首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodiesel from waste cooking oil (WCO) and soybean oil (SO) mixture was produced by changing the alkali catalyst (NaOH) content and the WCO to SO ratio in the feedstock. All the prepared biodiesel samples satisfied the standard requirement in terms of free glycerol, density, and acid value. The minimum catalyst content and the highest WCO composition to get biodiesel from the WCO/SO mixture feedstock without ruining the biodiesel properties were 1.0 and 60 wt %, respectively. This conclusion implies that the waste cooking oil mixture, which contains 40 wt % fresh soybean oil, could be treated like the fresh soybean oil to produce biodiesel, and that this behavior would be helpful to reduce the biodiesel production cost when waste cooking oil used as feedstock. The unsaturated methyl esters such as linoleic, and oleic acid were dominant (almost 80 % w/w) in the fresh soybean oil. However the saturated methyl ester was increased due to the double bond breaking during the frying process. These results may deteriorate the biodiesel quality by changing the methyl ester composition.  相似文献   

2.
This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.  相似文献   

3.
Biodiesel is commonly produced from vegetable oils, mostly edible and more expensive than petroleum diesel. By considering the cost of the conversion processes, cheap feedstock such as triglycerides and fatty acids (FA) extracted from early stage of food waste liquefaction has become a better choice than vegetable oils, as it could provide high yield of biodiesel without any compromise to food supply and other resources. In this study, FA from early stage of food waste liquefaction was extracted and tested for use as feedstock for biodiesel synthesis. The raw material was not pretreated but extraction was done by dry and wet methods. It was found that wet method could minimized the lost of short and medium-chained FA as well as reducing the number of steps required, thus, yielding higher amount of FA as feedstock. The effects of mixing, methanol ratio, reaction time and catalyst content were investigated for the acid-catalyzed esterification. The maximum biodiesel conversion obtained was 97.4 %.  相似文献   

4.
The petroleum fuel is nearing the line of extinction. Recent research and technology have provided promising outcomes to rely on biodiesel as the alternative and conventional source of fuel. The use of renewable source - vegetable oil constitutes the main stream of research. In this preliminary study, Waste Cooking Oil (WCO) was used as the substrate for biodiesel production. Lipase enzyme producing fungi Rhizopus oryzae 262 and commercially available pure lipase enzyme were used for comparative study in the production of Fatty Acid Alkyl Esters (FAAE). The whole cell (RO 262) and pure lipase enzyme (PE) were immobilized using calcium alginate beads. Calcium alginate was prepared by optimizing with different molar ratios of calcium chloride and different per cent sodium alginate. Entrapment immobilization was done for whole cell biocatalyst (WCB). PE was also immobilized by entrapment for the transesterification reaction. Seven different solvents - methanol, ethanol, n-propanol, n-butanol, iso-propanol, iso-butanol and iso-amyl alcohol were used as the acyl acceptors. The reaction parameters like temperature (30°C), molar ratio (1:3 - oil:solvent), reaction time (24 h), and amount of enzyme (10% mass ratio to oil) were also optimized for methanol alone. The same parameters were adopted for the other acyl acceptors too. Among the different acyl acceptors - methanol, whose reaction parameters were optimized showed maximum conversion of triglycerides to FAAE-94% with PE and 84% with WCB. On the whole, PE showed better catalytic converting ability with all the acyl acceptor compared to WCB. Gas chromatography analysis (GC) was done to determine the fatty acid composition of WCO (sunflower oil) and FAAE production with different acyl acceptors.  相似文献   

5.
Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction to select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 °C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.  相似文献   

6.
Oil extraction from the oil-bearing biomass and waste materials has been considered as one of the biggest challenges in the biodiesel production process because it has been considered as the most energy- and cost-demanding step. This work provides a promising approach for the direct transformation without oil extraction from calcined montmorillonite clay (CMC) and microalgae by means of the non-catalytic thermo-chemical process in conjunction with the real continuous flow system. The introduced method showed the high tolerance of water, impurities, and free fatty acids (FFAs), which enable the combination of the esterification of FFAs and transesterification of triglycerides into a single step without the lipid extraction. For example, this study showed that the maximum achievable yield of biodiesel via the introduced methodology was 97 ± 0.5 % at the temperature regime of 380–480 °C and this biodiesel yield was enhanced in the presence of CO2. Thus, the introduced methodology for producing biodiesel could be an alternative way of the methanol liquefaction and transesterification under supercritical conditions.  相似文献   

7.
In this study, corn oil as vegetable oil, chicken fat and fleshing oil as animal fats were used to produce methyl ester in a biodiesel pilot plant. The FFA level of the corn oil was below 1% while those of animal fats were too high to produce biodiesel via base catalyst. Therefore, it was needed to perform pretreatment reaction for the animal fats. For this aim, sulfuric acid was used as catalyst and methanol was used as alcohol in the pretreatment reactions. After reducing the FFA level of the animal fats to less than 1%, the transesterification reaction was completed with alkaline catalyst. Due to low FFA content of corn oil, it was directly subjected to transesterification. Potassium hydroxide was used as catalyst and methanol was used as alcohol for transesterification reactions. The fuel properties of methyl esters produced in the biodiesel pilot plant were characterized and compared to EN 14214 and ASTM D6751 biodiesel standards. According to the results, ester yield values of animal fat methyl esters were slightly lower than that of the corn oil methyl ester (COME). The production cost of COME was higher than those of animal fat methyl esters due to being high cost biodiesel feedstock. The fuel properties of produced methyl esters were close to each other. Especially, the sulfur content and cold flow properties of the COME were lower than those of animal fat methyl esters. The measured fuel properties of all produced methyl esters met ASTM D6751 (S500) biodiesel fuel standards.  相似文献   

8.
Production of biodiesel is currently limited due to lack of economically beneficial feedstocks. Suitability of municipal wastewater sludge and olive mill waste as feedstocks for biodiesel production was evaluated. The various bio-waste sources were analyzed for their oil content and fatty acid composition using conventional analyses complemented with time domain (TD)-NMR analysis. TD-NMR, a rapid non-destructive method newly applied in this field, yielded good correlations with conventional methods. Overall biodiesel yields obtained by TD-NMR analysis were 7.05% and 9.18% (dry wt) for olive mill pomace and liquid wastes, and 11.92%, 7.07%, and 4.65% (dry wt) for primary, secondary, and anaerobically stabilized sludge, respectively. Fatty acid analysis indicated fundamental suitability of these agro-industrial waste resources for biodiesel production. Evaluation of bio-waste materials by TD-NMR revealed the potential of this tool to identify waste-oil sources cost effectively and quickly, supporting expansion of a sustainable biodiesel industry in Israel and other regions.  相似文献   

9.
Alginate polyurethane hybrid materials are prepared by varying mole ratio of 2, 4-TDI as a di-isocyanate and alginic acid as a polyol in presence of dimethyl sulfoxide (DMSO) as a solvent. FT-IR and 13C one-dimensional (1D) solid state NMR (SSNMR) spectroscopy indicates that alginic acid is converted into alginate-polyurethane hybrid material via urethane linkage. Surface morphology of alginate-polyurethane hybrids changes by varying alginic acid: TDI ratio. The peak at near 221 °C in DSC thermogram of alginic acid (Alg) is shifted to higher temperature in alginate-polyurethane hybrid (Algpu1 and Algpu2). TGA study shows that alginate-polyurethane hybrid prepared using alginic acid: TDI = 1:1 (Algpu2) is more stable than alginic acid: TDI = 1:0.5 (Algpu1) at 300 °C. Kinetic analysis was performed to fit with TGA data, where the entire degradation process has been considered as three consecutive 1st order reactions. This study shows that thermal stability of alginate-polyurethane hybrid material was increased by adjusting mole ratio of 2, 4-TDI and alginic acid.  相似文献   

10.
In this research, a two-step process consisting of vacuum pyrolysis and vacuum centrifugal separation was employed to treat waste printed circuit boards (WPCBs). Firstly, WPCBs were pyrolysed under vacuum condition at 600 °C for 30 min in a lab-scale reactor. Then, the obtained pyrolysis residue was heated under vacuum until the solder was melted, and then the molten solder was separated from the pyrolysis residue by the centrifugal force. The results of vacuum pyrolysis showed that the type-A of WPCBs (the base plates of which was made from cellulose paper reinforced phenolic resin) pyrolysed to form an average of 67.97 wt.% residue, 27.73 wt.% oil, and 4.30 wt.% gas; and pyrolysis of the type-B of WPCBs (the base plates of which was made from glass fiber reinforced epoxy resin) led to an average mass balance of 72.20 wt.% residue, 21.45 wt.% oil, and 6.35 wt.% gas. The results of vacuum centrifugal separation showed that the separation of solder was complete when the pyrolysis residue was heated at 400 °C, and the rotating drum was rotated at 1200 rpm for 10 min. The pyrolysis oil and gas can be used as fuel or chemical feedstock after treatment. The pyrolysis residue after solder separation contained various metals, glass fibers and other inorganic materials, which could be recycled for further processing. The recovered solder can be reused directly and it can also be a good resource of lead and tin for refining.  相似文献   

11.
In this study, a novel horizontal rotating soil washing process and equipment were developed and tested for pilot-scale remediation of soils from a site polluted by chromium ore process residue. Operating parameters, including cylinder rotational velocity, cylinder tilt angle, heating temperature and liquid/soil ratio, were investigated. The Taguchi method was used for the experiment design, and the standard L16 orthogonal array with four parameters and four levels was selected for optimising the operating parameters. Optimal removal efficiency was achieved at cylinder rotational velocity of 2.5 rpm, cylinder tilt angle of 2.6°, heating temperature of 200 °C and liquid/soil ratio of 8. The efficiency of citric acid as an extractant in the novel process was compared with that of water. The analysis of the residual Cr(VI) concentration of the soil shows that citric acid could efficiently remove 22.89 % more Cr(VI) than water in one-stage washing. The residual Cr(VI) concentration in the soil after the three-stage washing is as low as 26.16 mg/kg, which meets the screening levels for soil environmental risk assessment of sites in Beijing City (30 mg/kg). Further study is currently underway to optimise the novel process and equipment for commercial-scale use.  相似文献   

12.
Bacterial synthesis of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) copolymer [P(3HB-co-3HV)] using the hydrolysate of rice straw waste as a carbon source was affected by the composition of the hydrolysate, which depends highly on the rice straw pretreatment condition. Acid digestion with 2 % sulfuric acid generated larger production of P(3HB-co-3HV) than 6 % sulfuric acid, but 3HV concentration in the copolymer produced with 2 % acid hydrolysate was only 8.8 % compared to 18.1 % with 6 % acid hydrolysate. To obtain a higher 3HV mole fraction for enhanced flexibility of the copolymer, an additional heating was conducted with the 2 % acid hydrolysate after removal of residual rice straw. As the additional heating time increased a higher concentration of levulinic acid was generated, and consequently, the mole fraction of 3HV in P(3HB-co-3HV) increased. Among the conditions tested (i.e., 20-, 40-, 60-min), 60-min additional heating following 2 % sulfuric acid digestion achieved the highest 3HV mole fraction of 22.9 %. However, a longer heating time decreased the P(3HB-co-3HV) productivity, probably due to the increased intermediates concentrations acting as inhibitors in the hydrolysates. Therefore, the use of additional heating needs to consider both the increase in the 3HV mole fraction and the decrease in the P(3HB-co-3HV) productivity.  相似文献   

13.
Recovery of nickel oxide from spent catalyst   总被引:3,自引:0,他引:3  
This study investigates the possibility of recovering nickel from the spent catalyst (NiO/Al2O3) resulting from the steam reforming process to produce water gas (H2/H2O) in many industries. In the extraction process, nickel is recovered as sulfate using sulfuric acid as a solvent. The considered parameters affecting nickel recovery were acid concentration, temperature and time of digestion solid:liquid ratio, particle size and stirring rate. Nickel was to be directly recovered as a sulfate salt by direct crystallization method. The conversion was 99% at 50% sulfuric acid concentration, solid: liquid ratio (1:12) by weight, particle size less than 500 micron for more than 5 h and 800 rpm at 100 degrees C.  相似文献   

14.
为了对废聚苯乙烯泡沫塑料(WPS)资源化利用,通过对WPS进行催化裂解的方法,研究了催化剂种类和裂解温度对裂解时间、裂解油产率、苯乙烯回收率以及裂解油纯度的影响。研究结果表明,催化剂种类和裂解温度对裂解反应有着重要影响。裂解温度升高,裂解油产率提高,裂解时间缩短,但苯乙烯选择性下降;低于380 ℃时,氧化钙的裂解油产率和裂解时间优于氧化铝和氯化铝,但苯乙烯的选择性劣于氧化铝和氯化铝;高于400 ℃时,氯化铝、氧化铝和氧化钙的催化活性接近。在实验条件下,WPS催化裂解的最佳催化剂为氯化铝,380 ℃下的裂解时间为25 min,裂解油产率为85.48%,裂解油中苯乙烯含量为80.66%(w),且副产物较少。  相似文献   

15.
In Brazil, and mainly in the State of Bahia, crude vegetable oils are widely used in the preparation of food. Street stalls, restaurants and canteens make a great use of palm oil and soybean oil. There is also some use of castor oil, which is widely cultivated in the Sertão Region (within the State of Bahia), and widely applied in industry. This massive use in food preparation leads to a huge amount of waste oil of different types, which needs either to be properly disposed of, or recovered. At the Laboratorio Energia e Gas-LEN (Energy & Gas lab.) of the Universidade Federal da Bahia, a cycle of experiments were carried out to evaluate the recovery of waste oils for biodiesel production. The experiences were carried out on a laboratory scale and, in a semi-industrial pilot plant using waste oils of different qualities. In the transesterification process, applied waste vegetable oils were reacted with methanol with the support of a basic catalyst, such as NaOH or KOH. The conversion rate settled at between 81% and 85% (in weight). The most suitable molar ratio of waste oils to alcohol was 1:6, and the amount of catalyst required was 0.5% (of the weight of the incoming oil), in the case of NaOH, and 1%, in case of KOH.The quality of the biodiesel produced was tested to determine the final product quality. The parameters analyzed were the acid value, kinematic viscosity, monoglycerides, diglycerides, triglycerides, free glycerine, total glycerine, clearness; the conversion yield of the process was also evaluated.  相似文献   

16.
Methods for improving the anaerobic digestion of glycerol (propane-1,2,3-triol) were investigated, particularly the effects of using acclimated sludge as seeding material during start-up. Glycerol was supplied to the anaerobic digester at an organic loading rate of 2.5 g-COD L?1 day?1. Four experimental runs were carried out with varying mixing ratios of acclimated sludge to unacclimated sludge (0, 10, 20, and 33%). Calculations were performed by employing a numerical model, whose parameters were determined by experimental measurements. Methane production rate (MPR) for all runs attained similar stable values around 21.4 mmol L?1 day?1, though more time was required for attaining stable state of methane production with lower mixing ratios of acclimated sludge. The initial MPR calculated was proportional to the mixing ratio of acclimated sludge. Furthermore, molecular biological methods showed that the types of microorganisms observed in all runs were similar. These results indicate that the seeding with different mixing ratios of acclimated sludge did not affect the microbial consortia in the anaerobic digestion approaching stable state, but did affect the cell density of the useful microorganisms at the start of methane fermentation. Consequently, it was confirmed that at a higher mixing ratio of acclimated sludge, the start of methane production became more vigorous.  相似文献   

17.
Macroporous poly(styrene-co-divinylbenzene) microparticles, with three different structural characteristics, have been synthesized and used as supports in the immobilization of lipase from Burkholderia cepacia. The best immobilization yield was found upon using microparticles with 35 % of divinylbenzene and the immobilized lipase on this type of particles was used as a catalyst to obtain biodiesel from soybean oil and ethanol. From the experimental results of the transesterification reaction, an empirical model quantitatively relating the temperature, the concentration of the enzyme and the transesterification yield was obtained. Statistical analysis of this model indicated that within the range of values of the variables studied (35–47 °C and 231–788 U/mg respectively) only the enzyme concentration exerted a significant influence on the reaction yield. Additionally, the good fit of a Michaelis–Menten-type model to the experimental results suggests that the limiting step of the reaction was the formation of the enzyme-substrate complex.  相似文献   

18.
In the present study, an experiment was performed to investigate the mixing and segregation characteristics of standard sand and rice straw particles in a cylindrical bubbling fluidized bed. The mass ratio (rice straw/standard sand = 0.5–1.25 %) of two particles and superficial gas velocity (0.13–0.18 m/s) were changed as experimental variables. The pressure drop curve and Kramer’s equation were used to determine the minimum fluidization velocity and mixing index, respectively. In all cases, the mixing index was the lowest at U/U mf = 1.15. Based on the point of U/U mf = 1.15, the segregation region and mixing region were observed. In the segregation region, mass ratio of 0.75 % showed the lowest mixing index. At the U/U mf = 1.23 which was selected as the starting of fast pyrolysis considering residence time and the previous fast pyrolysis experiment, mass ratio of 1.25 % showed the highest mixing index which was 0.90.  相似文献   

19.
已二酸生产副产物——混合二元酸的综合利用   总被引:1,自引:1,他引:0  
采用一水合硫酸氢钠作为催化剂,催化己二酸生产副产物——混合二元酸与甲醇反应合成混合二元酸二甲酯。优化工艺条件为:混合二元酸加入量0.1mol,无水甲醇加入量0.5mol,一水合硫酸氢钠加入量4.0g,环己烷加入量20mL,反应时间1.5h。合成混合二元酸二甲酯的酯化反应收率大于97%。经气相色谱检测,产物中酯的质量分数为98.91%。一水合硫酸氢钠可重复使用3次。  相似文献   

20.
To investigate heat transfer of char from waste tire pyrolysis, the cooling of char was simulated by the computational fluid dynamics. To scrutinize the heat transfer characteristics, bed height, temperature of cooling wall, and mixing time were selected as calculation parameters. From the results, increasing the char bed height from 0.005 to 0.02 m, the total heat transfer is decreased as from 45.5 to 26.5 J. As the char bed height is further increased from 0.02 to 0.06 m, the total heat transfer is decreased from 26.5 to 9.1 J. The char bed height affects the total heat transfer significantly. The total heat transfer decreases from 15.9 to 14.0 J as the temperature of cooling wall increases from 273.15 to 323.15 K. The total heat transfer mildly depends on the temperature of cooling wall. The particle mixing time increases from 10 to 120 s and the total heat transfer decreases from 28.6 to 22.6 J. It is noted that the particle contact is enhanced between char particles as well as the particles and cooling wall as the particle mixing time decreases. Consequently, heat transfer is augmented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号