首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flow of sediment particles in rivers is a big challenge to develop hydropower plants across the sediment-laden rivers. Hard particles such as quartz and feldspar are available in high amount in the Asian mountain range. The abrasive action of these particles causes the hydro turbines to suffer from erosion in particular at high- and medium-head hydroelectric power plants. This has become a serious economic issue due to maintenance costs and production losses. The treatment without prevention is simply unsustainable. Facilities for sediment exclusion, typically sand traps as well as turbine design, and materials have been improved considerably. In the present paper, studies have been discussed extensively undertaken by several investigators in this field. Based on literature survey several aspects related to reducing the sediment load on turbines, useful ways to improve the turbine surface performance and various erosion models to characterize the effect of erosion on the performance of turbines have been discussed. To calibrate and validate the developed erosion models, more measurements from both physical model tests in laboratories and continuous monitoring of sediment parameters and their impact on the operational hydro turbines are required. As well as the state-of-art in the modeling and simulation using computational fluid dynamics (CFD) has made it possible to optimize the hydraulic design of hydro turbines in order to minimize the erosion level without much sacrifice in the efficiency. To mitigate the hydro-abrasive erosion effects on the performance of turbines, significant improvements have been achieved so far and development is ongoing.  相似文献   

2.
Distributed Generation (DG) sources based on Renewable Energy (RE) can be the fastest growing power resources in distribution systems due to their environmental friendliness and also the limited sources of fossil fuels. In general, the optimal location and size of DG units have profoundly impacted on the system losses in a distribution network. In the present article, the Particle Swarm Optimization (PSO) algorithm is employed to find the optimal location and size of DG units in a distribution system. The optimal location and size of DG units are determined on the basis of a multi-objective strategy as follows: (i) the minimization of network power losses, (ii) the minimization of the total costs of Distributed Energy Resources (DERs), (iii) the improvement of voltage stability, and (iv) the minimization of greenhouse gas emissions. The related distribution system was assumed to be composed of the fuel cells, wind turbines, photovoltaic arrays, and battery storages. The electrical, cooling, and heating loads were also considered in this article. The heating and cooling requirements of the system consist of time varying water heating load, space heating load, and space cooling load. In this study, the waste and fuel cell were used to produce the required heating and cooling loads in the distribution system. In addition, the absorption chiller was used to supply the required space cooling loads. A detailed performance analysis was carried out on 13 bus radial distribution system to demonstrate the effectiveness of the proposed methodology.  相似文献   

3.
Rapid development of wind energy has been witnessed in Thailand. However, different wind resource maps (over land) have brought great uncertainty to wind energy planning. Here, four important mesoscale wind maps were considered: DEDP (2001), World Bank (2001), Manomaiphiboon et al. (2010) of JGSEE, and DEDE (2010). The wind maps were first harmonized to a common grid at 100 m and then compared. The earlier wind maps (DEDP and World Bank) are shown to represent the lower and upper limits of predicted speed, respectively, while JGSEE and DEDE tend to be more moderate with predictions statistically closer to observations. A consolidated wind map was constructed based on their median and shown to have the best prediction performance. It was then used for the technical potential analysis, in which three large (2-MW) turbine models (two conventional and one designed for low wind speed) were considered. By GIS techniques, any land areas not feasible for large wind turbines were excluded, and the corresponding overall onshore technical potential ranges between 50 and 250 GW, depending on map and turbine model. Considering only economically feasible turbines (with capacity factors of 20%) and the median-based map, the final technical potential equals 17 GW when using the low-wind-speed model but is reduced to 5 GW with the conventional models, adequately meeting the national wind energy target of 3 GW by the year 2036. The results suggest a strong sensitivity of estimated technical potential to turbine technology and a suitability of low-wind-speed turbines for wind conditions in Thailand.  相似文献   

4.
A new variable-speed ground-coupled liquid desiccant air-conditioner was proposed and applied to a multi-storey office building in a temperate city of Kunming in China. Dynamic system simulations were performed to compare its performance with a constant-speed ground-source heat pump system. It was found that the use of the new system for a single-floor office reduced the annual unbalanced load to the ground heat exchanger borefield by nearly 70% together with a borehole depth reduction of up to 30%. For the case of a multi-storey office building, the number of floors served could be increased by 144% together with a reduction of CO2 emission by 43%. The results highlighted the merit of the new hybrid system with enhanced applicability when it was applied to a multi-storey office building in a temperate city.  相似文献   

5.
In order to decrease the heat rejection pressure of heat pump using pure working fluid, CO2 or R744, other natural component including hydrocarbons (R290, R600a, R600, R1270, R170, R601) and dimethyl ether (RE170) is added to CO2, respectively, and then six binary mixtures are achieved. By environmental and thermodynamic comparisons, R290 is selected to be the most appropriate component candidate to mix with CO2, and meanwhile to weaken the flammability and explosivity for pure R290. Then, the system performances of heat pump using mixture of CO2 and R290 were experimentally studied when R290 is added to CO2 with a small fraction, and compared with that of the pure CO2. The experimental test rig is designed and set up for the transcritical heat pump system. When the refrigerant charge is variable, the heating coefficient performance, optimum heat rejection pressure, compressor power, mass flow rate of refrigerant, and total heat coefficient of gas cooler were researched. The variation ratios of heating coefficient performance and heating capacity with deviation from the optimum refrigerant charge were also investigated. The optimum refrigerant charge of CO2/R290 is obtained and the research results show that the addition of R290 to CO2 can efficiently reduce the heat rejection pressure and improve the system performance. The results in the present work could provide useful guidelines for the design and operation of heat pump system using CO2-based mixture.  相似文献   

6.
ABSTRACT

Carbon corrosion caused by H2/O2 interface during the shut-down process is one of the factors that exacerbate the overall degradation of proton exchange membrane fuel cells (PEMFC) in automotive applications. Numerous studies have shown that system strategies are beneficial for reducing the duration of H2/O2 interface and alleviating performance degradation. In this paper, three different shut-down strategies are investigated and compared based on the internal behaviors acquired by in-situ measurements. For the three shut-down strategies, reverse current and high potential are mainly observed in a lower constant current and constant power strategy. Comparatively speaking, the internal uniformity of the cell under constant current and power load is better than that with constant voltage strategy when the shut-down time is about the same. The results suggest that adopting a higher constant power load followed by a larger voltage load during the shut-down process can effectively shorten the shut-down time and relieve carbon corrosion. These results add significant new insights into the shut-down process and will be of practical importance in directing design of combined shut-down strategy that can withstand carbon corrosion.  相似文献   

7.
Heating, ventilating, and air-conditioning (HVAC) systems in commercial buildings consume the largest amount of energy. Recent surge in energy cost necessitates constant re-evaluation of HVAC system for most of the buildings. The objective of this study is to present the strategic approach on energy saving analysis of the HVAC system and chiller sizing optimization for a library building. Energy modeling code (eQUEST) for buildings simulation has been applied to verify and predict the long-term energy consumption of HVAC systems. To improve the accuracy of simulation results, the actual performance curves of the chillers and pumps were the inputs of curve fitting data from on-site field measurements data. Energy consumption data acquisition from the building energy management system (BEMS) for one year has been conducted comprehensively to calibrate energy modeling and to quantify energy saving results. The results revealed good agreement between energy modeling and BEMS data with the error of less than 10%. Besides, energy savings through the chillers’ sizing based on cooling load profile could be achieved satisfactorily by utilizing energy modeling by using the actual chiller performance curve. The energy saving for HVAC system can be obtained satisfactorily at the saving of 110,362 kWh per year. It is expected that the study will stimulate a more robust investigation of energy-efficient and cost-effective HVAC system specific for library buildings.  相似文献   

8.
ABSTRACT

Advanced wind turbine designs and technologies have been evolved to take advantage of wind energy. Despite the significant progress already attained, the need for a dependable wind energy converter particularly devoted to small-scale applications remains a challenging issue. Due to its design simplicity, Savonius wind turbine is the most suitable candidate for such applications. It operates at low wind speed, with the necessary starting capacity and insensitivity to wind directions. Moreover, in the literature related to wind energy, the Savonius rotor is known for its low performance compared to other types of wind turbines. In this paper, we present a study into the utilization of Bézier curves and transient computational fluid dynamics (CFD) to optimize the conventional Savonius blade design. The k-ω SST turbulence model is employed to perform a series of CFD simulations in order to assess the power coefficient of each generated design. A validation of optimization results using the Taguchi method was carried out. The comparative analysis of the torque and power coefficients shows a significant increase in the power coefficient (Cp). The optimal Cp is 0.35 and is 29% higher than the conventional Savoniu wind turbine (SWT). Subsequently, the effectiveness of the innovative geometry is proved by improved pressure and velocity distributions around blades of novel design.  相似文献   

9.
朱学旺  刘青林 《环境技术》2006,24(5):18-21,3
载荷模拟的精度是振动试验模拟是否有效的决定因素之一.本文根据模态质量分析方法,讨论了基于响应功率谱密度的试验载荷等效性的动力学原理,给出了满足小阻尼稀疏模态特征的结构系统的简化表达式.简支梁和悬臂锥筒的数值模拟分析表明,采用本文方法设计的等效载荷可以取得足够精确的共振响应功率谱密度.  相似文献   

10.
ABSTRACT

Refrigerant pressure drop and temperature change in pipes are normally ignored in the thermodynamic analysis of traditional vehicle air conditioning system, this will result in serious errors. In this Paper, pressure drop and temperature difference are simulated in different pipes of electric vehicle (EV) heat pump system to analysis the effects of pipes in the actual EV heat pump system. The results indicate that the greater the mass flow, the faster pressure drop increases, the temperature difference decreases. Pressure drop of saturated liquid refrigerant is smaller than that of saturated gas refrigerant at the same saturation pressure and mass flow rate. The higher the refrigerant pressure (no phase change), the slower pressure drop decreases, the faster the temperature difference decreases. Pressure drop decreases with the increment of bending angle of the pipe. For EV heat pump system, suitable valves and less branches are helpful for energy saving of the system. Shortening the pipe between compressor and condenser can reduce temperature change obviously. Pressure drop per unit length in the pipe between evaporator and compressor is large especially in heating mode because of lower refrigerant density. It even reaches to over 100 times of that in the pipe between condenser and throttle valve in heating mode and has negative effects on the performance of the system. If the evaporator is closer to the compressor and the number of branches is less, then pressure drop will decrease a lot, which will be advantageous for energy saving of the heat pump system.  相似文献   

11.
ABSTRACT

Human-induced climate change through the over liberation of greenhouse gases, resulting in devastating consequences to the environment, is a concern of considerable global significance which has fuelled the diversification to alternative renewable energy sources. The unpredictable nature of renewable resources is an impediment to developing renewable projects. More reliable, effective, and economically feasible renewable energy systems can be established by consolidating various renewable energy sources such as wind and solar into a hybrid system using batteries or back-up units like conventional energy generators or grids. The precise design of these systems is a critical step toward their effective deployment. An optimal sizing strategy was developed based on a heuristic particle swarm optimization (PSO) technique to determine the optimum number and configuration of PV panels, wind turbines, and battery units by minimizing the total system life-cycle cost while maximizing the reliability of the hybrid renewable energy system (HRES) in matching the electricity supply and demand. In addition, by constraining the amount of conventional electricity purchased from the grid, environmental concerns were also considered in the presented method. Various systems with different reliabilities and potential of reducing consumer’s CO2 emissions were designed and the behavior of the proposed method was comprehensively investigated. An HRES may reduce the annualized cost of energy and carbon footprint significantly.  相似文献   

12.
ABSTRACT

Absorption refrigeration system is a heat-driven refrigeration system, which has a good application prospect in co- and tri-generation system, and is of great significance to energy conservation and emission reduction. In this paper, the combined power and cold system the combined power and cooling system and the combined cold cooling, heat, and power system based on absorption refrigeration are reviewed. Working fluid of absorption refrigeration cycle, different configurations, system performance, main application fields, and economic considerations of co- and tri-generation systems were focused in this review. This paper will be useful for the researchers to have a more comprehensive understanding of the application and development prospect of co- and tri-generation systems based on Absorption Refrigeration Cycle.  相似文献   

13.
才佳 《油气田环境保护》2012,22(2):22-24,75,76
文章介绍热电冷联供系统的设备组成及其设计注意事项;介绍以燃气轮机为发电机组的热电冷联供系统案例。在热电冷联供系统中配置溴化锂吸收式制冷机,可充分发挥其利用低品位能源的优势;设计热电冷联供系统前,应进行必要的经济性分析,合理确定设备配置方案和配置容量;以燃气轮机发电机组和烟气型溴化锂吸收式冷热水机组为主要设备组成的热电冷联供系统,烟气系统的设计和安装连接是关键。文章可为燃气轮机热电冷联供系统的设计和建造提供技术参考。  相似文献   

14.
Severe fluid forces are believed to be a source of injury and mortality to fish that pass through hydroelectric turbines. A process is described by which laboratory bioassays, computational fluid dynamics models, and field studies can be integrated to evaluate the significance of fluid shear stresses that occur in a turbine. Areas containing potentially lethal shear stresses were identified near the stay vanes and wicket gates, runner, and in the draft tube of a large Kaplan turbine. However, under typical operating conditions, computational models estimated that these dangerous areas comprise less than 2% of the flow path through the modeled turbine. The predicted volumes of the damaging shear stress zones did not correlate well with observed fish mortality at a field installation of this turbine, which ranged from less than 1% to nearly 12%. Possible reasons for the poor correlation are discussed. Computational modeling is necessary to develop an understanding of the role of particular fish injury mechanisms, to compare their effects with those of other sources of injury, and to minimize the trial and error previously needed to mitigate those effects. The process we describe is being used to modify the design of hydroelectric turbines to improve fish passage survival.  相似文献   

15.
Controlled atmospheric storage is a widely popular technique for storage of fruits and vegetables. In this paper, the experimental studies on biomass powered absorption systems for cold storage applications using ammonia water as a working fluid pair is presented. The heat input to the absorption system is supplied by a producer gas obtained from a downdraft gasifier, using firewood as fuel. The system is designed and fabricated to store about 15 MT of fruits and vegetables, having a cooling capacity of 3 TR. The effect of sink temperature, solution flow rate, cooling water flow rate and biomass consumption on the performance of the system has been analyzed. It is found that the real co-efficient of performance of the system is around 0.35 - 0.2, considering the source-site factor for auxiliary power consumption. The operating Cost/h for the biomass based cold storage system is lower than the presently available conventional compression based units.  相似文献   

16.
A method for calculating the transport and depressurization of a two-phase multi-component CO2 mixture is presented. The thermodynamical and transport properties for a CO2–CH4 mixture are calculated using the Soave–Redlich–Kwong equation of state (SRK). The fluid flow is described by a drift-flux model, which is solved using the multi-stage (MUSTA) centred scheme. Numerical results are shown, illustrating the effect of mixture composition and the feasibility of the approach.  相似文献   

17.
This research work draws an insight into the experimental investigations on a series hydraulic/electric synergy system—a green transportation system. An experimental test rig of the system with all necessary sensors and instrumentation has been developed to study the energy saving through hydraulic regenerative braking. The effect of various system parameters, such as braking time, maximum accumulator pressure, pre-charge pressure of hydro-pneumatic accumulator, volumetric displacement of the hydraulic master pump, and hydraulic regeneration pump on the quantum of regeneration energy, was analyzed. In addition, an AMESim model of the real-time experimental test rig has been developed and validated with experimental results. A set of five different experimental designs (parameter variations) of the system is defined with the available standard component sizes. The best design is selected of the available experimental designs based on the maximum hydraulic regeneration energy and regeneration efficiency. It was observed that the selected design has an energy efficiency of 13.3% and a regeneration efficiency of 43.8%. An accumulator-centric control strategy for energy management is developed and implemented on the experimental test rig configured with the selected design. The effectiveness of the control strategy is tested through experiments and simulation on the developed test rig.  相似文献   

18.
The performance of a wetland system in treating lead (Pb)/zinc (Zn) mine drainage was evaluated by using the polyurethane foam unit (PFU) microbial community (method), which has been adopted by China as a standardized procedure for monitoring water quality. The wetland system consisted of four cells with three dominant plants: Typha latifolia, Phragmites australis and Paspalum distichum. Physicochemical characteristics [pH, EC, content of total suspended solid (TSS) and metals (Pb, Zn, Cd, and Cu)] and PFU microbial community in water samples had been investigated from seven sampling sites. The results indicated that the concentrations of Pb, Zn, Cd, Cu, and TSS in the mine drainage were gradually reduced from the inlet to the outlet of the wetland system and 99%, 98%, 75%, 83%, and 68% of these metals and TSS respectively, had been reduced in concentration after the drainage passed through the wetland system. A total of 105 protozoan species were identified, the number of protozoa species and the diversity index (DI) gradually increased, while the heterotrophic index (HI) gradually decreased from the inlet to the outlet of the wetland system. The results indicated that DI, HI, and total number species of protozoa could be used as biological indicators indicating the improvement of water quality.  相似文献   

19.
ABSTRACT: A sample transfer device was designed to provide a closed loop sampling system between a ground water sampling pump and a 40 ml volatile organic compound (VOC) vial. The same attachment can also be used with a bailer. The unit is constructed of a poly-tetrafluoroethylene (PTFE) body into which two stainless steel needles are press fitted. The needles puncture the Teflon septum of a vial; fluid flows through the longer needle into the vial and exits the vial from the shorter needle. The device eliminates sample transfer bias associated with head space, visible gas bubbles, and atmospheric contamination. Field sampling designed to determine differences in trichloroethylene (TCE) concentrations presumedly due to the device were statistically significant in one case, and insignificant in the second.  相似文献   

20.
大庆油田钻井液幼鱼急性毒性试验研究   总被引:3,自引:1,他引:3  
采用经济合作与发展组织(OECD)推荐的毒性试验鱼种(幼鲤鱼),对大庆油田废钻井液、聚合物体系、三钾聚合物体系钻井液进行急性毒性试验;用概率单位回归法计算出三种钻井液LC50值、钻井液浓度值和95%可信度的浓度范围;采用美国糠虾试验法钻井液毒性分级标准进行评价,并对钻井液中主要化学添加剂毒性作了分析。结果表明大庆油田三种钻井液均属于无毒性水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号