共查询到20条相似文献,搜索用时 15 毫秒
1.
Xiaoyu Hu Gan Yang Yiliang Liu Yiqun Lu Yuwei Wang Hui Chen Jianmin Chen Lin Wang 《环境科学学报(英文版)》2022,34(3):190-203
Organic acids are important contributors to the acidity of atmospheric precipitation,but their existence in the Chinese atmosphere is largely unclear.In this study,twelve atmospheric gaseous organic acids,including C1-C9 alkanoic acids,methacrylic acid,pyruvic acid,and benzoic acid,were observed in the suburb of Wangdu,Hebei Province,a typical rural site in the northern China plain from 16th December,2018 to 22nd January,2019,using a Vocus@Proton-Trans... 相似文献
2.
Yafei Liu Zhimin Li Emily Floess You Zhang Nicholas Lam Sylvester K.Mawusi Prabin Shrestha Xinghua Li Chunyu Xue Guangqing Liu 《环境科学学报(英文版)》2023,35(5):295-307
Straw pellets are widely promoted and expected to be a cleaner alternative fuel to unprocessed crop residues and raw coal in rural China.However,the effectiveness of these dissemination programs is not well evaluated.In this?eld study,emission characteristics of burning straw pellets,raw coal,and unprocessed corn cobs in heating stoves were investigated in a pilot village in Northeast China.Emission measurements covering the whole combustion cycle (ignition,?aming,and smoldering phases) shows th... 相似文献
3.
Xianjun He Bin Yuan Caihong Wu Sihang Wang Chaomin Wang Yibo Huangfu Jipeng Qi Nan M Wanyun Xu Ming Wang Wentai Chen Hang Su Yafang Cheng Min Shao 《环境科学学报(英文版)》2022,34(4):98-114
The characteristics of wintertime volatile organic compounds (VOCs) in the North China Plain (NCP) region are complicated and remain obscure. VOC measurements were conducted by a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) at a rural site in the NCP from November to December 2018. Uncalibrated ions measured by PTR-ToF-MS were quantified and the overall VOC compositions were investigated by combining the measurements of PTR-ToF-MS and gas chromatography-mass spectrometer/flame ionization detector (GC-MS/FID). The measurement showed that although atmospheric VOCs concentrations are often dominated by primary emissions, the secondary formation of oxygenated VOCs (OVOCs) is non-negligible in the wintertime, i.e., OVOCs accounts for 42% ± 7% in the total VOCs (151.3 ± 75.6 ppbV). We demonstrated that PTR-MS measurements for isoprene are substantially overestimated due to the interferences of cycloalkanes. The chemical changes of organic carbon in a pollution accumulation period were investigated, which suggests an essential role of fragmentation reactions for large, chemically reduced compounds during the heavy-polluted stage in wintertime pollution. The changes of emission ratios of VOCs between winter 2011 and winter 2018 in the NCP support the positive effect of “coal to gas” strategies in curbing air pollutants. The high abundances of some key species (e.g. oxygenated aromatics) indicate the strong emissions of coal combustion in wintertime of NCP. The ratio of naphthalene to C8 aromatics was proposed as a potential indicator of the influence of coal combustion on VOCs. 相似文献
4.
Zhuoyu Li Guangzhao Xie Hui Chen Bixin Zhan Lin Wang Yujing Mu Abdelwahid Mellouki Jianmin Chen 《环境科学学报(英文版)》2022,34(4):221-232
As a secondary pollutant of photochemical pollution, peroxyacetyl nitrate(PAN) has attracted a close attention. A four-month campaign was conducted at a rural site in North China Plain(NCP) including the measurement of PAN, O3, NOx, PM2.5, oxygenated volatile organic compounds(OVOCs), photolysis rate constants of NO2 and O3 and meteorological parameters to investigate the wintertime characterization of photochemistry from November 2018 to Fe... 相似文献
5.
The surface species formed in the reaction of NO and NO2 with pre-adsorbed NH3 over a FeZSM-5 catalyst(1.27 wt.% Fe, SiO2/Al2O3 = 25) at low temperature(140 °C) were studied by in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS). Through using a background spectrum of NH 3-saturated Fe-ZSM-5, we clearly observed the formation of common intermediates resulting from the reaction of NO2 or NO + O2 w... 相似文献
6.
Trace metal(Cr, Ni, Cu, Zn, Cd and Pb) exposures, distribution and bioaccumulation were investigated in marine organisms from Guangdong coastal regions, South China. The results showed that all of the selected metals were observed in marine organisms with a predomination of Cu and Zn. The metal exposure levels exhibited obvious variations between species with the decreasing order of crab > shellfish > shrimp > fish. The higher metals enrichment seen in shellfish and crab species primari... 相似文献
7.
Yongpeng Ji Xingyu Chen Yuqi Xiao Yuemeng Ji Weina Zhang Jiaxin Wang Jiangyao Chen Guiying Li Taicheng An 《环境科学学报(英文版)》2021,33(7):56-63
Mineral particles are ubiquitous in the atmosphere and exhibit an important effect on the photooxidation of volatile organic compounds (VOCs). However, the role of mineral particles in the photochemical oxidation mechanism of VOCs remains unclear. Hence, the photooxidation reactions of acrolein (ARL) with OH radical (OH) in the presence and absence of SiO2 were investigated by theoretical approach. The gas-phase reaction without SiO2 has two distinct pathways (H-abstraction and OH-addition pathways), and carbonyl-H-abstraction is the dominant pathway. In the presence of SiO2, the reaction mechanism is changed, i.e., the dominant pathway from carbonyl-H-abstraction to OH-addition to carbonyl C-atom. The energy barrier of OH-addition to carbonyl C-atom deceases 21.33 kcal/mol when SiO2 is added. Carbonyl H-atom of ARL is occupied by SiO2 via hydrogen bond, and carbonyl C-atom is activated by SiO2. Hence, the main product changes from H-abstraction product to OH-adduct in the presence of SiO2. The OH-adduct exhibits a thermodynamic feasibility to yield HO2 radical and carboxylic acid via the subsequent reactions with O2, with implications for O3 formation and surface acidity of mineral particles. 相似文献
8.
Hui Liu Yongguang Yin Fenghua Shen Shudan He Junyuan Li Cao Liu Kaisong Xiang Yong Cai Xinbin Feng Shuxiao Wang Huan Zhong Ping Li 《环境科学学报(英文版)》2022,34(9):44-49
The presence of SO2 display significant effect on the mercury (Hg) adsorption ability of carbon-based sorbent. Yet the adsorption and oxidation of SO2 on carbon with oxygen group, as well as the roles of different sulfur oxide groups in Hg adsorption have heretofore been unclear. The formation of sulfur oxide groups by SO2 and their effects on Hg adsorption on carbon was detailed examined by the density functional theory. The results show that SO2 can be oxidized into SO3 by oxygen group on carbon surface. Both C-SO2 and C-SO3 can improve Hg adsorption on carbon site, while the promotive effect of C-SO2 is stronger than C-SO3. Electron density difference analyses reveal that sulfur oxide groups enhance the charge transfer ability of surface unsaturated carbon atom, thereby improving Hg adsorption. The experimental results confirm that surface active groups formed by SO2 adsorption is more active for Hg adsorption than the groups generated by SO3. 相似文献
9.
《环境科学学报(英文版)》2024,36(2):301-312
The migration mechanisms, sources, and environmental risks of 29 legacy and emerging perfluorinated and polyfluoroalkyl species present in an oxidation pond (Ya'Er Lake) were investigated for treating sewage based on the analysis of their occurrence and distribution. The concentration of per- and polyfluoroalkyl substances (PFAS) in pond area was between 0.30 and 63.2 ng/g dw (dry weight), with the overall average concentration of 8.00 ng/g dw. Notably, the PFAS concentrations in the surface sediments near the sewage outlet in Pond-1 (50.2 ng/g dw) and Pond-5 (average 15.1 ng/g dw) were 1–2 orders of magnitude higher than those in other areas. In general, the legacy PFAS, i.e., perfluorooctane sulfonic acid was considered to be the major pollutant in the polluted area, on average, accounting for 73.0% of the total concentration of PFAS pollutants. By evaluating the regional distribution of different PFAS homologs, the short-chain PFAS pollutants with lower Kow were found to migrate farther in both horizontal and vertical directions. The sewage outlets in Pond-1 and Pond-5 are the main pollution sources in polluted area and the emerging PFAS pollutants in Pond-5 have replaced the legacy PFAS pollutants as the main pollutants. Based on positive matrix factorization analysis, three main industrial sources of PFAS pollutants in the study area were identified: protective coating, fire-fighting, and food packaging sources. Moreover, the environmental risk assessment results showed that most study areas exhibited medium environmental risk (0.01 ≤ Risk quotient (RQ) < 1), indicating that the ecological environment risks in this area need further attention. 相似文献
10.
《环境科学学报(英文版)》2023,35(7):174-188
Reservoirs have been served as the major source of drinking water for dozens of years. The water quality safety of large and medium reservoirs increasingly becomes the focus of public concern. Field test has proved that water-lifting and aeration system (WLAS) is a piece of effective equipment for in situ control and improvement of water quality. However, its intrinsic bioremediation mechanism, especially for nitrogen removal, still lacks in-depth investigation. Hence, the dynamic changes in water quality parameters, carbon source metabolism, species compositions and co-occurrence patterns of microbial communities were systematically studied in Jinpen Reservoir within a whole WLAS running cycle. The WLAS operation could efficiently reduce organic carbon (19.77%), nitrogen (21.55%) and phosphorus (65.60%), respectively. Biolog analysis revealed that the microbial metabolic capacities were enhanced via WLAS operation, especially in bottom water. High-throughput sequencing demonstrated that WLAS operation altered the diversity and distributions of microbial communities in the source water. The most dominant genus accountable for aerobic denitrification was identified as Dechloromonas. Furthermore, network analysis revealed that microorganisms interacted more closely through WLAS operation. Oxidation-reduction potential (ORP) and total nitrogen (TN) were regarded as the two main physicochemical parameters influencing microbial community structures, as confirmed by redundancy analysis (RDA) and Mantel test. Overall, the results will provide a scientific basis and an effective way for strengthening the in-situ bioremediation of micro-polluted source water. 相似文献
11.
Endemic fluorosis exists in almost all provinces of China. The long-term ingestion of groundwater containing high concentrations of fluoride is one of the main causes of fluorosis. We used artificial neural network to model the relationship between groundwater fluoride concentrations from throughout China and environmental variables such as climatic, geological. and soil parameters as proxy predictors. The results show that the accuracy and area under the receiver operating characteristic curve of the model in the test dataset are 80.5% and 0.86%, respectively, and climatic variables are the most effective predictors. Based on the artificial neural network model, a nationwide prediction risk map of fluoride concentrations exceeding 1.5 mg/L with a 0.5 × 0.5 arc minutes resolution was generated. The high risk areas are mainly located in western provinces of Xinjiang, Tibet, Qinghai, and Sichuan, and the northern provinces of Inner Mongolia, Hebei and Shandong. The total number of people estimated to be potentially at risk of fluorosis due to the use of untreated high fluoride groundwater as drinking water is about 89 million, or 6% of the population. The high fluoride groundwater risk map helps the authorities to prioritize areas requiring mitigation measures and thus facilitates the implementation of water improvement and defluoridation projects. 相似文献
12.
《环境科学学报(英文版)》2023,35(3):499-512
Understanding the aerosol vertical characterization is of great importance to both climate and atmospheric environment. This study investigated the variations of aerosol profiles over eight regions of interest in China after clean air policy (2013-2019) and discussed the drivers of the vertical aerosol structure, using observations from active satellite measurements (CALIPSO). From the annual variation, the amplitude of extinction coefficient profiles showed a decreasing trend with fluctuations, and the maximum was 0.21 km−1 in Beijing-Tianjin-Hebei (JJJ). For regions suffered from air pollution, the variation was greatest below 0.45 km, while it was between 1-1.5 km for Sichuan Basin. The correlation coefficient between the relative humidity (RH) and the extinction coefficient indicated that the increase of RH inhibited the decrease of the extinction coefficient in the Yangtze River Delta. In most regions, the main aerosol subtypes were polluted dust and polluted continental, but they were coarser in JJJ and North West. The frequency of concurrency of dust and polluted dust aerosols decreased in JJJ, but polluted continental aerosols occurred more frequently. Further, the aerosol extinction coefficient profiles under different pollution conditions showed that it changed most during heavy pollution periods in JJJ, especially in 2017, with a significant aerosol loading between ∼700 and 1200 m. The atmospheric reanalysis data revealed that the weak convergence at low level and the divergence at high level supported the upward transport of aerosols in 2017. Overall, the differences in divergence allocation, RH, and wind filed were the main meteorological drivers. 相似文献
13.
《环境科学学报(英文版)》2023,35(10):83-97
Daytime HONO photolysis is an important source of atmospheric hydroxyl radicals (OH). Knowledge of HONO formation chemistry under typical haze conditions, however, is still limited. In the Multiphase chemistry experiment in Fogs and Aerosols in the North China Plain in 2018, we investigated the wintertime HONO formation and its atmospheric implications at a rural site Gucheng. Three different episodes based on atmospheric aerosol loading levels were classified: clean periods (CPs), moderately polluted periods (MPPs) and severely polluted periods (SPPs). Correlation analysis revealed that HONO formation via heterogeneous conversion of was more efficient on aerosol surfaces than on ground, highlighting the important role of aerosols in promoting HONO formation. Daytime HONO budget analysis indicated a large missing source (with an average production rate of 0.66 ± 0.26, 0.97 ± 0.47 and 1.45 ± 0.55 ppbV/hr for CPs, MPPs and SPPs, respectively), which strongly correlated with photo-enhanced reactions ( heterogeneous reaction and particulate nitrate photolysis). Average OH formation derived from HONO photolysis reached up to (0.92 ± 0.71), (1.75 ± 1.26) and (1.82 ± 1.47) ppbV/hr in CPs, MPPs and SPPs respectively, much higher than that from photolysis (i.e., (0.004 ± 0.004), (0.006 ± 0.007) and (0.0035 ± 0.0034) ppbV/hr). Such high OH production rates could markedly regulate the atmospheric oxidation capacity and hence promote the formation of secondary aerosols and pollutants. 相似文献
14.
Yuanhang Zhang Yanhui Liu Jiayin Li Yufang M Ming Zhou Zhaofeng Tan Limin Zeng Keding Lu 《环境科学学报(英文版)》2023,35(1):522-534
The atmospheric chemical mechanism is an essential component of airshed models used for investigating the chemical behaviors and impacts of species. Since the first tropospheric chemical mechanism was proposed in the 1960s, various mechanisms including Master Chemical Mechanism (MCM), Carbon Bond Mechanism (CBM), Statewide Air Pollution Research Center (SAPRC) and Regional Atmospheric Chemistry Mechanism (RACM) have been developed for different research purposes. This work summarizes the development and applications of these mechanisms, introduces their compositions and lumping methods, and compares the ways the mechanisms treat radicals with box model simulations. CBM can reproduce urban pollution events with relatively low cost compared to SAPRC and RACM, whereas the chemical behaviors of radicals and the photochemical production of ozone are described in detail in RACM. The photolysis rates of some oxygenated compounds are low in SAPRC07, which may result in underestimation of radical levels. As an explicit chemical mechanism, MCM describes the chemical processes of primary pollutants and their oxidation products in detail. MCM can be used to investigate certain chemical processes; however, due to its large size, it is rarely used in regional model simulations. A box model case study showed that the chemical behavior of OH and HO2 radicals and the production of ozone were well described by all mechanisms. CBM and SAPRC underestimated the radical levels for different chemical treatments, leading to low ozone production values in both cases. MCM and RACM are widely used in box model studies, while CBM and SAPRC are often selected in regional simulations. 相似文献
15.
Guang Sun Gang Zhang Jingyong Liu Deniz Eren Evrendilek Musa Buyukada 《环境科学学报(英文版)》2021,33(9):124-137
An unavoidable but reusable waste so as to enhance a more circular waste utilization has been spent potlining (SPL) generated by the aluminum industry. The combustion mechanisms, evolved gasses, and ash properties of SPL were characterized dynamically in response to the elevated temperature and heating rates. Differential scanning calorimetric (DSC) results indicated an exothermic reaction behavior probably able to meet the energy needs of various industrial applications. The reaction mechanisms for the SPL combustion were best described using the 1.5-, 3- and 2.5-order reaction models. Fluoride volatilization rate of the flue gas was estimated at 2.24%. The SPL combustion emitted CO2, HNCO, NO, and NO2 but SOx. The joint optimization of remaining mass, derivative thermogravimetry, and derivative DSC was achieved with the optimal temperature and heating rate combination of 783.5°C, and 5 °C/min, respectively. Interaction between temperature and heating rate exerted the strongest and weakest impact on DSC and remaining mass, respectively. The fluorine mainly as the formation of substantial NaF and CaF2 in the residual ash. Besides, the composition and effect of environment of residual solid were evaluated. The ash slagging tendency and its mineral deposition mechanisms were elucidated in terms of turning SPL waste into a benign input to a circular waste utilization. 相似文献
16.
《环境科学学报(英文版)》2024,36(2):570-582
Smog chambers provide a potent approach to explore the secondary organic aerosol formation under varied conditions. This study describes the construction and characterization of a new smog chamber facility for studying the formation mechanisms of gas-phase products and secondary organic aerosol from the photooxidation of volatile organic compounds. The chamber is a 5.4 m3 Fluorinated Ethylene Propylene (FEP) Teflon reactor with the potential to perform photooxidation experiments at controlled temperature and relative humidity. Detailed characterizations were conducted for evaluation of stability of environmental parameters, mixing time, background contamination, light intensity, and wall losses of gases and particles. The photolysis rate of NO2 (JNO2) ranged from (1.02−3.32) ×10−3 sec−1, comparable to the average JNO2 in ambient environment. The wall loss rates for NO, NO2, and O3 were 0.47 × 10−4, 0.37 × 10−4, and 1.17 × 10−4 min−1, while wall loss of toluene was obsoletely found in a 6 hr test. The particle number wall loss rates are (0.01−2.46) ×10−3 min−1 for 40−350 nm with an average lifetime of more than one day. A series of toluene photooxidation experiments were carried out in absence of NOx under dry conditions. The results of the simulation experiments demonstrated that the chamber is well designed to simulate photolysis progress in the atmosphere. 相似文献
17.
Many studies have successfully built iron-mediated materials to activate or catalyze Fenton-like reactions, with applications in water and wastewater treatment being investigated. However, the developed materials are rarely compared with each other regarding their performance of organic contaminant removal. In this review, the recent advances of Fenton-like processes in homogeneous and heterogeneous ways are summarized, especially the performance and mechanism of activators including ferrous iron, zero valent iron, iron oxides, iron-loaded carbon, zeolite, and metal organic framework materials. Also, this work mainly compares three O-O bond containing oxidants including hydrogen dioxide, persulfate, and percarbonate, which are environmental-friendly oxidants and feasible for in-situ chemical oxidation. The influence of reaction conditions, catalyst properties and benefits are analyzed and compared. In addition, the challenges and strategies of these oxidants in applications and the major mechanisms of the oxidation process have been discussed. This work can help understand the mechanistic insights of variable Fenton-like reactions, the role of emerging iron-based materials, and provide guidance for choosing appropriate technologies when facing real-world water and wastewater applications. 相似文献
18.
Lili Li Kun Wang Weiwei Chen Qingliang Zhao Lijuan Liu Wei Liu Yang Liu Junqiu Jiang Jiumeng Liu Mengduo Zhang 《环境科学学报(英文版)》2020,32(11):85-95
Agriculture-oriented cities in Northeastern China have experienced frequent atmospheric pollution events. Deeper understandings of the pollution characteristics, haze causes and effects of management on local air quality are crucial for conducting integrated management approaches for the sustainable development of agriculture-oriented cities. Taking a typical agriculture-dominant city( i.e., Suihua) in Northeast China, we analyzed in detail the characteristics and causes of atmospheric pollution... 相似文献
19.
The formation and aging mechanism of secondary organic aerosol (SOA) and its influencing factors have attracted increasing attention in recent years because of their effects on climate change, atmospheric quality and human health. However, there are still large errors between air quality model simulation results and field observations. The currently undetected components during the formation and aging of SOA due to the limitation of current monitoring techniques and the interactions among multiple SOA formation influencing factors might be the main reasons for the differences. In this paper, we present a detailed review of the complex dynamic physical and chemical processes and the corresponding influencing factors involved in SOA formation and aging. And all these results were mainly based the studies of photochemical smog chamber simulation. Although the properties of precursor volatile organic compounds (VOCs), oxidants (such as OH radicals), and atmospheric environmental factors (such as NOx, SO2, NH3, light intensity, temperature, humidity and seed aerosols) jointly influence the products and yield of SOA, the nucleation and vapor pressure of these products were found to be the most fundamental aspects when interpreting the dynamics of the SOA formation and aging process. The development of techniques for measuring intermediate species in SOA generation processes and the study of SOA generation and aging mechanism in complex systems should be important topics of future SOA research. 相似文献
20.
Ning Liu Yanxia Cheng Ting Zhang Shunzhang Chen Feize Li Renwei Qing Tu Lan Yuanyou Yang Jiali Liao 《环境科学学报(英文版)》2023,35(2):915-922
As a biosorbent, algae are frequently used for the biotreatment or bioremediation of water contaminated by heavy metal or radionuclides. However, it is unclear that whether or not the biomineralization of these metal or radionuclides can be induced by algae in the process of bioremediation and what the mechanism is. In this work, Ankistrodsemus sp. has been used to treat the uranium-contaminated water, and more than 98% of uranium in the solution can be removed by the alga, when the initial uranium concentration ranges from 10 to 80 mg/L. Especially, an unusual phenomenon of algae-induced uranium biomineralization has been found in the process of uranium bioremediation and its mineralization mechanism has been explored by multiple approaches. It is worth noticing that the biomineralization of uranium induced by Ankistrodsemus sp. is significantly affected by contact time and pH. Uranium is captured rapidly on the cell surface via complexation with the carboxylate radical, amino and amide groups of the microalgae cells, which provides nucleation sites for the precipitation of insoluble minerals. Uranium stimulates Ankistrodsemus sp. to metabolize potassium ions (K+), which may endow algae with the ability to biomineralize uranium into the rose-like compreignacite (K2[(UO2)6O4(OH)6]•8H2O). As the time increased, the amorphous gradually converted into compreignacite crystals and a large number of crystals would expand over both inside and outside the cells. To the best of our knowledge, this is the first investigated microalgae with a time-dependent uranium biomineralization ability and superior tolerance to uranium. This work validates that Ankistrodsemus sp. is a promising alga for the treatment of uranium-contaminated wastewater. 相似文献