首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
采用铜渣催化H2O2类Fenton氧化反应处理棉浆黑液,研究了酸析pH、H2O2投加量、铜渣投加量对棉浆黑液COD和TOC去除率及溶出Fe2+质量浓度的影响,考察了铜渣重复使用性能,讨论了铜渣催化作用机制.结果表明:在酸析pH为2、H2O2投加量为25 mmol/L、铜渣投加量为2.5 g/L条件下,反应180 min...  相似文献   

2.
以Bi(NO3)3和Na2WO4为原料,采用水热法合成了可见光催化剂Bi2WO6,并采用X射线衍射仪和BET法对其进行了表征。考察了合成温度、Bi2WO6加入量、邻氯苯酚(2-CP)浓度、溶液pH等对2-CP光催化降解效果的影响。实验结果表明:在加入140℃下合成的Bi2WO6催化剂1g/L、原始pH(pH=5.85)、可见光光照210min的条件下,对质量浓度为20mg/L的2-CP溶液进行处理,2-CP去除率最高为97.2%;添加少量H2O2对2-CP的降解有促进作用。  相似文献   

3.
微波-改性活性炭-Fenton试剂氧化法降解水中2,4-二氯酚   总被引:7,自引:2,他引:5  
以经Fe2(SO4)3溶液浸渍改性的活性炭作催化剂、Fenton试剂作氧化剂,采用微波-改性活性炭-Fenton试剂氧化法降解水中的2,4-二氯酚。考察了改性活性炭加入量、H2O2与Fe^2+摩尔比、Fenton试剂加入量、微波功率和2,4-二氯酚溶液初始pH对2,4-二氯酚降解效果的影响。在改性活性炭加入量1.0g/L、n(H2O2):n(Fe^2+)=16.7(H2O2加入量6.0mmol/L、Fe^2+加入量0.36mmol/L)、Fenton试剂加入量为6.36mmol/L、微波功率600W、微波辐射时间10min、2,4-二氯酚溶液初始pH为6.0的条件下,2,4-二氯酚降解率和TOC去除率分别可达98.7%和84.0%。  相似文献   

4.
采用Fenton试剂氧化—原水调节出水pH法预处理碱性印染废水,考察了n(H2O2):n(Fe2+)、Fenton试剂加入量、反应时间和原水与Fenton试剂氧化反应后出水体积比(配水比)对COD去除率及废水pH的影响.实验结果表明,在原水COD为986 mg/L、原水pH为9.31、Fe2+加入量为12 mmol/L、n(H2O2):n(Fe2+)为2、反应时间为30 min、配水比为2的最佳条件下,COD去除率为26.9%,出水pH为6.60.药剂成本较普通Fenton试剂氧化法减少70%.  相似文献   

5.
臭氧催化氧化法处理焦化废水中氰化物   总被引:1,自引:0,他引:1  
采用臭氧催化氧化法处理焦化废水中的氰化物,采用合理的试验设计方案,应用响应曲面法讨论了O3的投加量、催化剂加入量以及溶液初始p H值对总氰去除率影响,从而优化了总氰去除工艺条件。试验结果表明,O3投加量、催化剂用量和溶液初始p H值对总氰的去除率影响极为显著;回归分析和验证试验表明,应用响应曲面法优化试验合理可行;O3投加量为84.35 mg/L、催化剂用量为120 mg/L、p H值为9.26、总氰去除率为91.38%,此时溶液中残留的总氰浓度为0.884 mg/L,可以实现达标排放。  相似文献   

6.
采用Fenton氧化法对吸附处理染料废水后的饱和粉末活性炭(饱和炭)进行再生,考察了饱和炭的再生效果及其主要影响因素。实验结果表明:饱和炭的最佳再生条件为H2O2投加量6.5 mmol/g、再生p H 3.0、H2O2与Fe2+的摩尔比10、再生时间1 h;最佳条件下的再生率(再生粉末活性炭(再生炭)与新粉末活性炭对废水COD去除率的百分比)约为60%;使用最佳再生条件下得到的再生炭对废水进行吸附处理,废水的COD去除率和脱色率分别约为27%和67%。  相似文献   

7.
采用原位氧化沉淀法制备出仿酶型磁性Fe0-Fe_3O_4复合催化剂,并将其作为非均相类Fenton催化剂用于溶液中对硝基苯酚的降解;采用SEM和XRD等技术对催化剂进行了表征。表征结果显示,Fe_3O_4与Fe0结合牢固,有利于Fe0的分散。实验结果表明:Fe0-Fe_3O_4对对硝基苯酚的降解为拟一级反应;在Fe0与Fe_3O_4的质量比为0.75、Fe0-Fe_3O_4投加量为1.2 g/L、初始H_2O_2浓度为10 mmol/L、初始溶液p H为3、反应温度为30℃的条件下反应90min,反应速率常数为0.067 min-1,COD去除率为77.28%,Fe溶出量为2.12 mg/L;在对硝基苯酚的降解过程中,pH先增大后减小,Fe溶出量先降低后升高;Fe0-Fe_3O_4是一种稳定的催化剂,可再生使用。  相似文献   

8.
包伟  黄勇  张宁博  王飞 《化工环保》2016,(5):537-542
采用三级厌氧柱串联形成的递进式强化厌氧处理工艺协同Fenton氧化工艺处理某印染厂的印染废水(COD 1 418 mg/L、色度400倍)。三级厌氧柱的运行参数为:以陶粒为填料,进水p H为7.0,3个厌氧柱的HRT均为16 h,柱温(33±2)℃。厌氧柱2的强化条件为投加280 mg/L钙离子和30 mg/L PAM,厌氧柱3的强化条件为投加350 mg/L煤质活性炭。三级厌氧柱强化前后的COD去除率分别为70.38%和84.13%,色度去除率分别为50.00%和62.50%。Fenton氧化处理的最佳条件为H2O2投加量450 mg/L、Fe SO4投加量450 mg/L、反应p H 3.5、反应时间0.5 h。整个工艺的总COD去除率达96.12%、总色度去除率达78.75%,处理后出水的COD为55 mg/L、色度为85倍,满足GB 4287—2012《纺织染整工业水污染物排放标准》中的直排标准。  相似文献   

9.
采用改性粉煤灰催化类Fenton试剂氧化法处理造纸废水,对COD去除率的各影响因素进行了研究。实验结果表明,在酸改性粉煤灰加入量为34 g/L、H2O2加入量为8.20 mmol/L、FeSO4加入量为8.8 mmol/L、反应时间为45 min、不调节pH的条件下,出水COD为56 mg/L,去除率可达76.45%。该法大大减少了运行费用,是一种有效的造纸废水深度处理方法。  相似文献   

10.
环氧氯丙烷生产废水的资源化处理技术   总被引:1,自引:0,他引:1  
帅晓丹  曹国民  洪芳  盛梅 《化工环保》2013,33(6):518-522
采用催化湿式过氧化物氧化法(CWPO)处理环氧氯丙烷生产废水,考察了反应温度、反应时间、反应pH、双氧水和FeSO4#x000b7;7H2O加入量及投加方式等因素对TOC去除率的影响。实验结果表明:CWPO工艺适宜的反应条件为反应温度90℃,反应pH2.0~3.0,FeSO4#x000b7;7H2O2加入量7.50~8.75g/L,双氧水加入量75mL/L,反应时间100min;双氧水和Fe2+分多次投加时的TOC去除效果明显优于一次性投加;优化条件下,环氧氯丙烷废水经CWPO工艺处理后,TOC由1790mg/L降至138mg/L,符合氯碱厂隔膜电解槽进槽盐水的要求,可以资源化利用。  相似文献   

11.
采用Fenton氧化法处理石化含油废水生化出水,通过正交实验和单因素实验优化了反应工艺条件。正交实验得到各因素对COD去除率的影响大小顺序为:溶液初始pHH_2O_2投加量n(H_2O_2)∶n(Fe~(2+))反应温度。实验最佳工艺条件为:初始溶液pH 4.0,H_2O_2投加量3.00 mL/L,n(H_2O_2)∶n(Fe~(2+))=10,反应温度35℃,反应时间60 min。在此最佳工艺条件下COD可降至60.33 mg/L,COD去除率达61.33%。在最佳工艺条件下,分别采用超声(US)-Fenton氧化和紫外光(UV)-Fenton氧化技术处理含油废水生化出水,COD去除率分别达76.77%和80.23%。但单一Fenton氧化、US-Fenton氧化和UV-Fenton氧化工艺对NH_3-N的去除效果均并不明显。  相似文献   

12.
MCM-41分子筛负载铁铈催化降解甲基橙   总被引:1,自引:0,他引:1       下载免费PDF全文
采用等体积浸渍法制备了负载型有序介孔Fe-Ce/MCM-41催化剂。研究了该催化剂降解甲基橙的适宜工艺条件,并采用XPS,XRD,TEM技术对该催化剂进行了表征。实验结果表明,该催化剂Fenton氧化降解甲基橙的较适宜工艺条件为:溶液pH 5.0、甲基橙溶液初始质量浓度100 mg/L、催化剂加入量2.0 g/L、H_2O_2浓度20 mmol/L,在此适宜条件下反应120 min时,甲基橙去除率接近100%。表征结果显示:Fe-Ce/MCM-41催化剂主要由铁、铈、氧、碳4种元素组成;铁与铈的摩尔比接近3∶1;铁和铈主要以Fe_3O_4和CeO_2的形态存在于催化剂表面。  相似文献   

13.
Ozonation, combined with the Fenton process (O(3)/H(2)O(2)/Fe(2+)), was used to treat matured landfill leachate. The effectiveness of the Fenton molar ratio, Fenton concentration, pH variance, and reaction time were evaluated under optimum operational conditions. The optimum removal values of chemical oxygen demand (COD), color, and NH(3)-N were found to be 65%, 98%, and 12%, respectively, for 90 min of ozonation using a Fenton molar ratio of 1 at a Fenton concentration of 0.05 mol L(-1) (1700 mg/L) H(2)O(2) and 0.05 mol L(-1) (2800 mg/L) Fe(2+) at pH 7. The maximum removal of NH(3)-N was 19% at 150 min. The ozone consumption for COD removal was 0.63 kg O(3)/kg COD. To evaluate the effectiveness, the results obtained in the treatment of stabilized leachate were compared with those obtained from other treatment processes, such as ozone alone, Fenton reaction alone, as well as combined Fenton and ozone. The combined method (i.e., O(3)/H(2)O(2)/Fe(2+)) achieved higher removal efficiencies for COD, color, and NH(3)-N compared with other studied applications.  相似文献   

14.
In this study, photochemical advanced oxidation processes (AOPs) utilizing the combinations of UV/H2O2 and the photo-Fenton reaction (UV + classical Fenton reaction) were investigated in lab-scale experiments for the degradation of p-chlorophenol. The study showed that the photo-Fenton process, (a mixture of hydrogen peroxide and ferrous or ferric ion), was the most effective treatment process under acidic conditions and produced a higher rate of degradation of p-chlorophenol at a very short radiation time. It accelerated the oxidation rate by 5-9 times the rate for the UV/H2O2 process. The reaction was found to follow the first order, the reaction was influenced by the pH, the input concentration of H2O2 and the amount of the iron catalyst and the type of iron salt. The experimental results showed that the optimum conditions were obtained at a pH value of 3, with 0.03 mol/l H2O2, and 1 mmol/l Fe(II) for the UV/H2O2/Fe(II) system and 0.01 mol/l H2O2 and, 0.4 mmol/l Fe(III) for the UV/H2O2/Fe(III) system. The reactions were accompanied by the generation of Cl- which reached its maximum value at a short reaction time when using the photo-Fenton process. Finally a rough comparison of the specific energy consumption shows that photo-Fenton process reduced the energy consumption by at least 73 to 83% compared with the UV/H2O2 process.  相似文献   

15.
采用大孔树脂吸附—Fenton试剂氧化法预处理含邻苯二甲酸二异丁酯(DIBP)废水。大孔树脂吸附工段的最佳实验条件为:以树脂NDA88为吸附剂,废水pH为2。NDA88经过10批次的连续使用,COD去除率基本稳定在58%左右,脱附率可达96%以上,吸附后废水COD为12 000 mg/L左右。Fenton试剂氧化工段的最佳实验条件为:H2O2加入量70 mL/L,n(H2O2):n(Fe2+)=4,废水pH 4。在此最佳条件下进行实验,Fenton试剂氧化工段COD去除率达65%,处理后废水COD为4 200 mg/L。  相似文献   

16.
UV/Fenton氧化-混凝联合工艺处理含酚废水   总被引:8,自引:0,他引:8  
采用UV/Fenton氧化-混凝联合工艺对模拟苯酚废水进行处理,探讨了UV/Fenton预氧化程度和混凝处理条件对模拟苯酚废水处理效果的影响。结果表明,采用混凝处理,COD去除率仅为14.1%;当UV/Fenton预氧化处理过程中H2O2的质量浓度为150~300mg/L时,废水的混凝性能可提高1.5倍以上;当H2O2质量浓度为450mg/L、光反应时间为30min时,采用UV/Fenton氧化一混凝工艺联合处理后COD去除率达82.7%。苯酚废水采用UV/Fenton预氧化处理后,进行混凝处理过程的适宜pH为6.5,混凝剂Fe^3 的适宜质量浓度为500mg/L.  相似文献   

17.
采用A/O—Fenton氧化—混凝组合工艺处理丁苯橡胶生产废水。试验结果表明:A/O工段中,在兼氧池HRT 8 h、好氧池HRT 16 h、好氧池MLSS 2 500~3 500 mg/L的优化参数下,平均COD,NH3-N,TP去除率分别为72.9%,96.2%,51.3%;Fenton氧化工段中,在30%(w)H2O2溶液加入量0.2%(φ)、n(H2O2)∶n(Fe SO4)=2∶1、Fenton氧化反应时间70 min、Fenton氧化进水p H 5.0的优化条件下,COD和TP的去除率分别为56.0%和57.0%;A/O—Fenton氧化—混凝组合工艺对COD、NH3-N、TP、浊度的总去除率分别为94.8%,96.2%,100%,94.0%,处理后出水满足GB 8978—1996《污水综合排放标准》中的一级标准。  相似文献   

18.
分别采用D401和N-117负载Fe(Ⅱ)制备非均相Fenton催化剂,探讨两种催化剂在不同初始溶液pH、初始H2O2质量浓度和保存条件下,催化降解苯酚的效果和铁溶出情况。结果表明:两种催化剂均能拓展Fenton反应pH范围;D401负载Fe(Ⅱ)催化苯酚降解速率较快,苯酚降解率随初始溶液pH升高而下降,溶出铁催化的均相Fenton反应是苯酚降解的主要原因;N-117负载Fe(Ⅱ)催化剂苯酚降解速率随初始溶液pH升高而下降,非均相Fenton反应是主要反应过程;初始H2O2质量浓度升高能使D401负载Fe(Ⅱ)的溶出总铁质量浓度显著升高,但对N-117负载Fe(Ⅱ)影响很小;水中较高的DO能显著降低两种催化剂的苯酚降解效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号