首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Harvesting nontimber forest products (NTFPs) is a major economic activity in tropical forests. As many NTFPs are overexploited, sustainability analyses are required to set harvest guidelines. Here we introduce and apply a new approach to evaluating sustainability, which combines prospective (elasticity) and retrospective (Life Table Response Experiments [LTRE]) demographic analyses of matrix population models. We relate the elasticity of vital rates (representing their importance for population growth rate, lamda) to their contribution to harvest-induced change in lamda ("LTRE contribution"). When high-elasticity vital rates have a low LTRE contribution, exploitation is potentially sustainable as negative effects for population growth are buffered. If the reverse is found, there is little scope for sustainability because crucial vital rates are affected. Our approach is less sensitive to chance fluctuations than the commonly used sustainability criterion of lamda = 1.0, as it does not depend on the absolute value of lamda. We applied this analysis to Geonoma deversa, a clustered forest understory palm. We studied three experimentally defoliated and control populations in a Bolivian rainforest during two years. Cutting all leaves of large ramets did not change mortality but strongly affected growth and reproduction. In spite of severe changes in some vital rates, population growth rate was not significantly reduced after defoliation. A literature review revealed that six other understory palms species responded very similarly to defoliation. The combination of LTRE contributions and elasticity analyses showed that low-elasticity vital rates were mainly responsible for the defoliation-induced change in lamda for Geonoma deversa. For two other understory palms (Astrocaryum mexicanum and Chamaedorea radicalis) new demographic analyses yielded very similar results. For Geonoma, the LTRE contribution-elasticity relation strongly changed when we mimicked harvest damage. Adding 5% mortality to defoliated palms caused stronger change in lamda, mainly due to changes in a high-elasticity vital rate (survival). Therefore, harvest practices that involve stem killing are clearly unsustainable. Our results show that commercial leaf cutting in Geonoma deversa is potentially sustainable, and that this is likely the case for understory palms in general. Our approach to evaluating harvest sustainability can be applied to other NTFPs.  相似文献   

2.
After presenting a short review of process-based model requirements to capture the plant dynamic response to defoliation, this paper describes the development and testing of a model of crown damage and defoliation for Eucalyptus. A model that calculates light interception and photosynthetic production for canopies that vary spatially and temporally in leaf area and photosynthetic properties is linked to the forest growth model CABALA. The process of photosynthetic up-regulation following defoliation is modelled with a simple conditional switch that triggers up-regulation when foliar damage or removal causes the ratio of functional leaf area to living tissue in the tree to change.We show that the model predicts satisfactorily when validated with trees of Eucalyptus nitens and Eucalyptus globulus from a range of sites of different ages, subject to different types of stress and different types of defoliation events (R2 = 0.96 across a range of sites). However, the complexity of particular situations can cause the model to fail (e.g. very heavy defoliation events where branch death occurs).It is concluded that while the model will not cope with all situations, an appropriate level of generality has been captured to represent many of the physiological processes and feedbacks that occur following defoliation or leaf damage. This makes the model useful for guiding management interventions following pest attack and allows the development of scenarios including climate change impact analyses and decision-making on the merits of post-defoliation fertilisation to expedite recovery.  相似文献   

3.
The forest tent caterpillar (Malacosoma disstria Hübner) (FTC) has an outbreak cycle of approximately 10 years; however, smaller spatial scale analyses show some regions have longer or more frequent periods of high defoliation. This may be a result of local forest fragmentation, pollution or other sources of stress that may affect FTC directly or indirectly through stress on their hosts or parasitoids. Population dynamics of FTC were examined to investigate how stress may alter the severity and frequency of defoliation. We developed a spatially explicit agent-based model to simulate the host-parasitoid dynamics of FTC. Theoretical and empirically derived parameters were established using past literature and over 50 years of population data of FTC from Ontario, Canada. We find that increasing FTC fecundity, FTC dispersal or parasitoid mortality resulted in more severe outbreaks while a decrease in parasitoid fecundity or searching efficiency resulted in an overall elevation of defoliation. Parasitoid efficiency was the most effective parameter for altering the FTC defoliation. Since plant stress has been shown to alter several of these parameters in nature due to changes in food quality, habitat suitability, and chemical cue interference, our results suggest that forests affected by stressors such as climate change and pollution will have more severe and frequent defoliation from these insects than surrounding unaffected forests. As stressors such as drought and pollution emissions are predicted to increase in frequency or intensity over the next few decades, understanding how they may affect the outbreak cycle of a forest defoliator can aid in planning strategies to reduce the detrimental effects of this insect.  相似文献   

4.
This interdisciplinary research on forest ecosystems begins with some characteristics of ecosystems which are the basis for the derivation of statistical models for the development and vitality of trees. Several ecological problems which could be solved by longitudinal studies are mentioned. Statistical methods for the evaluation of the crowns of spruce trees (Picea abies Karst) in three permanent observation plots in Switzerland are described. In particular, the time-dependent proportional odds model and a transitional model are used. Through application of these multistate models the data give information on the dependence of an ordered categorical response variable on covariates characterizing the ecosystem. The response variable is observed through infrared aerial photographs. This monitoring system gives insight into the dynamic behaviour of the forest ecosystem. The need for more eco-systematically motivated statistical research using longitudinal studies is identified.  相似文献   

5.
《Ecological modelling》1999,114(2-3):175-193
A carbon-based model has been developed to simulate responses of trembling aspen (Populus tremuloides Michx.) stands to interannual climatic variation and insect defoliation. The model is designed for medium time scale (10–100 years) simulations and requires only daily maximum and minimum temperature and precipitation as meteorological inputs. The modelling approach is similar to FOREST-BGC but includes additional processes known to be important in deciduous forests. These include removal of leaf area during outbreaks of forest tent caterpillar (Malacosoma disstria Hbn.), phenological changes in leaf area index, storage and allocation of non-structural carbohydrate and the contribution of understorey vegetation to evapotranspiration. The model was used for simulations of growth and mortality of biomass carbon in two mature aspen forests located in the climatically dry transition zone between the boreal forest and prairie grassland regions of Saskatchewan, Canada. Model inputs of annual defoliation intensity were based on historic records of insect defoliation and the incidence of light-coloured tree rings in disks or cores collected from aspen at each of the two sites. At both sites, moderately good correlations (r2=0.47–0.54) were obtained between modelled interannual changes in stem carbon growth and observed interannual changes in stem basal area increment obtained from tree-ring analysis. Model outputs of stem biomass carbon were found to be highly sensitive to parameters describing seasonal leaf area duration, insect defoliation intensity, photosynthesis and root respiration and carbohydrate allocation to growth versus storage.  相似文献   

6.
基于PCA的森林生物量遥感信息模型研究   总被引:2,自引:0,他引:2  
徐天蜀  张王菲  岳彩荣 《生态环境》2007,16(6):1759-1762
森林生物量和遥感多光谱数据、植被指数及地学因子存在相关关系,但这些因子间可能存在着多重相关性,如利用这些因子直接建模估测森林生物量,则可能出现病态模型。因此,文章采用主成分分析方法,提取遥感及地学因子的主成分,再建立主成分与生物量多元线性回归模型,估测森林生物量,达到既可保留多个遥感及地学因子的主要信息,又可避免因子间共线性的问题,以及降维,简化模型的作用。文章以高黎贡山自然保护区常绿阔叶林为研究对象,利用地面样地胸径每木调查数据,结合生物量相对生长式,得样地生物量。利用2006年印度卫星(IRS)数据,包括B2、B3、B4、B5四个波段,提取DVI、NDVI、PVI、RVI、VI3、SLAVI六种植被指数,利用DEM提取海拔、坡度、坡向值共13个遥感及地学因子。在此基础上,提取13个因子的主成分,第一主成分至第五主成分的累计贡献率达98.7%。以前5个主成分值作自变量,建立主成分与地面生物量的回归模型,模型经方差分析及相关性检验,达到显著相关水平,相关系数R=0.7129,可用于森林生物量估测。  相似文献   

7.
Studies on forest damage generally cannot be carried out by common regression models, for two main reasons: Firstly, the response variable, damage state of trees, is usually observed in ordered categories. Secondly, responses are often correlated, either serially, as in a longitudinal study, or spatially, as in the application of this paper, where neighbourhood interactions exist between damage states of spruces determined from aerial pictures. Thus so-called marginal regression models for ordinal responses, taking into account dependence among observations, are appropriate for correct inference. To this end we extend the binary models of Liang and Zeger (1986) and develop an ordinal GEEI model, based on parametrizing association by global cross-ratios. The methods are applied to data from a survey conducted in Southern Germany. Due to the survey design, responses must be assumed to be spatially correlated. The results show that the proposed ordinal marginal regression models provide appropriate tools for analysing the influence of covariates, that characterize the stand, on the damage state of spruce.  相似文献   

8.
Stand structure develops with stand age. Old-growth forests with well-developed stand structure support many species. However, development rates of stand structure likely vary with climate and topography. We modeled structural development of 4 key stand variables and a composite old-growth index as functions of climatic and topographic covariates. We used a hierarchical Bayesian method for analysis of extensive snap-shot National Forest Inventory (NFI) data in Japan (n = 9244) to account for differences in stand age. Development rates of structural variables and the old-growth index exhibited curvilinear responses to environmental covariates. Flat sites were characterized by high rates of structural development. Approximately 150 years were generally required to attain high values (approximately 0.8) of the old-growth index. However, the predicted age to achieve specific values varied depending on environmental conditions. Spatial predictions highlighted regional variation in potential structural development rates. For example, sometimes there were differences of >100 years among sites, even in the same catchment, in attainment of a medium index value (0.5) after timber harvesting. The NFI data suggested that natural forests, especially old natural forests (>150 years), remain generally on unproductive ridges, steep slopes, or areas with low temperature and deep snow, where many structural variables show slow development rates. We suggest that maintenance and restoration of old natural forests on flat sites should be prioritized for conservation due to the likely rapid development of stand structure, although remaining natural forests on low-productivity sites are still important and should be protected.  相似文献   

9.
A spatial zero-inflated poisson regression model for oak regeneration   总被引:1,自引:0,他引:1  
Ecological counts data are often characterized by an excess of zeros and spatial dependence. Excess zeros can occur in regions outside the range of the distribution of a given species. A zero-inflated Poisson regression model is developed, under which the species range is determined by a spatial probit model, including physical variables as covariates. Within that range, species counts are independently drawn from a Poisson distribution whose mean depends on biotic variables. Bayesian inference for this model is illustrated using data on oak seedling counts. Received: May 2004 / Revised: December 2004  相似文献   

10.
Yee TW 《Ecology》2006,87(1):203-213
For several decades now, ecologists have sought to determine the shape of species' response curves and how they are distributed along unknown underlying gradients, environmental latent variables, or ordination axes. Its determination has important implications for both continuum theory and community analysis because many theories and models in community ecology assume that responses are symmetric and unimodal. This article proposes a major new technique called constrained additive ordination (CAO) that solves this problem by computing the optimal gradients and flexible response curves. It allows ecologists to see the response curves as they really are, against the dominant gradients. With one gradient, CAO is a generalization of constrained quadratic ordination (CQO; formerly called canonical Gaussian ordination or CGO). It supplants symmetric bell-shaped response curves in CQO with completely flexible smooth curves. The curves are estimated using smoothers such as the smoothing spline. Loosely speaking, CAO models are generalized additive models (GAMs) fitted to a very small number of latent variables. Being data driven rather than model driven, CAO allows the data to "speak for itself" and does not make any of the assumptions made by canonical correspondence analysis. The new methodology is illustrated with a hunting spider data set and a New Zealand tree species data set.  相似文献   

11.
Yackulic CB  Reid J  Davis R  Hines JE  Nichols JD  Forsman E 《Ecology》2012,93(8):1953-1966
In this paper, we modify dynamic occupancy models developed for detection-nondetection data to allow for the dependence of local vital rates on neighborhood occupancy, where neighborhood is defined very flexibly. Such dependence of occupancy dynamics on the status of a relevant neighborhood is pervasive, yet frequently ignored. Our framework permits joint inference about the importance of neighborhood effects and habitat covariates in determining colonization and extinction rates. Our specific motivation is the recent expansion of the Barred Owl (Strix varia) in western Oregon, USA, over the period 1990-2010. Because the focal period was one of dramatic range expansion and local population increase, the use of models that incorporate regional occupancy (sources of colonists) as determinants of dynamic rate parameters is especially appropriate. We began our analysis of 21 years of Barred Owl presence/nondetection data in the Tyee Density Study Area (TDSA) by testing a suite of six models that varied only in the covariates included in the modeling of detection probability. We then tested whether models that used regional occupancy as a covariate for colonization and extinction outperformed models with constant or year-specific colonization or extinction rates. Finally we tested whether habitat covariates improved the AIC of our models, focusing on which habitat covariates performed best, and whether the signs of habitat effects are consistent with a priori hypotheses. We conclude that all covariates used to model detection probability lead to improved AIC, that regional occupancy influences colonization and extinction rates, and that habitat plays an important role in determining extinction and colonization rates. As occupancy increases from low levels toward equilibrium, colonization increases and extinction decreases, presumably because there are more and more dispersing juveniles. While both rates are affected, colonization increases more than extinction decreases. Colonization is higher and extinction is lower in survey polygons with more riparian forest. The effects of riparian forest on extinction rates are greater than on colonization rates. Model results have implications for management of the invading Barred Owl, both through habitat alteration and removal.  相似文献   

12.
Concerns about declines in forest biodiversity underscore the need for accurate estimates of the distribution and abundance of organisms at large scales and at resolutions that are fine enough to be appropriate for management. This paper addresses three major objectives: (i) to determine whether the resolution of typical air photo-derived forest inventory is sufficient for the accurate prediction of site occupancy by forest birds. We compared prediction success of habitat models using air photo variables to models with variables derived from finer resolution, ground-sampled vegetation plots. (ii) To test whether incorporating spatial autocorrelation into habitat models via autologistic regression increases prediction success. (iii) To determine whether landscape structure is an important factor in predicting bird distribution in forest-dominated landscapes. Models were tested locally (Greater Fundy Ecosystem [GFE]) using cross-validation, and regionally using an independent data set from an area located ca. 250 km to the northwest (Riley Brook [RB]). We found significant positive spatial autocorrelation in the residuals of at least one habitat model for 76% (16/21) of species examined. In these cases, the logistic regression assumption of spatially independent errors was violated. Logistic models that ignored spatial autocorrelation tended to overestimate habitat effects. Though overall prediction success was higher for autologistic models than logistic models in the GFE, the difference was only significantly improved for one species. Further, the inclusion of spatial covariates did little to improve model performance in the geographically discrete study area. For 62% (13/21) of species examined, landscape variables were significant predictors of forest bird occurrence even after statistically controlling for stand-level variability. However, broad spatial extents explained less variation than local factors. In the GFE, 76% (16/21) of air photo and 81% (17/21) of ground plot models were accurate enough to be of practical utility (AUC > 0.7). When applied to RB, both model types performed effectively for 55% (11/20) of the species examined. We did not detect an overall difference in prediction success between air photo and ground plot models in either study area. We conclude that air photo data are as effective as fine resolution vegetation data for predicting site occupancy for the majority of species in this study. These models will be of use to forest managers who are interested in mapping species distributions under various timber harvest scenarios, and to protected areas planners attempting to optimize reserve function.  相似文献   

13.
The effect of roads on forests is ambiguous. Many studies conclude that building and upgrading roads increases pressure on forests but some find that new and better roads may reduce the rate of deforestation. In this paper we use satellite remote sensing images of forest cover in Jiangxi Province, China, to test whether the existence and the size of roads (ranging from expressways to tertiary roads) in 1995 affected the level of forest cover in 2000 or the rate of change between 1995 and 2000. To account for road access for each of our 1 km2 (“pixel”) units of forest cover we measure whether or not and what type of roads penetrate the “watershed” in which the pixel lies. These watersheds allow more plausible measures of accessibility than do traditional “crowfly” distance measures that ignore topography. To account for possible confounding we also use 12 additional covariates: geographic and climatic variables (e.g., elevation, slope, rainfall, temperature, soil properties); demographic and economic variables (e.g., local population and GDP per square kilometer); and distance variables (e.g., distance to the nearest provincial capital). Although simple univariate OLS regressions show that forest levels are lower and deforestation rates higher either when there is a road, or when there is a higher quality road, these results are not robust. Controlling for all of the covariates and also using recently developed covariate matching techniques to estimate treatment effects, we find that roads in China’s Jiangxi Province can most safely be described as having no impact on the level of forests and no impact on the rate of deforestation.  相似文献   

14.
In this study we developed a dynamic growth model for Scots pine (Pinus sylvestris L.) plantations in Galicia (north-western Spain). The data used to develop the model were obtained from a network of permanent plots, of between 10 and 55-year-old, which the Unidade de Xestión Forestal Sostible (Sustainable Forest Management Unit) of the University of Santiago de Compostela has set up in pure plantations of this species of pine in its area of distribution in Galicia. In this model, the initial stand conditions at any point in time are defined by three state variables (number of trees per hectare, stand basal area and dominant height), and are used to estimate stand volume, classified by commercial classes, for a given projection age. The model uses three transition functions expressed as algebraic difference equations of the three corresponding state variables used to project the stand state at any point in time. In addition, the model incorporates a function for predicting initial stand basal area, which can be used to establish the starting point for the simulation. This alternative should only be used when the stand is not yet established or when no inventory data are available. Once the state variables are known for a specific moment, a distribution function is used to estimate the number of trees in each diameter class, by recovering the parameters of the Weibull function, using the moments of first and second order of the distribution (arithmetic mean diameter and variance, respectively). By using a generalized height–diameter function to estimate the height of the average tree in each diameter class, combined with a taper function that uses the above predicted diameter and height, it is then possible to estimate total or merchantable stand volume.  相似文献   

15.
16.
Spatial statistical models that use flow and stream distance   总被引:6,自引:1,他引:6  
We develop spatial statistical models for stream networks that can estimate relationships between a response variable and other covariates, make predictions at unsampled locations, and predict an average or total for a stream or a stream segment. There have been very few attempts to develop valid spatial covariance models that incorporate flow, stream distance, or both. The application of typical spatial autocovariance functions based on Euclidean distance, such as the spherical covariance model, are not valid when using stream distance. In this paper we develop a large class of valid models that incorporate flow and stream distance by using spatial moving averages. These methods integrate a moving average function, or kernel, against a white noise process. By running the moving average function upstream from a location, we develop models that use flow, and by construction they are valid models based on stream distance. We show that with proper weighting, many of the usual spatial models based on Euclidean distance have a counterpart for stream networks. Using sulfate concentrations from an example data set, the Maryland Biological Stream Survey (MBSS), we show that models using flow may be more appropriate than models that only use stream distance. For the MBSS data set, we use restricted maximum likelihood to fit a valid covariance matrix that uses flow and stream distance, and then we use this covariance matrix to estimate fixed effects and make kriging and block kriging predictions. Received: July 2005 / Revised: March 2006  相似文献   

17.
At the time of European settlement, land surveys were conducted progressively westward throughout the United States. Outside of the original 13 colonies, surveys generally followed the Public Land Survey system in which trees, called witness trees, were regularly recorded at 1 mi by 1 mi grid intersections. This unintentional sampling provides insight into the composition and structure of pre-European settlement forests, which is used as baseline data to assess forest change following settlement. In this paper, a model for the Public Land Surveys of east central Alabama is developed. Assuming that the locations of trees of each species are realized from independent Poisson processes whose respective log intensities are linear functions of environmental covariates (i.e., elevation, landform, and physiographic province), the species observed at the survey grid intersections are independently sampled from a generalized logistic regression model. If all 68 species found in the survey were included, the model would be highly over-parameterized, so only the distribution of the most common taxon, pines, will be considered at this time. To assess the impact of environmental factors not included in the model, a hidden Gaussian random field shall be added as a random effect. A Markov Chain Monte Carlo algorithm is developed for Bayesian inference on model parameters, and for Bayes posterior prediction of the spatial distribution of pines in east central Alabama. Received: June 2004 / Revised: November 2004  相似文献   

18.
The forest succession model FORDYN is developed based on TREEDEV model. TREEDEV is a process-based tree growth model, that calculates tree growth based on carbon and nitrogen balance, and is calculated using on the photo-production of leaves, respiration, nitrogen content of all organisms and that in soil, and other losses due to respiration, litter and renewal of stems, branches, leaves and roots. In the FORDYN model succession is divided into three phases called early, middle and late succession, and the transition between these three succession phases is distinguished by a difference in leaf area index. As a verification of the model we used the characteristics and available data of a monsoon evergreen broad-leaved forest in Dinghushan Biosphere Reserve (DHS-BR). The model was validated with natural forest data. In addition, a sensitivity analysis was performed in which 30 independent variables were varied and analyzed in connection with their influence on 16 dependent variables describing forest conditions. The simulation results describe the changes in total biomass, carbon and nitrogen change in plant–litter–soil system of an undisturbed monsoon evergreen broad-leaved forest during succession. We compared these findings with simulation in which different logging management strategies were used. The results show that having a longer logging cycle, delaying the first logging time and a smaller logging fraction the scenario can contribute to a sustainable forest development, while still having a positive economic yield.  相似文献   

19.
Recently, public health professionals and other geostatistical researchers have shown increasing interest in boundary analysis, the detection or testing of zones or boundaries that reveal sharp changes in the values of spatially oriented variables. For areal data (i.e., data which consist only of sums or averages over geopolitical regions), Lu and Carlin (Geogr Anal 37: 265–285, 2005) suggested a fully model-based framework for areal wombling using Bayesian hierarchical models with posterior summaries computed using Markov chain Monte Carlo (MCMC) methods, and showed the approach to have advantages over existing non-stochastic alternatives. In this paper, we develop Bayesian areal boundary analysis methods that estimate the spatial neighborhood structure using the value of the process in each region and other variables that indicate how similar two regions are. Boundaries may then be determined by the posterior distribution of either this estimated neighborhood structure or the regional mean response differences themselves. Our methods do require several assumptions (including an appropriate prior distribution, a normal spatial random effect distribution, and a Bernoulli distribution for a set of spatial weights), but also deliver more in terms of full posterior inference for the boundary segments (e.g., direct probability statements regarding the probability that a particular border segment is part of the boundary). We illustrate three different remedies for the computing difficulties encountered in implementing our method. We use simulation to compare among existing purely algorithmic approaches, the Lu and Carlin (2005) method, and our new adjacency modeling methods. We also illustrate more practical modeling issues (e.g., covariate selection) in the context of a breast cancer late detection data set collected at the county level in the state of Minnesota.  相似文献   

20.
The spread of invasive species is a long studied subject that garners much interest in the ecological research community. Historically the phenomenon has been approached using a purely deterministic mathematical framework (usually involving differential equations of some form). These methods, while scientifically meaningful, are generally highly simplified and fail to account for uncertainty in the data and process, of which our knowledge could not possibly exist without error. We propose a hierarchical Bayesian model for population spread that accommodates data sources with errors, dependence structures between population dynamics parameters, and takes into account prior scientific understanding via non-linear relationships between model parameters and space-time response variables. We model the process (i.e., the bird population in this case) as a Poisson response with spatially varying diffusion coefficients as well as a logistic population growth term using a common reaction-diffusion equation that realistically mimics the ecological process. We focus the application on the ongoing invasion of the Eurasian Collared-Dove.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号