首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
The rationale, assumptions, structure and basic mathematical functions of the model used to produce the simulation results reported in the first two articles of this series are described in detail. Sensitivity analysis indicates that the most important parameters in the model, and, presumably, in the carbon exchange between tropical forests and the atmosphere, are: (a) the conversion rate of forests to permanent pasture and agriculture, (b) the changes that are occurring and have occurred in the shifting cultivation system, and (c) the fate of cleared vegetation. Although it is not possible to validate the model against direct measurements of carbon exchange, the model has been proven robust when subject to a series of explicit analyses and comparisons with other assessments.  相似文献   

2.
Studies of wind direction receive less attention than that of wind speed; however, wind direction affects daily activities such as shipping, the use of bridges, and construction. This research aims to study the effect of wind direction on generating wind power. A finite mixture model of the von Mises distribution and Weibull distribution are used in this paper to represent wind direction and wind speed data, respectively, for Mersing (Malaysia). The suitability of the distribution is examined by the R2 determination coefficient. The energy analysis, that is, wind power density, only involves the wind speed, but the wind direction is vital in measuring the dominant direction of wind so that the sensor could optimize wind capture. The result reveals that the estimated wind power density is between 18.2 and 25 W/m2, and SSW is the most common wind direction for this data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号