首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Guangzhou city in South China has experienced an accelerated urban development since the 1980s. This paper examines the impact of the urban development on urban heat islands through a historical analysis of urban-rural air temperature differences. Remote sensing techniques were applied to derive information on land use/cover and land surface temperatures and to assess the thermal response patterns of land cover types. The results revealed an overriding importance of urban land cover expansion in the changes in heat island intensity and surface temperature patterns. Urban development was also related to a continual air temperature increase in the 1980s and 1990s. The combined use of satellite-derived vegetation and land cover distributions with land surface temperature maps provides a potential useful tool for many planning applications. The city's greening campaigns and landscaping designs should consider the different cooling effects of forest, shrubs and grassy lawns for temperature control and should plant more tall trees.  相似文献   

2.
ABSTRACT

Thermal potential for cooling and heating can be achieved by new configuration of earth–air heat exchanger (EAHE). This paper presents a numerical investigation of thermal performance of a spiral-shaped configuration of EAHE intended for the summer cooling in hot and arid regions of Algeria. A commercial finite volume software (ANSYS FLUENT) has been used to carry out the transient three-dimensional simulations and the obtained results have been validated using the experimental and numerical data obtained from the literature. The agreement between our simulation results and those from literature is very satisfactory. A parametric analysis of the new geometry of (EAHE) has been performed to investigate the effect of pitch, depth, pipe length and of the flow velocity on the outlet air temperature and the EAHE’s mean efficiency as well as its coefficient of performance (COP). It has been shown that when the pitch space varies between 0.2 and 2 m the difference of outlet air temperature increases by 6 °C. When the air velocity increases from 2 to 5 m/s the mean efficiency decreases from 60 % to 33 % and the COP of the EAHE decreases from 2.84 to 0.46.  相似文献   

3.
In spite of the advantages of Vetiver grass in light of environmental aspects, this plant is not used in the Mediterranean region. The objectives of the present study were: (i) to elucidate growth parameters and establishment of Vetiver under Mediterranean conditions suitable for its various environmental applications; and (ii) to develop management practices for growing vetiver under Mediterranean conditions. In greenhouse experiments conducted under controlled conditions it was found that, in general, increasing the minimum/maximum temperatures to 21-29 degrees C significantly increased plant height. In the Mediterranean region, this range of air temperatures is obtained mainly during the summer, from June to September. For air temperatures up to 15-23 degrees C the effect of day length on plant height was insignificant, whereas in air temperature >15-23 degrees C, the plant heights under long day conditions were significantly higher than under short day. The number of sprouts per plant increased exponentially with increasing air temperature, and was not significantly affected by the day length at any air temperature range. In open fields, the heights of irrigated vetiver plants were significantly higher than those of rain-fed plants. It was concluded that, once they were established, vetiver plants could survive the dry summer of the Mediterranean region under rain-fed conditions, but they would be shorter than under irrigation. Cutting or burning of the plant foliage during the spring did not improve the survival of vetiver during the dry summer. In order to obtain fast growth of vetiver and to increase the possibility of its using the rainwater, the plants should be planted in the winter, during February and March. However, under this regime, the vetiver plant cannot be used as a soil stabilizer during the first winter, because the plant is still small. In contrast, under irrigation it is advantageous to plant vetiver at the beginning of the summer; the plant then has sufficient time to grow and develop before the beginning of the winter, so that its effect as a soil stabilizer in the following wet winter could be maximal. It was found that vetiver could grow in a wide range of substrates, such as: sandy soil, loamy sand, clay soil, crushed limestone, sandy clay loam, and tuff/peat mixture.  相似文献   

4.
Abstract

In this work, low temperature geothermal district heating systems with heat pumps have been studied and compared with fuel-oil boiler heating systems for intermittent and continuous regimes according to the optimum indoor air temperature and operational cost. Izmir Institute of Technology (IZTECH) Campus is taken as a case study. Various heat pump and boiler configurations are studied to meet required duty. Operational cost analysis for each alternative is conducted. According to the results, for IZTECH Campus the best alternative, which gives the optimum indoor air temperature and the lowest operational cost, is heat pump continuous regime.  相似文献   

5.
Commercially available adsorption cooling systems use water/silica gel, water/zeolite and ammonia/ chloride salts working pairs. The water-based pairs are limited to work above 0°C due to the water high freezing temperature, while ammonia has the disadvantage of being toxic. Ethanol is a promising refrigerant due to its low freezing point (161 K), nontoxicity, zero ozone depletion, and low global warming potential. Activated carbon (AC) is a porous material with high degree of porosity (500–3000 m2/g) that has been used in wide range of applications. Using Dynamic Vapour Sorption (DVS) test facility, this work characterizes the ethanol adsorption of eleven commercially available activated carbon materials for cooling at low temperature of ?15°C. DVS adsorption results show that Maxsorb has the best performance in terms of ethanol uptake and adsorption kinetics compared to the other tested materials. The Maxsorb/ethanol adsorption process has been numerically modeled using computational fluid dynamics (CFD) and simulation results are validated using the DVS experimental measurements. The validated CFD simulation of the adsorption process is used to predict the effects of adsorbent layer thickness and packing density on cycle uptake for evaporating temperature of ?15°C. Simulation results show that as the thickness of the Maxsorb adsorbent layer increases, its uptake decreases. As for the packing density, the amount of ethanol adsorbed per plate increases with the packing density reaching maximum at 750 kg/m3. This work shows the potential of using Maxsorb/ethanol in producing low temperature cooling down to ?15°C with specific cooling energy reaching 400 kJ/kg.  相似文献   

6.
不同气温条件下室内甲醛污染特性的探讨   总被引:5,自引:0,他引:5  
用酚试剂分光光度法(GB/F18204.26—2000)对装修后室内空气中的甲醛进行测定。通过一年多的实测表明:气温在13.0℃-24.0℃范围内,测试结果的超标率为27.8%,测试结果均值为0.077mg/m^3,气温在25.0℃-30.0℃范围内,测试结果的超标率为78.1%,测试结果均值为0.270mg/m^3,两个温度段超标率相差2.8倍多,测试结果均值相差3.5倍多。室内空气中甲醛浓度与室内温度呈线性关系,表明气温对室内空气中甲醛的释放量有明显的影响。  相似文献   

7.
A phase change material (PCM)-based flat plate modular heat exchanger for free cooling application, suitable for the diurnal temperature variation that prevails during the summer months of Bangalore city, India is designed and experimentally investigated. The flow and other parameters selected in the present study are meant to suit the accelerated charging of the PCM in the modular heat exchanger during the early morning hours, and to provide cool energy to the room during the daytime, by circulating the ambient air through the heat exchanger at a lower velocity. It is observed from the charging experiments that the decrease in the inlet air temperature has more influence in reducing the solidification time than the increase in the inlet air velocity. The heat exchanger designed in the present investigation is capable of maintaining the room temperature around 30°C for a longer duration of 8 hr when the heat load is 0.5 kW. It is suggested to design the modular heat exchanger with a surface area proportionate to the present heat exchanger size when the room heat load increases beyond 0.5 kW, in order to maintain a minimum comfortable temperature of 30°C in the room.  相似文献   

8.
The volcanic plate made pillar cooler system is designed for outdoor spaces as a heat exchanging medium and reduces the outcoming air temperature which flows through the exhaust port. This paper proposes the use of artificial neural networks (ANNs) to predict inside air temperature of a pillar cooler. For this purpose, at first, three statistically significant factors (outside temperature, airing and watering) influencing the inside air temperature of the pillar cooler are identified as input parameters for predicting the output (inside air temperature) and then an ANN was employed to predict the output. In addition, 70%, 15% and 15% data was chosen from a previously obtained data set during the field trial of the pillar cooler for training, testing and validation, respectively, and then an ANN was employed to predict inside air temperature. The training (0.99918), testing (0.99799) and validation errors (0.99432) obtained from the model indicate that the artificial neural network model (NARX) may be used to predict inside air temperature of pillar cooler. This study reveals that, an ANN approach can be used successfully for predicting the performance of pillar cooler.  相似文献   

9.
People have been bringing plants into residential and other indoor settings for centuries, but little is known about their psychological effects. In the present article, we critically review the experimental literature on the psychological benefits of indoor plants. We focus on benefits gained through passive interactions with indoor plants rather than on the effects of guided interactions with plants in horticultural therapy or the indirect effect of indoor plants as air purifiers or humidifiers. The reviewed experiments addressed a variety of outcomes, including emotional states, pain perception, creativity, task-performance, and indices of autonomic arousal. Some findings recur, such as enhanced pain management with plants present, but in general the results appear to be quite mixed. Sources of this heterogeneity include diversity in experimental manipulations, settings, samples, exposure durations, and measures. After addressing some overarching theoretical issues, we close with recommendations for further research with regard to experimental design, measurement, analysis, and reporting.  相似文献   

10.
An experimental investigation is presented in this paper on the vapor compression refrigeration cycle used in an ice-making machine with a multi-channel evaporator. To study the operation performance of the refrigeration system in the ice-making machine, the fluid temperature distribution in multi-channel evaporating coils are tested and the dynamic variations in each cooling loop are investigated during the ice-generating phase. The results show that the external cooling loops have the largest temperature fluctuations caused by the large initial refrigerant injecting mass flow and the external environmental disturbances. For the inner cooling loops, the related temperature profiles of different test points have relative stable variations. To reduce the temperature fluctuations of the outside loops, it is suggested to reduce the initial refrigerant mass flow and adjust the initial opening of the thermal expansion valve. Moreover, it is the normal phenomenon for the slight temperature variations for the temperature curves of different test points, caused by the adjustment of thermal expansion valve. During the ice-making process, both the sensible heat removal phase and latent heat removal phase are experienced successively. To remove the sensible heat of water, the refrigerant system is operating in high efficiency with test points having a rapid linear temperature reduction. While for eliminating the latent heat of ice, it requires much more power supply, the relating test points have a temperature decrease with fluctuations. To improve the operation performance of ice machine, some suggestions and improvements are proposed.  相似文献   

11.
The underlying mechanisms of interaction between the symbiotic nitrogen-fixation process and main physiological processes, such as assimilation, nutrient allocation, and structural growth, as well as effects of nitrogen fixation on plant responses to global change, are important and still open to more investigation. Appropriate models have not been adequately developed. A dynamic ecophysiological model was developed in this study for a legume plant [Glycine max (L.) Merr.] growing in northern China. The model synthesized symbiotic nitrogen fixation and the main physiological processes under variable atmospheric CO2 concentration and climatic conditions, and emphasized the interactive effects of these processes on seasonal biomass dynamics of the plant. Experimental measurements of ecophysiological quantities obtained in a CO2 enrichment experiment on soybean plants, were used to parameterize and validate the model. The results indicated that the model simulated the experiments with reasonable accuracy. The R2 values between simulations and observations are 0.94, 0.95, and 0.86 for total biomass, green biomass, and nodule biomass, respectively. The simulations for various combinations of atmospheric CO2 concentration, precipitation, and temperature, with or without nitrogen fixation, showed that increasing atmospheric CO2 concentration, precipitation, and efficiency of nitrogen fixation all have positive effects on biomass accumulation. On the other hand, an increased temperature induced lower rates of biomass accumulation under semi-arid conditions. In general, factors with positive effects on plant growth tended to promote each other in the simulation range, except the relationship between CO2 concentration and climatic factors. Because of the enhanced water use efficiency with a higher CO2 concentration, more significant effects of CO2 concentration were associated with a worse (dryer and warmer in this study) climate.  相似文献   

12.
Temperature fluctuation inside the cabinet of a household refrigerator significantly affects the quality of preserved food. Phase change material (PCM) is a latent heat storage system that can store and release the heat energy by changing its phase from liquid to solid and solid to liquid respectively. Therefore, use of PCM inside the refrigerator cabinet has the potential for minimizing the temperature fluctuation during the door opening and the power failure. However, very few studies in the literature were dedicated to investigating the role of PCM to reduce the temperature fluctuation. The aim of this work is to experimentally investigate the effects of PCM on temperature fluctuation inside the cabinet of a household refrigerator during the door opening and power failure. The results found that a significantly lower temperature fluctuation can be obtained using PCM. It was found that during the door opening condition the air temperature in the cabinet rose rapidly. However, when a PCM container was used, temperature variation was reduced to 3–5°C. During the power failure, the system with PCM maintained a lower temperature inside the storage chamber for a long period of time (about 2 hours). Moreover, the test results indicate that PCM maintains more stable temperature in the foodstuffs inside the refrigerator. This reduction of temperature fluctuation ultimately improves the quality of preserved food.  相似文献   

13.
This study proposes a technical procedure based on a life cycle approach for implementation of the environmental sustainability assessment (ESA) of several waste-to-energy (WtE) plants located in Spain. This methodology uses two main variables: the natural resources sustainability (NRS) and the environmental burdens sustainability (EBS). NRS includes the consumption of energy, materials, and water, whereas EBS considers five burdens to air, five burdens to water, and two burdens to land. To reduce the complexity of ESA, all variables were normalised and weighted using the threshold values proposed in the European Pollutant Release and Transfer Register regulation. The results showed the plants studied had a greater consumption of natural resources than Spain, ranging from 1.1 to 2.0 times higher than the Spanish reference consumption. The comparison of Spain with the BREF reference on waste incineration showed that only in the variable related to materials, did Spain have a lower consumption (1.80 times lower). In terms of EBS, air and land impacts were the highest contributors to global burden. The WtE plants presented higher burdens to air and water than Spain, whereas only one plant exceeded the average burden to land of Spain. Finally, this paper demonstrated the usefulness of the ESA methodology to reduce the complexity of LCA and assist the decision-making process in choosing the best option from an environmental point of view. This procedure can be used to obtain an overview of the environmental performance of WtE plants, as well as to assess individual burdens and thereby determine the main environmental hotspots, thereby improving the critical points of the process.  相似文献   

14.
Since the majority of schools are housed in buildings dating from the 1960s and 1970s, a comprehensive construction and renovation program of school buildings has been carried out to improve the educational conditions in Korea. However, classrooms and computer rooms, with pressed wood desks, chairs and furnishings, as well as construction materials, might have negative effects on the indoor air quality. Furthermore, most schools have naturally ventilated classrooms. The purpose of this study was to characterize the concentrations of different indoor air pollutants within Korean schools and to compare their indoor levels within schools according to the age of school buildings. Indoor and outdoor air samples of carbon monoxide (CO), carbon dioxide (CO(2)), particulate matter (PM(10)), total microbial count (TBC), total volatile organic compounds (TVOCs) and formaldehyde (HCHO) were obtained during summer, autumn and winter from three sites; a classroom, a laboratory and a computer classroom at 55 different schools. The selection of the schools was based on the number of years since the schools had been constructed. The problems causing indoor air pollution at the schools were chemicals emitted by building materials or furnishings, and insufficient ventilation rates. The I/O ratio for HCHO was 6.32 during the autumn, and the indoor HCHO concentrations (mean = 0.16 ppm) in schools constructed within 1 year were significantly higher than the Korean Indoor Air Standard, indicating that schools have indoor sources of HCHO. Therefore, increasing the ventilation rate by means of a mechanical system and the use of low-emission furnishings can play key roles in improving the indoor air quality within schools.  相似文献   

15.
ABSTRACT: There are increasing concerns in the forestry community about global climate change and variability associated with elevated atmospheric CO2. Changes in precipitation and increases in air temperature could impose additional stress on forests during the next century. For a study site in Carteret County, North Carolina, the General Circulation Model, HADCM2, predicts that by the year 2099, maximum air temperature will increase 1.6 to 1.9°C, minimum temperature will increase 2.5 to 2.8°C, and precipitation will increase 0 to 10 percent compared to the mid‐1990s. These changes vary from season to season. We utilized a forest ecosystem process model, PnET‐II, for studying the potential effects of climate change on drainage outflow, evapotranspiration, leaf area index (LAI) and forest Net Primary Productivity (NPP). This model was first validated with long term drainage and LAI data collected at a 25‐ha mature loblolly pine (Pinus taeda L.) experimental watershed located in the North Carolina lower coastal plain. The site is flat with poorly drained soils and high groundwater table. Therefore, a high field capacity of 20 cm was used in the simulation to account for the topographic effects. This modeling study suggested that future climate change would cause a significant increase of drainage (6 percent) and forest productivity (2.5 percent). Future studies should consider the biological feedback (i.e., stomata conductance and water use efficiency) to air temperature change.  相似文献   

16.
The symbiotic co-evolution of plants and microbes leads to difficulties in understanding which of the two components is responsible for a given environmental response. Plant-microbe studies greatly benefit from the ability to grow plants in axenic (sterile) culture. Several studies have used axenic plant culture systems, but experimental procedures are often poorly documented, the plant growth environment is not optimal, and axenic conditions are not rigorously verified. We developed a unique axenic system using inert components that promotes plant health and can be kept sterile for at least 70 d. Crested wheatgrass (Agropyron cristatum cv. CDII) plants were grown in sand within flow-through glass columns that were positively pressured with filtered air. Plant health was optimized by regulating temperature, light level, CO2 concentration, humidity, and nutrients. The design incorporates several novel aspects, such as pretreatment of the sand with Fe, graduated sand layers to optimize the air-water balance of the root zone, and modification of a laminar flow hood to serve as a plant growth chamber. Adaptations of several sterile techniques were necessary for maintenance of axenic conditions. Axenic conditions were verified by plating and staining leachates as well as a rhizoplane stain. This system was designed to study nutrient and water stress effects on root exudates, but is useful for assessing a broad range of plant-microbe-environment interactions. Based on total organic C analysis, 74% of exudates was recovered in the leachate, 6% was recovered in the bulk sand, and 17% was recovered in the rhizosphere sand. Carbon in the leachate after 70 d reached 255 microg d(-1). Fumaric, malic, malonic, oxalic, and succinic acids were measured as components of the root exudates.  相似文献   

17.
Evaporative cooling of water in a small porous clay vessel was studied under controlled humidity conditions. In steady-state experiments performed at an ambient temperature of 23 °C, the cooling effect increased from 4.7 to 8.3 °C as the ambient relative humidity decreased from 60 to 15%. External heat and mass transfer coefficients, estimated from the steady-state measurements, were used in mathematical models to predict the experimentally observed transient temperature variation of the water under ramp changes of the ambient relative humidity. With a prototypical cool chamber containing water tested in Kolkata, India under an ambient temperature of 34.5–35 °C, the cooling effect reached a maximum of 7 °C between 3 and 3:30 PM and then declined to 4.5 °C around 6 PM.  相似文献   

18.
19.
This paper presents application of the chemical looping combustion (CLC) method in natural gas-fired combined cycles for power generation with CO2 capture. A CLC combined cycle consisting of single CLC-reactor system, an air turbine, a CO2-turbine and a steam cycle has been designated as the base-case cycle. The base-case cycle can achieve net plant efficiency of about 52% at an oxidation temperature of 1200 °C. In order to achieve a reasonable efficiency at lower oxidation temperatures, reheat is introduced into the air turbine by employing multi CLC-reactors. The results show that the single reheat CLC-combined cycle can achieve net plant efficiency of above 51% at oxidation temperature of 1000 °C and above 53% at the oxidation temperature of 1200 °C including CO2 compression to 110 bar. The double reheat cycle results in marginal efficiency improvement as compared to the single reheat cycle. The CLC-cycles are also compared with a conventional combined cycle with and without post-combustion capture in amine solution. All the CLC-cycles show higher net plant efficiencies with close to 100% CO2 capture as compared to a conventional combined cycle with post-combustion capture, which is very promising.  相似文献   

20.
ABSTRACT: Chlorine-temperature interaction studies with various exposure times were conducted on 25–day old larval white perch, Morone Americana, using total residual chlorine (TRC) concentrations of 0.0, 0.15, and 0.30 mg/1 TRC in combination with ΔTs of 2, 6, and 10 C above a base temperature of 18 C. Larval fish were exposed to the chlorine-temperature test conditions for exposure periods of 0.08, 2.0 and 4.0 hours. After each respective exposure period, chlorine concentrations were decayed naturally over a 1.0 to 1.5 hour period to < 0.01 mg/1 TRC; temperatures were decayed over a 4 hour period to 2.0 C above the base temperature. These test conditions were used to simulate chlorine and temperature conditions encountered in power plant discharge canals and near field receiving streams. The interactions of chlorine, ΔT and exposure duration as factors which caused death up to 36 hours after the exposure periods were established by regression model techniques. An initial interaction model showed that ΔT was not a factor which contributed to death. A predictive model for chlorine and exposure duration was constructed which showed that potential impact to larval white perch from chlorine at power facilities with once through cooling systems can be minimized by 1) using short duration exposures (< 1 hour) to chlorine in plants that chlorinate intermittently or 2) by rapid mixing in the receiving stream in plants that chlorinate on a low level (< 0.05 mg/1) continuous basis. Similar considerations should be given to cooling tower blowdown which contain chlorinated water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号