首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The speed and direction of air flow through complex terrain are difficult to define. Both impact sensible and latent heat flux exchanges at the surface. Evapotranspiration (ET) models such as Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC?) estimate ET as a residual of the surface energy process and are thus sensitive to aerodynamics, including terrain‐induced impacts on roughness governing convective heat transfer (H). There is a need to explore the sensitivities of H estimation and thereby ET estimation to wind speed and terrain roughness in mountainous areas and to determine the merit of operating complex mesoscale wind field models in conjunction with the energy balance process. A sensitivity analysis is explored in METRIC where we increased wind speed in proportion to a relative elevation parameter and we increased aerodynamic roughness to assimilate impacts of relative terrain roughness, estimated in proportion to standard deviation of elevation within a 3 km locality. These aerodynamic modifications increased convective heat transfer in complex terrain and reduced estimated ET. In other sensitivity runs, we reduced estimated wind speed on estimated leeward slopes. Estimated ET with and without these sensitivity adjustments is shown for mountainous areas of Montana and Nevada. Changes in ET ranged from little change (<5%) for lower slopes to about 30% reductions on windward slopes and 25% increases on leeward slopes for some mid to high elevations in the Montana application.  相似文献   

2.
An experimental study has been carried out to analyze the effect of inclined ribs used as roughness element on heat transfer along its friction characteristics. The roughness parameters include relative roughness pitch (P/e) ranges from 4–16, relative roughness height (e/Dh) ranges from 0.021–0.043 and angle of attack (α) ranges from 30° to 75°. The Reynolds number (Re) lies in the range of 4500–28000. The heat transfer and friction factor data obtained from the experiment and it is compared with the data obtained from smooth duct under the same conditions. Considerable augmentation was observed in heat transfer and friction over the smooth duct. Correlation was also developed for Nusselt number (Nu) and friction factor (f) as a function of roughness and flow parameter.  相似文献   

3.
This study was a basic one to explore how much the aerodynamic characteristics of wind blade improve. The extent of improvement according to the shapes of groove placed on the surface of airfoil (NACA0015) was analyzed through computational analysis. A commercial computational fluid dynamics (CFD) code, the ANSYS Fluent 13, was used in this study. In this study, regarding with the positions and shapes of groove, the end of groove was placed at a certain distance (length, l) from both the front and back of separation starting point, the depth and the width were designated as h and d respectively. Analysis was conducted at the 7° angle of attack under the following conditions; the thickness (δ) of boundary layer to the depth (h) of groove ratio (h/δ) 0.6–1.0, the depth (h) of groove to the width (d) of groove ratio (h/d) 0.1–1.4, and the length (l) between the end of groove and separation point to the thickness (δ) of boundary layer ratio (l/δ) ?0.5–0.5. Among these conditions, the best improvement of lift to drag ratio, standing at 15.3%, was under h/δ = 1.0, h/d = 0.12, and l/δ = –0.5 (7° AOA, Re = 360k). In addition, throughout the range of angle of attack, 2–14°, lift to drag ratio improved by 0.8%, 5.1%, 3.2%, and 1.8% each when Reynolds numbers were 280k, 360k, 450k, and 530k. It is also confirmed that the shape of groove contributed to recovering velocity around airfoil wall and the lift to drag ratio improvements by groove were maintained at the given range of Reynolds number and around the angle of attack, 7°.  相似文献   

4.
ABSTRACT

This paper discusses about the effect of feeder height and heat flux on the heat transfer characteristics of horizontal tube falling film evaporation in the thermal regimes. In order to investigate this, a two- dimensional CFD model was developed to perform simulation and results were compared and validated with published data available in the literature. Heat transfer co-efficients in the thermal regimes were determined from the CFD simulation and the results were recorded, analyzed and validated with the mathematical models available in the literature. The novelty of the current study is to predict the commencement of the fully developed thermal region over the tube from the simulation model under varying feeder height and heat flux. An effort was also made to measure the liquid film thickness around the tube from the CFD model in the thermal regimes. It is observed that angle of thermally developing region contracts and fully developed thermal region extends with the increase of the feeder height and heat flux. It is observed from the study that increase of heat flux by 10 kW/m2 resulted in increase of heat transfer co-efficient value by 10–12% average in thermally developing region and 12–15% average in fully developed region. Thinnest liquid film thickness observed between 85 and 127°angle. Shifting of thinnest region of liquid film upward from the mid tube with the increase of the feeder height and heat flux is noted.  相似文献   

5.
In the present work, the thin layer drying kinetics of potato during natural convection solar drying was investigated experimentally. Cylindrical potato samples with length 50 mm and varying diameter of 8, 10 and 13 mm were dried in an in-house designed and fabricated laboratory scale mixed-mode solar dryer. Thirteen different thin-layer mathematical models were fitted to the experimental moisture ratio (MR) data. The obtained results indicated that the Modified Page model could satisfactorily describe the drying curve of potato cylinders with higher value of R2 and lower values of RMSE and χ2. The shrinkage parameter is incorporated in the analytical diffusion model to study the moisture transfer mechanism of potato cylinders. It was observed that the values of effective diffusion coefficient (Deff) and convective mass transfer coefficient (hm) are overestimated in the range of 85.02–90.27% and 39.11–45.11% for the range of sample diameter examined, without considering the shrinkage effect in the mass transfer analysis. A Multiphysics approach was adopted in this study to get insight into the drying behavior of potato cylinders in terms of food-moisture interactions during the solar drying process. The predicted results of MR are in close agreement with the experimental data. Moreover, the anisotropic behavior of shrinkage as well as the moisture distribution inside the potato cylinder was very well described by Multiphysics model.  相似文献   

6.
This paper describes a methodology used for designing louvered fins. Louvered fins are commonly used in many compact heat exchangers to increase the surface area and initiate new boundary layer growth. Detailed measurements can be accomplished with computational models of these louvered fins to gain a better understanding of the flow field and heat distribution. The particular louver geometry studies for this work have a louver angle of 23° and fin count of 17 fpi.

The flow and heat transfer characteristics for three-dimensional mixed convection flows in a radiator flat tube with louvered fins are analyzed numerically. A three-dimensional model is developed to investigate flow and conjugate heat transfer in the copper-based car radiator. The model was produced with the commercial program FLUENT. The theoretical model has been developed and validated by comparing the predictions of the model with available experimental data. The thermal performance and temperature distribution for the louvered fins were analyzed and a procedure for optimizing the geometrical design parameter is presented.

One fin specification among the various flat tube exchangers is recommended by first considering the heat transfer and pressure drop. The effects of variation of coolant flow conditions and external air conditions on the flow and the thermal characteristics for the selected radiator are investigated also. The results will be used as fundamental data for tube design by suggesting specifications for car radiator tubes.  相似文献   

7.
ABSTRACT Evaporation is identified as having two additive components: natural evaporation in the absence of wind and forced evaporation in the presence of wind. An evaporation equation is obtained for an open body of water exposed at the atmosphere by conversion of standard horizontal flat plate heat transfer relationships to a mass transfer or evaporation equation. For an average air temperature of 68°F, the final equation for evaporative heat flux is A comparison of numerical values predicted by the above equation is made with evaporation equations deduced from field measurements, and the agreement is favorable. The major differences between this equation and those previously developed are: a) the above equation was derived strictly from standard heat transfer expressions, and b) a dependency of average fetch and air temperature (through transport properties) is shown. This approach establishes the correct dependencies of the field parameters so that future experimental measurements will have a sound theoretical basis.  相似文献   

8.
The storage of fresh agricultural products is not easy because of its high moisture. Dehydration is an efficient preservation method. The investigation of drying modeling and transfer characteristics are important for selecting operating conditions and equipment design. The drying behavior of Lactuca sativa slices, with the thickness of 2 mm, was investigated at 60.0–80.0°C and 0.60–1.04 m sec?1 velocity in a convective hot air drier. The mass transfer during the drying process was described using six thin drying models. The convective heat transfer coefficient α and mass transfer coefficient kH were finally calculated. The results showed that the drying process could be separated into three stages including accelerating rate, constant rate, and falling rate period, which was influenced by hot air temperature and velocity, and the Modi?ed Page model agreed well with the experimental data. When the operating temperature was increased from 60.0°C to 80.0°C, α was found increased from 88.07 to 107.93 W·m?2·K?1, and kH increased from 46.32 × 10–3 to 68.04 × 10–3 kg·m?2·sec?1·ΔH?1. With the increase of air velocity from 0.60 to 1.04 m·sec?1, α was increased from 78.85 to 101.35 W·m?2·K?1, and kH was enhanced from 51.78 × 10–3 to 65.85 × 10–3 kg·m?2·sec?1·ΔH?1.  相似文献   

9.
Here we report N2O emission results for freshwater marshes isolated from human activities at the Sanjiang Experimental Station of Marsh Wetland Ecology in northeastern China. These results are important for us to understand N2O emission in natural processes in undisturbed freshwater marsh. Two adjacent plots of Deyeuxia angustifolia freshwater marsh with different water regimes, i.e., seasonally waterlogged (SW) and not- waterlogged (NW), were chosen for gas sampling, and soil and biomass studies. Emissions of N2O from NW plots were obviously higher than from the SW plots. Daily maximum N2O flux was observed at 13 o′clock and the seasonal maximum occurred in end July to early August. The annual average N2O emissions from the NW marsh were 4.45 μg m−2 h−1 in 2002 and 6.85 μg m−2 h−1 in 2003 during growing season. The SW marsh was overall a sink for N2O with corresponding annual emissions of −1.00 μg m−2 h−1 for 2002 and −0.76 μg m−2 h−1 for 2003. There were significant correlations between N2O fluxes and temperatures of both air and 5-cm-depth soil. The range of soil redox potential 200–400 mV appeared to be optimum for N2O flux. Besides temperature and plant biomass, the freeze–thaw process is also an important factor for N2O emission burst. Our results show that the freshwater marsh isolated from human activity in northeastern China is not a major source of N2O.  相似文献   

10.
One of the important components of a car to control the temperature of a car's engine is the radiator. To increase the heat absorption capacity of the coolant/fluid used in the radiator with minimum pumping power, innovative fluids called nanofluids have become the main area of research these days. Therefore, with the development of new technologies in the field of “nano-materials” and “nano-fluids,” the physical and chemical properties of coolant/fluid can be improved which in turn improves the radiator and engine efficiency, and reduces radiator weight and size. In this article, the heat transfer by forced convection in nanofluids based on Al2O3 and SiC was studied experimentally and compared to that of base fluid in an automotive radiator. The nanofluid is mixed with ethylene glycol and the fluid is prepared by the sonication method. The nanofluids were prepared by varying the nanomaterials and the amounts of nanomaterials in the base fluid and their heat transfer performance in the radiator was analyzed using ANSYS FLUENT software. Approximately 15% and 12% increase in radiator efficiency by using Al2O3 mixed nanofluid and SiC mixed nanofluid, respectively.  相似文献   

11.
ABSTRACT

Al2O3/water nanofluid has been numerically examined for the first time with different nanoparticle shapes including, cylindrical, blade, brick, platelet and spherical, on the flat and triangular-corrugated impinging surfaces. The volume fractions of 1.0%, 2.0% and 3.0% nanoparticles have been used. The Reynolds number is between 100–500 depending on the slot diameter. The finite volume method is utilized to determine the governing equations. The study is analyzed to determine how the flow features, heat transfer features and entropy production were affected by the diversity of nanoparticle shape, nanoparticle volume fraction, and shape of impinging surface. Darcy friction factor and Nusselt number are studied in detail for different conditions. The temperature contours are presented in the case of different nanoparticle volume fractions, nanoparticle shapes and both impinging surfaces. The results of the study suggest that the nanoparticle shape of the platelet shows the highest heat transfer development due to the thinner thermal boundary layer. Heat transfer augments with increasing volume fraction of nanoparticles. In addition, the study is consistent with the results of the literature on heat transfer and flow properties.  相似文献   

12.
Abstract: Mass (solute) transport in a stream or lake sediment bed has a significant effect on chemical mass balances and microbial activities in the sediment. A “1D vertical dispersion model” is a useful tool to analyze or model solute transfer between river or lake water and a sediment bed. Under a motionless water column, solute transfer into and within the sediment bed is by molecular diffusion. However, surface waves or bed forms create periodic pressure waves along the sediment/water interface, which in turn induce flows in the pores of the sediment bed. The enhancement of solute transport by these interstitial periodic flows in the pores has been incorporated in a 1D depth‐dependent “enhanced dispersion coefficient (DE).” Typically, DE diminishes exponentially with depth in the sediment bed. Relationships have been developed to estimate DE as a function of the characteristics of sediment (particle size, hydraulic conductivity, and porosity) and pressure waves (wave length and height). In this paper, we outline and illustrate the calculation of DE as well as the penetration depth (dp) of the flow effect. Sample applications to illustrate the computational procedure are provided for dissolved oxygen transfer into a stream gravel bed and release of phosphorus from a lake bed. The sensitivity of the results to input parameter values is illustrated, and compared with the errors obtained when interstitial flow is ignored. Maximum values of DE near the sediment surface can be on the order of 1 cm2/s in a stream gravel bed with standing waves, and 0.001 cm2/s in a fine sand lake bed under progressive surface waves, much larger than molecular diffusion coefficients.  相似文献   

13.
14.
In order to improve the aerodynamic performance of horizontal-axis wind turbine (HAWT), a sinusoidal shape is applied to turbine blade. In this study, four types of modified blades were chosen based on variations in amplitude and wavelength of protuberance along the leading edge. Compared with the baseline model, the power coefficients (Cp) of HAWT with modified blades were improved, especially at low tip speed ratios. At low wind speed (V = 6 m/s), blades with short wavelength obtain significant improvement in Cp compared with the baseline model. As wind speed increases, this improvement decreases. In addition, turbine blade with large amplitude and long wavelength obtains better Cp values at higher wind speeds than lower ones, which have a great potential to be more superior at relatively higher wind speeds.  相似文献   

15.
Experiments were performed in a single cylinder common-rail diesel engine that adopts a low temperature premixed charge compression ignition (PCCI) mode. Combustion features of dimethyl carbonate (DMC)-diesel blends under various centers of heat release (COHRs) were revealed in details. With retarding of COHR, all the peaks of pressure and pressure rise rate and bulk gas temperature are postponed and declined in sequence. Normally, the crank angle of peak pressure is quite close to the COHR, while the peak of bulk gas temperature appears about 7°CA after COHR as a rule. The prolongation can be demonstrated at every stage of combustion such as q10 and q90 with the COHR being put backward. In addition, the heat release of diesel is completely slower than that of D10 fuel at various stages. Unfortunately, retarding of COHR implies a declining thermal efficiency of engines as well as a higher cyclic variation in general. Nevertheless, D10 blend has higher thermal efficiency than diesel thanks to high oxygen content of DMC and low boiling point that prompts better fuel atomization and complete combustion. Meanwhile, the cyclical variation of D10 is greater than diesel fuel owing to the low heat value, high latent heat of vaporization, and poor flammability of DMC. As a total, a comprehensive understanding of PCCI combustion features under different COHRs can be conducive to conducting effective management of combustion process and manipulating the subsequent emission performance to a favorable level.  相似文献   

16.
Rainfall interception represents the amount of water trapped in natural cover that is not drained directly to the ground. Intercepted rainfall may evaporate after a rain event, making it one of the main drivers of water balance and hydrologic regionalization. This process can be affected by factors such as climate, altitude, vegetation type, and topography. Here is a simple method of calculating rainfall interception in temperate forests using in Santa Maria Yavesia, Oaxaca, and Mexico as an illustrative study area. We used two rain gauges to measure net precipitation (Np) under the canopy at each study site and one gauge outside the canopy to obtain gross precipitation (Gp). Throughfall (Th) was indirectly measured using hemispherical photographs. Rainfall interception was obtained through a combination Th and Gp and Np. The mean rainfall interception was 50.6% in the Abies forests, 23%–40% in the coniferous‐mixed forests, and 27.4% in the broad‐leaved forests. We classified rainfall events by intensity to determine the effect of canopy structure and precipitation and found that 75% of the events were weak events, 24% were moderate events, and 1% were strong events. In addition, we found that rainfall interception was lower when the intensity of precipitation was higher. Our method can be replicated in different ecosystems worldwide as a tool for assessing the influence of rainfall interception in terms of ecological services.  相似文献   

17.
Abstract

The Nafion membranes modified with a long chain counter ion, (C8H17)4N+ or (CH3)4N+, and sandwich-type modified Nafion membranes were prepared as proton conducting membranes (PEM) for a direct methanol fuel cell (DMFC). We evaluated the methanol permeability, ionic conductivity, ion cluster diameter, ion exchange capacity and water content. The ion cluster diameter of the modified Nafion membranes was determined by small angle X-ray diffraction (SAXRD) measurements, and decreased in comparison with Nafion 117. The methanol crossover flux decreased to less than 10% that of Nafion 117 with the decreasing ion cluster diameter. For the sandwich-type membrane (Octyl-s1), the methanol crossover flux was 46% that of Nafion 117 and the ionic conductivity was 4.2 S/m.  相似文献   

18.
This study analyzed the wintertime surface heat exchange for the Inner Mongolia reach of the Yellow River, China, based on the data from the nearby weather station at Wulateqianqi. In this analysis, the solar radiation is based on the observed data. Other components of the surface heat flux, that is, long‐wave radiation, and evaporative and conductive heat fluxes, are calculated. The relative importance of the contributions of long‐wave radiation, conductive, and evaporative heat fluxes are in descending order. The air temperature is the most important meteorological factor to the total heat flux. Although the wind speed influences evaporative and conductive heat fluxes, it has the least correlation with the total heat budget. The heat exchange coefficient for the linearized surface heat exchange equation is 21.87 W/(m2 °C), which is comparable with published values in the regions of United States and Canada with similar latitudes.  相似文献   

19.
Mesoporous MCM-48 silica was synthesized using a cationic-neutral surfactant mixture as the structure-directing template and rice husk ash (RHA) as the silica source. The MCM-48 samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), N2 physisorption and SEM. X-ray diffraction pattern of the resulting MCM-48 revealed typical pattern of cubic Ia3d mesophase. BET results showed the MCM-48 to have a surface area of 1024 m2/g and FT-IR revealed a silanol functional group at about 3460 cm−1. Breakthrough experiments in the presence of MCM-48 were also carried out to test the material's CO2 adsorption capacity. The breakthrough time for CO2 was found to decrease as the temperature increased from 298 K to 348 K. The steep slopes observed shows the CO2 adsorption occurred very quickly, with only a minimal mass transfer effect and very fast kinetics. In addition, amine grafted MCM-48, APTS-MCM-48 (RHA), was prepared with the 3-aminopropyltriethoxysilane (APTS) to investigate the effect of amine functional group in CO2 separation. An order of magnitude higher CO2 adsorption capacity was obtained in the presence of APTS-MCM-48 (RHA) compared to that with MCM-48 (RHA). These results suggest that MCM-48 synthesized from rice husk ash could be usefully applied for CO2 removal.  相似文献   

20.
Phase change materials (PCMs) that can store and release heat energy over the temperature range from 363 to 393 K are crucial for solar absorption cooling, and it is worthy to seek new solid-liquid PCMs candidates that melt and crystallize in this temperature range. In this paper, (E)-3-m-tolylbut-2-enoic acid (mTBEA) was applied as a PCM candidate. Its thermal energy storage properties and thermal stability were systematically investigated. The results showed that mTBEA melted at 382.9 ± 0.5 K and crystallized at about 364 K, with a melting enthalpy (ΔfusH) of 138.4 ± 6.9 J g?1 and showed good long-term cyclic stability and thermal stability. The supercooling of mTBEA was stabilized at about 20 K, indicating that the conservation condition of melted mTBEA could be simple. In addition, the melted mTBEA could release all the absorbed thermal energy upon crystallizing. Besides, mTBEA exhibited good thermal stability for it to be applied as PCM. Hence, mTBEA is a promising PCM candidate for solar absorption cooling. Furthermore, the heat capacity of mTBEA was measured by modulated temperature differential scanning calorimetry (MTDSC) over the temperature range from 198.15 to 431.15 K, and the molar thermodynamic functions, [HT-H298.15]m and [ST-S298.15]m, were calculated based on the fitted molar heat capacity data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号