical parameters affected population differentiation, dispersal parameters had the strongest effect. Interestingly, we observed a quadratic relationship between p the proportion of overland dispersers and population differentiation. We interpret this U-shape pattern as a balance between isolation by distance caused by in-stream movements at low values of p and intense migrant exchanges within the same branching unit at high values of p. Our study is the first attempt to model out-of-network movements. It clearly shows that both geometric and dispersal parameters interact. Both should be taken into consideration in order to refine predictions about dispersal and gene flow in river network.  相似文献   

5.
The comparative analysis of genetic structure and phylogeography of marine species can reveal the relative importance of common biogeographic barriers and species-specific evolutionary histories. In the present study, mitochondrial COI sequences from a total of 724 individuals collected from 38 localities throughout New Zealand during 2006 and 2007 were used to examine the genetic structure and demographic histories of the intertidal gastropods Zeacumantus subcarinatus and Zeacumantus lutulentus. For both species, results revealed isolation of populations located along the northern South Island and southern and western North Island, and extensive genetic structure throughout the remainder of their ranges. Despite this, long-distance dispersal and secondary admixture of divergent haplotypes was evident, especially for the widespread Z. subcarinatus. These findings reveal the importance of common barriers to gene flow and highlight how the interaction of inherent dispersal limitations of direct-developing marine organisms and periodic long-distance movements can produce complex genetic patterns.  相似文献   

6.
Wide-ranging marine species are often described as having a low effective population size (N e) to census size (N) ratio. This genetic phenomenon is typically attributed to large variation among individuals in reproductive success because of the high mortality rates and unpredictable environments associated with larval dispersal. In this study, we examined patterns of genetic variation in gag (Mycteroperca microlepis) on the West Florida Shelf across year classes of post-settlement juveniles and spawning adults. With no significant genetic differentiation among year classes despite varying recruitment dynamics, little evidence for chaotic genetic patchiness, and no truncation of adult genetic diversity in subsequent juvenile cohorts, there was little support for large variation among individual in reproductive success contributing to a low N e/N ratio. In fact, the consistent lack of significant differences in annual recruitment classes indicated that reproductive success among individuals was resistant to skewing. Among the various evolutionary forces that may be affecting N e, changes to demography due to fishing pressure are posited as a likely mechanism affecting current levels of genetic variation.  相似文献   

7.
Due to the sparse and unstable nature of insular freshwater habitats, marine larval dispersal of amphidromous species is considered a critical element of population persistence. We assessed population genetic structure of freshwater prawn Macrobrachium lar across its range that encompasses two biogeographic barriers: the vast open ocean separating Western and Central Pacific regions and the Indo-Malay archipelago separating Indian and Pacific oceans. A total of 173 samples collected from 21 islands throughout the Indo-Pacific were sequenced at 16S and 28S rDNA. We observed distinct genetic isolation of populations located at the eastern and southwestern edge of the species range but no evidence of an effect of the Indo-Pacific barrier. Differentiation patterns are consistent with a stepping-stone model of dispersal. Genetic differences of Central Pacific populations may reflect founder events associated with colonization of isolated islands, or be a signature of a past bottleneck after population depletion caused by drastic climatic events.  相似文献   

8.
As a result of aquaculture activities, Pacific oysters Crassostrea gigas (Thunberg, 1793) have invaded European coasts. Using seven microsatellites, we found virtually no genetic differentiation between natural populations throughout the European range (from the south of the Wadden Sea (the Netherlands) to the south of France) and French cultivated oysters. The genetic homogeneity of Pacific oyster samples appears to be the result of repeated transfers from same seed stocks made for aquaculture and, to a lesser extent, widespread dispersal due to specific biological traits of this species. The only genetic differentiation of Sylt population in the north of the Wadden Sea (Germany) suggests a stronger, persistent impact of ongoing supply of new genetic material from hatchery production, corresponding to seeds selection made by breeders. All of our genetic data highlighted the importance of aquaculture practices on the genetic structure of the keystone invader C. gigas in Europe.  相似文献   

9.
The mechanisms driving genetic structure in marine systems are elusive due to the difficulty of identifying temporal and spatial barriers to dispersal. By studying marine invertebrate species with limited dispersal potential, genetic structure can be directly related to physical and biological factors restricting connectivity. In the northwest Atlantic, the benthic brood-rearing amphipod Corophium volutator is distributed across basins with distinct circulation patterns and has the potential to disperse passively during its adult stage. We analyzed spatial genetic variation and migration rates across C. volutator’s North American range with sequence data for mitochondrial DNA and three novel nuclear markers using frequency and coalescent-based methods. We found low genetic differentiation within basins, but strong subdivision within the Bay of Fundy and a striking biogeographic break between the Bay of Fundy and Gulf of Maine, suggesting that genetic drift may act on populations in which connectivity is restricted due to the limitation of passive dispersal by hydrological patterns.  相似文献   

10.
For many sedentary or sessile benthic marine invertebrates the planktonic duration of the larval stage is believed to be a key determinant of the magnitude of genetic differences between populations. An obvious dichotomy in dispersal potential exists within cheilostome bryozoans that develop from either (1) a cyphonautes larva that spends several weeks in the plankton or (2) a brooded coronate larva that settles soon after release from the adult colony. This study characterises the pattern of variation at allozyme loci among British populations of four species of bryozoan—two species with cyphonautes and two with coronate larvae. There is some variation in the estimates of genetic differentiation among similarly separated populations that may be a consequence of non-equilibrium genetic conditions arising from sporadic migration, possibly through dispersal by rafting on macroalgae by mature colonies. Despite this, however, both the level of genetic differentiation between populations and the pattern of migrant exchange correlate with the larval developmental mode. Bryozoan species that brood coronate larvae show higher levels of genetic heterogeneity between populations and significant isolation by distance genetic structure while, by contrast, distance has little or no effect upon the amount of genetic differentiation among populations of bryozoans with cyphonautes larvae. For cheilostome bryozoans, therefore, it appears that genetic differentiation between populations is directly associated with the type of larval development. These data are discussed also with respect to levels of gene diversity and the geological pattern of cheilostome bryozoan species diversity.  相似文献   

11.
Marinas and harbours provide ideal sites for the study of population genetics of marine invertebrates with restricted dispersal capabilities. They combine a confinement effect, particular ecological conditions (pollution, turbidity), and the possibility of high gene flow through ship-borne propagules, which greatly increases the natural dispersal capability of sexual and asexual propagules in many species with short-lived larvae. We studied the genetic structure of populations of the ascidian Clavelina lepadiformis living inside and outside harbours in the north-western Mediterranean. A 500-bp segment of the cytochrome c oxidase subunit I (COI) mitochondrial gene was sequenced in three populations from inside harbours (interior form) and in three populations from the rocky littoral (exterior form). Two congeneric Mediterranean species, Clavelina sp. and C. dellavallei, were used for comparison. We found that the interior and exterior forms of C. lepadiformis belong to two distinct clades, with a genetic divergence of 5%. Gene-flow values among these forms were insignificant. The lack of gene flow and the genetic divergence suggest that the interior and exterior forms of C. lepadiformis are in fact cryptic species rather than differentiated populations of the same species. Levels of gene flow were higher among interior habitats than among exterior habitats, a pattern likely maintained by genetic exchange through ships. We discuss the possible origins of the present-day distribution of these cryptic species. We contend that the study of species living both inside and outside these particular habitats will reveal more instances of genetic discontinuities allowing local adaptations.  相似文献   

12.
In many marine invertebrate species, larval development plays an important role in population connectivity and gene flow: species with direct benthic development generally show more genetic structure than those with planktonic development. We used nuclear markers (microsatellites) to determine population genetic structure of the direct-developing snail Crepidula convexa (Gastropoda: Calyptraeidae) in seven populations with 15–85 individuals each within its native range of the northwest Atlantic and compared it to Crepidula fornicata, a congener with planktonic development. Our results are consistent with general expectations and previous work in these species with other markers: C. convexa had greater population structure and even at a regional scale shows significant isolation-by-distance, in contrast to C. fornicata. We also genotyped a single population of C. convexa introduced to the northeastern Pacific to investigate the prediction of reduced genetic diversity following introduction (founder effect). We did not find a reduction in genetic diversity, suggesting that this non-native population may be characterized by multiple introductions. This pattern is consistent with many other introduced populations of marine invertebrates, including C. fornicata.  相似文献   

13.
Human-made structures are increasingly built in marine coastal habitats for a variety of purposes. Offshore oil and gas production platforms are among the largest examples. Yet, biological effects of these increasing density artificial substrata are under evaluated. The objective of our study is to investigate the possible role of offshore platforms in modifying the genetic composition of populations of natural rocky shores species. The serpulid Pomatoceros triqueter was used as a model, and genetic variation was assessed using a 419?bp fragment of the mtDNA COI gene in samples collected on eleven offshore gas platforms, on one coastal buoy on the sandy shore and in four sites located on natural rocky shores in the Adriatic Sea. Deep phylogenetic lineages were uncovered over all samples. Nucleotide diversity and mean number of pairwise differences among haplotypes were significantly smaller in offshore platform samples compared to rocky shores samples. No significant genetic structure was observed over all samples. We found direct evidence of lower genetic diversity on platforms confirming that, although artificial structures attract and support species typical of hard bottoms, they are not analogues of natural rocky habitats.  相似文献   

14.
Restoring connectivity between fragmented populations is an important tool for alleviating genetic threats to endangered species. Yet recovery plans typically lack quantitative criteria for ensuring such population connectivity. We demonstrate how models that integrate habitat, genetic, and demographic data can be used to develop connectivity criteria for the endangered Mexican wolf (Canis lupus baileyi), which is currently being restored to the wild from a captive population descended from 7 founders. We used population viability analysis that incorporated pedigree data to evaluate the relation between connectivity and persistence for a restored Mexican wolf metapopulation of 3 populations of equal size. Decreasing dispersal rates greatly increased extinction risk for small populations (<150–200), especially as dispersal rates dropped below 0.5 genetically effective migrants per generation. We compared observed migration rates in the Northern Rocky Mountains (NRM) wolf metapopulation to 2 habitat‐based effective distance metrics, least‐cost and resistance distance. We then used effective distance between potential primary core populations in a restored Mexican wolf metapopulation to evaluate potential dispersal rates. Although potential connectivity was lower in the Mexican wolf versus the NRM wolf metapopulation, a connectivity rate of >0.5 genetically effective migrants per generation may be achievable via natural dispersal under current landscape conditions. When sufficient data are available, these methods allow planners to move beyond general aspirational connectivity goals or rules of thumb to develop objective and measurable connectivity criteria that more effectively support species recovery. The shift from simple connectivity rules of thumb to species‐specific analyses parallels the previous shift from general minimum‐viable‐population thresholds to detailed viability modeling in endangered species recovery planning. Desarrollo de Criterios de Conectividad Metapoblacional a Partir de Datos Genéticos y de Hábitat para Recuperar al Lobo Mexicano en Peligro de Extinción  相似文献   

15.
To aid the recovery of a species, understanding the extent to which populations are connected is useful for targeting conservation efforts. Pacific hake within waters of Puget Sound, Washington State, USA, and Georgia Strait, British Columbia, Canada are listed as a species of concern under the U.S. Endangered Species Act due to dramatic declines in the Puget Sound population. To assess the role of dispersal in the recovery of Pacific hake, we sought to quantify patterns of connectivity between populations in Puget Sound and Georgia Strait. Using natural chemical markers from otoliths of fish sampled from these two populations, we linked natal signatures of fish to signatures of individuals from known spawning grounds. Results indicated that 82 % of individuals collected from Puget Sound (n = 78) were estimated to have originated there, while 40 and 92 % of the individuals collected from two cohorts within Georgia Strait (n = 9 and 24, respectively) had originated from Puget Sound. A trend of “population abandonment” of fish from Puget Sound suggests that recovery of this Pacific hake population will depend on local management practices.  相似文献   

16.
Recovery of gray wolf ( Canis lupus ) populations in North America depends on minimizing human-caused mortality and enhancing migration from stable source populations to suitable habitat unoccupied by wolves. We used a combination of field observation and DNA microsatellite genotyping to examine natural wolf colonization of Glacier National Park, Montana, and surrounding lands. We found high genetic variation in the colonizing population, showing that these packs were founded by multiple, unrelated wolves from Canada. High dispersal rates, long dispersal distances, and lack of a founding population bottleneck indicate that wolves in the United States and Canada should be viewed and managed as a single population. Restoration in the United States by artificial transplants from Alberta to Yellowstone National Park and central Idaho began in 1995. The transplanted wolves will likely aid demographic recovery, but permanently retaining the high genetic variation of wolves in the United States will require assuring gene flow throughout the central Rocky Mountains.  相似文献   

17.
We identified different distributions of marine nonindigenous species (NIS) and native species on some artificial structures versus natural reefs and using experimental manipulations, revealed some possible causal mechanisms. In well-established subtidal assemblages, numbers of NIS were 1.5–2.5 times greater on pontoons or pilings than on rocky reefs, despite the local species pool of natives being up to 2.5 times greater than that of NIS. Conversely, on reefs and seawalls, numbers of native species were up to three times greater than numbers of NIS. Differential recruitment to different positions and types of surfaces appeared to influence distribution patterns. NIS recruited well to most surfaces, particularly concrete surfaces near the surface of the water, whilst natives occurred infrequently on wooden surfaces. The position of rocky reefs and seawalls close to the shore and to the seabed appeared to make them favourable for the recruitment of natives, but this positioning alone does not hinder the recruitment of NIS. We argue that pontoons and pilings represent beachheads (i.e. entry points for invasion) for many nonindigenous epibiota and so enhance the spread and establishment of NIS in estuaries. Habitat creation in estuaries may, therefore, be a serious threat to native biodiversity. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

18.
Limited knowledge of dispersal for most organisms hampers effective connectivity conservation in fragmented landscapes. In forest ecosystems, deadwood‐dependent organisms (i.e., saproxylics) are negatively affected by forest management and degradation globally. We reviewed empirically established dispersal ecology of saproxylic insects and fungi. We focused on direct studies (e.g., mark‐recapture, radiotelemetry), field experiments, and population genetic analyses. We found 2 somewhat opposite results. Based on direct methods and experiments, dispersal is limited to within a few kilometers, whereas genetic studies showed little genetic structure over tens of kilometers, which indicates long‐distance dispersal. The extent of direct dispersal studies and field experiments was small and thus these studies could not have detected long‐distance dispersal. Particularly for fungi, more studies at management‐relevant scales (1–10 km) are needed. Genetic researchers used outdated markers, investigated few loci, and faced the inherent difficulties of inferring dispersal from genetic population structure. Although there were systematic and species‐specific differences in dispersal ability (fungi are better dispersers than insects), it seems that for both groups colonization and establishment, not dispersal per se, are limiting their occurrence at management‐relevant scales. Because most studies were on forest landscapes in Europe, particularly the boreal region, more data are needed from nonforested landscapes in which fragmentation effects are likely to be more pronounced. Given the potential for long‐distance dispersal and the logical necessity of habitat area being a more fundamental landscape attribute than the spatial arrangement of habitat patches (i.e., connectivity sensu strict), retaining high‐quality deadwood habitat is more important for saproxylic insects and fungi than explicit connectivity conservation in many cases.  相似文献   

19.
The philopatric larval dispesal and small effective population sizes characteristic of many clonal species should promote the development of significant small-scale genetic structure within populations as a result of isolation-by-distance. We used spatial autocorrelation statistics to detect genetic structure, arising from both clonal reproduction and philopatric dispersal of sexual propagules, for five allozyme loci within populations of the soft coral Alcyonium sp. In a population on Tatoosh Island, Washington, USA, sampled in 1991/1992, we found significant positive spatial autocorrelation at all loci among individuals separated by <40 cm, reflecting the presence of significant smallscale genetic structure due to associations among clonemates. For 4 of 5 loci, however, we detected no significant spatial autocorrelation among the different clones within this population over distances of 1 to 40 m. Analysis of soft-coral populations from six additional, topographically diverse sites in the north-east Pacific also did not reveal significant spatial autocorrelation among clones at any loci. This general lack of spatial autocorrelation of genotypes among clones suggests that significant small-scale genetic structure has not arisen in populations of Alcyonium sp. as a consequence of isolation-by-distance.  相似文献   

20.
Quantifying dispersal is crucial both for understanding ecological population dynamics, and for gaining insight into factors that affect the genetic structure of populations. The role of dispersal becomes pronounced in highly fragmented landscapes inhabited by spatially structured populations. We consider a landscape consisting of a set of habitat patches surrounded by unsuitable matrix, and model dispersal by assuming that the individuals follow a random walk with parameters that may be specific to the habitat type. We allow for spatial variation in patch quality, and account for edge-mediated behavior, the latter meaning that the individuals bias their movement towards the patches when close to an edge between a patch and the matrix. We employ a diffusion approximation of the random walk model to derive analytical expressions for various characteristics of the dispersal process. For example, we derive formulae for the time that an individual is expected to spend in its current patch i, and for the time that it will spend in the matrix, both conditional on the individual hitting next a given patch j before hitting any of the other patches or dying. The analytical formulae are based on the assumptions that the landscape is infinitely large, that the patches are circularly shaped, and that the patches are small compared to interpatch distances. We evaluate the effect of these assumptions by comparing the analytical results to numerical results in a real patch network that violates all of the three assumptions. We then consider a landscape that fulfills the assumptions, and show that in this case the analytical results are in a very good agreement with the numerical results. The results obtained here allow the construction of computationally efficient dispersal models that can be used as components of metapopulation models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号