首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
This paper is an overview of this special issue devoted to watershed research in Acadia National Park (Acadia NP). The papers address components of an integrated research program on two upland watersheds at Acadia NP, USA (44° 20′ N latitude; 68° 15′ E longitude). These watersheds were instrumented in 1998 to provide a long-term foundation for regional ecological and watershed research. The research was initiated as part of EPA/NPS PRIMENet (Park Research and Intensive Monitoring of Ecosystems Network), a system of UV-monitoring stations and long-term watershed research sites located in US national parks. The initial goals at Acadia NP were to address research questions about mercury, acid rain, and nitrogen saturation developed from prior research. The project design was based on natural differences in forests and soils induced by an intense wildfire in one watershed in 1947. There is no evidence of fire in the reference watershed for several hundred years. We are testing hypotheses about controls on surface water chemistry, and bioavailability of contaminants in the contrasting watersheds. The unburned 47-ha Hadlock Brook watershed is 70% spruce-fir mature conifer forest. In contrast, burned 32-ha Cadillac Brook watershed, 4 km northeast of the Hadlock watershed, is 20% regenerating mixed northern hardwoods and 60% shrub/rocky balds. Differences in atmospheric deposition are controlled primarily by forest stand composition and age. The watersheds are gauged and have water chemistry stations at 122 m (Cadillac) and 137 m (Hadlock); watershed maximum elevations are 468 and 380 m, respectively. The stream water chemistry patterns reflect, in part, the legacy of the intense fire, which, in turn, controls differences in forest vegetation and soil characteristics. These factors result in higher nitrogen and mercury flux from the unburned watershed, reflecting differences in atmospheric deposition, contrasting ecosystem pools of nitrogen and mercury, and inferred differences in internal cycling and bioavailabilty.  相似文献   

2.
Throughfall and bulk precipitation samples were collected for two watersheds at Acadia National Park, Maine, from 3 May to 16 November 2000, to determine which landscape factors affected mercury (Hg) deposition. One of these watersheds, Cadillac Brook, burned in 1947, providing a natural experimental design to study the effects of forest type on deposition to forested watersheds. Sites that face southwest received the highest Hg deposition, which may be due to the interception of cross-continental movement of contaminated air masses. Sites covered with softwood vegetation also received higher Hg deposition than other vegetation types because of the higher scavenging efficiency of the canopy structure. Methyl mercury (MeHg) deposition was not affected by these factors. Hg deposition, as bulk precipitation and throughfall was lower in Cadillac Brook watershed (burned) than in Hadlock Brook watershed (unburned) because of vegetation type and watershed aspect. Hg and MeHg inputs were weighted by season and vegetation type because these two factors had the most influence on deposition. Hg volatilization was not determined. The total Hg deposition via throughfall and bulk precipitation was 9.4 μg/m2/year in Cadillac Brook watershed and 10.2 μg/m2/year in Hadlock Brook watershed. The total MeHg deposition via throughfall and bulk precipitation was 0.05 μg/m2/year in Cadillac Brook watershed and 0.10 μg/m2/year in Hadlock Brook watershed.  相似文献   

3.
Fall and spring streamwater samples were analyzed for total mercury (Hg) and major ions from 47 locations on Mount Desert Island in Maine. Samples were collected in zones that were burned in a major wildfire in 1947 and in zones that were not burned. We hypothesized that Hg concentrations in streamwater would be higher from unburned sites than burned watersheds, because fire would volatilize stored Hg. The Hg concentrations, based on burn history, were not statistically distinct. However, significant statistical associations were noted between Hg and the amount of wetlands in the drainage systems and with streamwater dissolved organic carbon (DOC). An unexpected result was that wetlands mobilized more Hg by generating more DOC in total, but upland DOC was more efficient at transporting Hg because it transports more Hg per unit DOC. Mercury concentrations were higher in samples collected at lower elevations. Mercury was positively correlated with relative discharge, although this effect was not distinguished from the DOC association. In this research, sample site elevation and the presence of upstream wetlands and their associated DOC affected Hg concentrations more strongly than burn history.  相似文献   

4.
We reviewed literature reporting both total and methylmercury from biota from Acadia National Park, Maine, USA. Our review of existing data indicates that 1) mercury contamination is widespread throughout the Park’s various aquatic ecosystems; 2) mercury pollution likely represents a moderate to high risk to biota inhabiting the Park; and 3) biota at all trophic levels possess elevated concentrations of both total and methylmercury. Watershed fire history and the resulting post-fire forest succession patterns are an important landscape attribute governing mercury cycling at Acadia National Park. Therefore, park service personnel should consider these factors when planning and implementing Hg biomonitoring efforts. Additional baseline funding from the National Park Service for Hg research and biomonitoring will likely be required in order to further evaluate the spatial and temporal patterns of mercury contamination in the park’s biota. An erratum to this article can be found at  相似文献   

5.
Paleoecological reconstructions of forest stand histories for two upland watersheds at Acadia National Park in Maine were completed to support related watershed chemistry studies. The project hypothesis was that forest type and fire history influence long-term cycling and storage of atmospheric mercury and nitrogen within watersheds. The reconstructions document differences in major vegetation composition and disturbance between the burned and unburned watersheds during the past several centuries. Pollen and charcoal stratigraphies from organic sediment accumulations in forested wet depressions indicate that the present experimental design of contrasting disturbance and forest histories has persisted during recent centuries. The unburned watershed has been dominated by spruce (Picea rubens) and fir (Abies balsamea) for 500 years or more and has not recently burned or been substantially cleared. The burned watershed is dominated by a heterogeneous forest of patchy hardwood, mixed wood, and softwood stands. A large portion of this watershed burned severely in 1947 and probably more than once in the 1800s, and has supported heterogeneous successional forests for 200 years or longer. Overall, these results support the underlying premise that the experimental design of this watershed research can be used to infer landscape controls on biogeochemical processes.  相似文献   

6.
Acadia National Park was one of the 14 sites included in the Park Research and Intensive Monitoring of Ecosystems network (PRIMENet). For eight years the EPA monitored ultraviolet (UV) radiation at this site, with the National Park Service (NPS) sponsoring a total climate and air monitoring station. Under the auspices of PRIMENet, research projects were initiated that investigated the effects of UV on amphibians, determined watershed mass balances, and developed a model of deposition along an elevational gradient. The monitoring data and research results have been used by park management to protect vegetation and water resources from ozone and deposition. These data are now being used to develop a “vital signs” monitoring program under the NPS’ Inventory and Monitoring Program. These data sets have been used in regional, national and international programs to protect human health and resources from air pollution. Public outreach has been accomplished through web site resources and via the Schoodic Education and Research Center.  相似文献   

7.
We monitored nest boxes during 1997–1999 at Acadia National Park, Mt. Desert Island, ME and at an old-field site in Orono, ME to determine mercury (Hg) uptake in tree swallow (Tachycineta bicolor) eggs, tissues, and food boluses. Also, in 1998–1999 we monitored nest boxes at Grove Pond and Plow Shop Pond at a U.S. Environmental Protection Agency Superfund site in Ayer, MA. We recorded breeding success at all locations. On average among locations, total mercury (THg) biomagnified 2 to 4-fold from food to eggs and 9 to 18-fold from food to feathers. These are minimum values because the proportion of transferable methyl mercury (MeHg) of the THg in insects varies (i.e., 35%–95% of THg) in food boluses. THg was highest in food boluses at Aunt Betty Pond at Acadia, whereas THg in eggs was highest at the Superfund site. A few eggs from nests at each of these locations exceeded the threshold (i.e., 800–1,000 ng/g, wet wt.) of embryotoxicity established for Hg. Hatching success was 88.9% to 100% among locations, but five eggs failed to hatch from 4 of the 11 clutches in which an egg exceeded this threshold. MeHg in feathers was highest in tree swallows at Aunt Betty Pond and the concentration of THg in bodies was related to the concentration in feathers. Transfer of an average of 80%–92% of the Hg in bodies to feathers may have enhanced nestling survival. Residues of Hg in tissues of tree swallows in the Northeast seem higher than those of the Midwest.  相似文献   

8.
A study of 13 small (less than 7.5 km2) watersheds on Mt. Desert Island, Maine, was conducted from January 1999 to September 2000 to determine nutrient export delivery to coastal waters around the island, and to determine whether a series of wildfires in 1947 have affected nutrient export in burned watersheds. Nutrient export (nitrate–nitrogen, total nitrogen, total phosphorus) was determined for each watershed during the study period, and was normalized by watershed area. The yield of nitrate–nitrogen (N) ranged from 10 to 140 kg/km2/year. Total N yield ranged from 42 to 250 kg/km2/year. Total phosphorus (P) yield ranged from 1.4 to 7.9 kg/km2/year. Watersheds entirely within Acadia National Park (lacking human land-based nutrient sources) exported significantly less total N and total P than watersheds that were partly or entirely outside the park boundary. Nitrate–N export was not significantly different in these two groups of watersheds, perhaps because atmospheric deposition is a dominant source of nitrate in the study area. No relation was observed between burn history and nutrient export. Any effect of burn history may be masked by other landscape-level factors related to nutrient export.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号