首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Sustainable development has become a major focus for engineers and planners as part of their collective efforts in finding, developing and integrating environmental-friendly solutions for material recycling and waste management into design and construction of civil engineering infrastructure. In the past three decades, there has been an increase in recycling and application of waste materials into the concrete to decrease costs and improve material properties of the concrete. Significant growth in automobile manufacturing industry and increased rubber tire supply for vehicles suggested the application of waste tire particles as concrete aggregates to minimize the ecological footprint of the rubber tire waste due to its recycling process difficulties. In this paper, the effect of rubber tire particles on compressive and dynamic strength of concrete specimens with different particle percentiles was tested on more than 55 cylindrical specimens. To achieve the optimal mix design properties of rubber tire concrete specimens, both fine and coarse aggregates got replaced by fine and coarse rubber particles. Introduction of rubber tire particles as coarse and fine aggregate reduces the brittleness of the concrete and provides more flexible aggregate bonding which ultimately improves the dynamic resistance of the concrete. It increases the concrete workability and provides environmental-friendly and cost-effective solutions in using recycled materials for concrete construction applications.  相似文献   

2.
The main objective of this paper is to investigate the properties of various concrete mixtures at fresh and hardened state, obtained by a partial substitution of coarse and fine aggregate with different volume percentages of waste tyres rubber particles, having the same dimensions of the replaced aggregate. Workability, unit weight, compressive and flexural strength and post-cracking behaviour were evaluated and a comparison of the results for the different rubcrete mixtures were proposed in order to define the better mix proportions in terms of mechanical properties of the rubberized concrete. Results showed in this paper were also compared to data reported in literature. Moreover, a preliminary geometrical, physical and mechanical characterization on scrap tyre rubber shreds was made.The rubberized concrete mixtures showed lower unit weight compared to plain concrete and good workability. The results of compressive and flexural tests indicated a larger reduction of mechanical properties of rubcrete when replacing coarse aggregate rather than fine aggregate. On the other hand, the post-cracking behaviour of rubberized concrete was positively affected by the substitution of coarse aggregate with rubber shreds, showing a good energy absorption and ductility indexes in the range observed for fibrous concrete, as suggested by standard (ASTM C1018-97, 1997).  相似文献   

3.
An experimental investigation was carried out to study the effects of various percentages of fine/coarse tire waste and microsilica at various temperatures on the compressive strength of concrete. The compressive strength of concrete mixtures made with tire rubber was assessed statistically with those of concrete containing microsilica and conventional concretes in order to evaluate the usefulness of recycling rubber waste as a component of concrete. Results confirmed that the recipe and processing temperature of concrete cubes influence the compressive strength values. Generally, the use of microsilica or fine rubber mixed with microsilica as aggregate replacement of 5% by volume improved the compressive strength of concrete processed at a temperature of 150°C. The addition of coarse rubber did not achieve any increase in strength when used as an aggregate replacement at any percentage. Moreover, the reductions in the compressive strength of concrete mixes at higher temperatures were much smaller for the fine rubber with 5 vol% microsilica than those for control and coarse rubber mixes. The specimens made with fine rubber and 5 vol% microsilica at elevated temperatures above 400°C appeared to show very similar compressive strength values. The use of fine rubber in building construction could help save energy and reduce costs and solve the solid waste disposal problem posed by this type of waste.  相似文献   

4.
Promoting the use of crumb rubber concrete in developing countries   总被引:3,自引:0,他引:3  
The use of accumulated waste materials in third world countries is still in its early phases. It will take courage for contractors and others in the construction industry to recycle selected types of waste materials in the concrete mixes. This paper addresses the recycling of rubber tires accumulated every year in Jordan to be used in concrete mixes. The main objectives of this research were to provide more scientific evidence to support the use of legislation or incentive-based schemes to promote the reuse of accumulated waste tires. This research focused on using crumb tires as a replacement for a percentage of the local fine aggregates used in the concrete mixes in Jordan. Different concrete specimens were prepared and tested in terms of uniaxial compression and splitting tension. The main variable in the mixture was the volumetric percentage of crumb tires used in the mix. The test results showed that even though the compressive strength is reduced when using the crumb tires, it can meet the strength requirements of light weight concrete. In addition, test results and observations indicated that the addition of crumb rubber to the mix has a limited effect toward reducing the workability of the mixtures. The mechanical test results demonstrated that the tested specimens of the crumb rubber concrete remained relatively intact after failure compared to the conventional concrete specimens. It is also concluded that modified concrete would contribute to the disposal of the non-decaying scrap tires, since the amount being accumulated in third world countries is creating a challenge for proper disposal. Thus, obliging authorities to invest in facilitating the use of waste tires in concrete, a fundamental material to the booming construction industry in theses countries, serves two purposes.  相似文献   

5.
The growing amount of waste rubber produced from used tires has resulted in an environmental problem. Recycling waste tires has been widely studied for the last 20 years in applications such as asphalt pavement, waterproofing systems and membrane liners. The aim of this study is to evaluate the feasibility of utilizing fly ash and rubber waste with Portland cement as a composite material for masonry applications. Class C fly ash and waste automobile tires in three different sizes were used with Portland cement. Compressive and flexural strength, dry unit weight and water absorption tests were performed on the composite specimens containing waste tire rubber. The compressive strength decreased by increasing the rubber content while increased by increasing the fly ash content for all curing periods. This trend is slightly influenced by particle size. For flexural strength, the specimens with waste tire rubber showed higher values than the control mix probably due to the effect of rubber fibers. The dry unit weight of all specimens decreased with increasing rubber content, which can be explained by the low specific gravity of rubber particles. Water absorption decreased slightly with the increase in rubber particles size. These composite materials containing 10% Portland cement, 70% and 60% fly ash and 20% and 30% tire rubber particles have sufficient strength for masonry applications.  相似文献   

6.

This article investigates the suitability of utilizing end of life rubber tyre particles in concrete as fine aggregate. Rubber ash and rubber fibers were used to develop two series of rubber ash concrete (series I) and hybrid concrete (series II) mixes. The natural fine aggregate was replaced by rubber ash (by volume of 5%, 10%, 15% and 20%) in series I; whereas in series II, the amount of rubber ash was kept constant at 10% and rubber fiber was introduced as replacement of fine aggregate (by volume of 5%, 10%, 15%, 20% and 25%). The concrete mixes were evaluated for compressive strength, flexural strength, resistance to impact loading, fatigue loading, water penetration and shrinkage strain was evaluated. It was observed that inclusion of rubber ash resulted in the improvement of impact resistance of concrete. The results also show that up to 10% rubber ash and rubber fibers can be utilized as fine aggregate to develop feasible and durable rubberized concrete pavements, crash barriers and paver blocks.

  相似文献   

7.
Use of the processed used tires in embankment construction is becoming an accepted way of beneficially recycling scrap tires due to shortages of natural mineral resources and increasing waste disposal costs. Using these used tires in construction requires an awareness of the properties and the limitations associated with their use. The main objective of this paper is to assess the different processing techniques on the mechanical properties of used tires–sand mixtures to improve the engineering properties of the available soil. In the first part, a literature study on the mechanical properties of the processed used tires such as tire shreds, tire chips, tire buffings and their mixtures with sand are summarized. In the second part, large-scale direct shear tests are performed to evaluate shear strength of tire crumb–sand mixtures where information is not readily available in the literature. The test results with tire crumb were compared with the other processed used tire–sand mixtures. Sand–used tire mixtures have higher shear strength than that of the sand alone and the shear strength parameters depend on the processing conditions of used tires. Three factors are found to significantly affect the mechanical properties: normal stress, processing techniques, and the used tire content.  相似文献   

8.
Potential of scrap tire rubber as lightweight aggregate in flowable fill   总被引:5,自引:0,他引:5  
Flowable fill is a self-leveling and self-compacting material that is rapidly gaining acceptance and application in construction, particularly in transportation and utility earthworks. When mixed with concrete sand, standard flowable fill produces a mass density ranging from 1.8 to 2.3 g/cm(3) (115-145 pcf). Scrap tires can be granulated to produce crumb rubber, which has a granular texture and ranges in size from very fine powder to coarse sand-sized particles. Due to its low specific gravity, crumb rubber can be considered a lightweight aggregate. This paper describes an experimental study on replacing sand with crumb rubber in flowable fill to produce a lightweight material. To assess the technical feasibility of using crumb rubber, the fluid- and hardened-state properties of nine flowable fill mixtures were measured. Mixture proportions were varied to investigate the effects of water-to-cement ratio and crumb rubber content on fill properties. Experimental results indicate that crumb rubber can be successfully used to produce a lightweight flowable fill (1.2-1.6 g/cm(3) [73-98 pcf]) with excavatable 28-day compressive strengths ranging from 269 to 1194 kPa (39-173 psi). Using a lightweight fill reduces the applied stress on underlying soils, thereby reducing the potential for bearing capacity failure and minimizing soil settlement. Based on these results, a crumb rubber-based flowable fill can be used in a substantial number of construction applications, such as bridge abutment fills, trench fills, and foundation support fills.  相似文献   

9.
Fine rubber particles from scrap tires can be used as an insulation material by incorporating with Portland cement mortar. In addition to thermal properties, there are special mechanical and durability properties that are important for the insulation mortar. The addition of rubber particles has negative impact on these properties. The special properties for insulation mortar can be improved using cellulose ether, redispersible polymer powder (RPP), and wood fiber. The objective of this study is to investigate the effects of these additives and the rubber powder on the properties of rubberized insulation mortar. With increasing rubber content, both flexural strength and compressive strength were reduced, but the reduction of flexural strength was not as significant as for the compressive strength. At a fixed rubber content, as the optimal amount of RPP and smaller rubber powder were used, the compressive strength of rubberized mortar satisfied the minimum requirement of the type N mortar. The drying shrinkage of the rubber mortar was about the same as the ordinary cement mortar. The permeability of the rubber mortar was low comparing with that of the ordinary cement mortar. The bond strength of the rubber mortar is low due to the reduced effective bonding surface.  相似文献   

10.
The development of beneficial uses of recycled scrap tires is always in great demand around the world. The disposal of on-site surplus excavated soil and the production of standard engineering aggregates have also been facing increasing environmental and ecological challenges in congested islands, such as Taiwan. This paper presents an experimental study using recycled crumb rubber and native silty sand to produce a lightweight, soil-based, rubberized controlled low strength material (CLSM) for a bridge approach repair. To assess the technical feasibility of this material, the effects of weight ratios of cement-to-water (C/W) and water-to-solid (W/S), and of rubber content on the engineering properties for different mixtures were investigated. The presented test results include flowability, unit weight, strength, settlement potential, and bearing capacity. Based on the findings, we conclude that a soil-based rubberized CLSM with 40% sand by weight and an optimal design ratio of 0.7 for C/W and 0.35 for W/S can be used for the proposed bridge approach repair. Such a mixture has demonstrated acceptable flowability, strength, and bearing capacity. Its lower unit weight, negligible compressibility, and hydrocollapse potential also help ensure that detrimental settlement is unlikely to occur. The results illustrate a novel scheme of CLSM production, and suggest a beneficial alternative for the reduction of scrap tires as well as conservation of resources and environment.  相似文献   

11.
Properties of concrete containing scrap-tire rubber--an overview   总被引:40,自引:0,他引:40  
Solid waste management is one of the major environmental concerns in the United States. Over 5 billion tons of non-hazardous solid waste materials are generated in USA each year. Of these, more than 270 million scrap-tires (approximately 3.6 million tons) are generated each year. In addition to this, about 300 million scrap-tires have been stockpiled. Several studies have been carried out to reuse scrap-tires in a variety of rubber and plastic products, incineration for production of electricity, or as fuel for cement kilns, as well as in asphalt concrete. Studies show that workable rubberized concrete mixtures can be made with scrap-tire rubber. This paper presents an overview of some of the research published regarding the use of scrap-tires in portland cement concrete. The benefits of using magnesium oxychloride cement as a binder for rubberized concrete mixtures are also presented. The paper details the likely uses of rubberized concrete.  相似文献   

12.

The utilization of processed rubber and construction waste in lieu of soil as a substrate could improve significantly seismic performance, while addressing the pressing environmental issue of how to reutilize and dispose of, i.e., automotive tires and demolition by-products. In this study, a series of laboratory tests explore the influence of recycled tire waste (RTW) and recycled concrete aggregate (RCA) fine particles on the compressibility parameters of RCA–RTW mixtures. The results revealed that the addition of rubber waste to RCA causes an increase in its compressibility and consolidation index (cv) while prompting a power law decrease in the associated void ratio. It is found that all RCA–RTW mixtures are characterized by higher values of the compression (CC) and swelling (CS) indexes when compared to the pure RCA specimens while presenting a primary and secondary constrained modulus of fewer than 42 MPa and 96 MPa, respectively.

  相似文献   

13.
Some physical and mechanical properties of oriented strandboards (OSBs) containing waste tire rubber at various addition levels based on the oven-dry strand weight, using the same method as that used in the manufacture of OSB. Two resin types, phenol–formaldehyde (PF) and polyisocyanate, were used in the experiments. The manufacturing parameters were: a specific gravity of 0.65 and waste tire rubber content (10/90, 20/80 and 30/70 by wt.% of waste tire rubber/wood strand). Average internal bond values of PF-bonded OSB panels with rubber chips were between 17.6% and 48.5% lower than the average of the control samples while polyisocyanate bonded OSBs were 16.5–50.6%. However, water resistance and mechanical properties of OSBs made using polyisocyanate resin were found to comply with general-purpose OSB minimum property requirements of EN 300 Type 1 (1997) values for use in dry conditions at the lowest tire rubber loading level (10%) based on the oven-dry panel weight. The tire rubber improved water resistance of the OSB panel due to its almost hydrophobic property. Based on the findings obtained from this study, we concluded that waste tire rubber could be used for general-purpose OSB manufacturing up to 10% ratio based on the oven-dry panel weight.  相似文献   

14.
The practice of incorporating certain waste products into highway construction and repair materials (CRMs) has become more popular. These practices have prompted the National Academy of Science, National Cooperative Highway Research Program (NCHRP) to research the possible impacts of these CRMs on the quality of surface and ground waters. State department of transportations (DOTs) are currently experimenting with use of ground tire rubber ( crumb rubber) in bituminous construction and as a crack sealer. Crumb rubber asphalt concrete (CR-AC) leachates contain a mixture of organic and metallic contaminants. Benzothiazole and 2(3H)-benzothiazolone (organic compounds used in tire rubber manufacturing) and the metals mercury and aluminum were leached in potentially harmful concentrations (exceeding toxic concentrations for aquatic toxicity tests). CR-AC leachate exhibited moderate to high toxicity for algae ( Selenastrum capriconutum) and moderate toxicity for water fleas ( Daphnia magna). Benzothiazole was readily removed from CR-AC leachate by the environmental processes of soil sorption, volatilization, and biodegradation. Metals, which do not volatilize or photochemically or biologically degrade, were removed from the leachate by soil sorption. Contaminants from CR-AC leachates are thus degraded or retarded in their transport through nearby soils and ground waters.  相似文献   

15.
For resource reutilization, scrap tyres have long been investigated as an additive to concrete to form 'Rubcrete' for various applications and have shown promising results. However, the addition of rubber particles leads to the degradation of physical properties, particularly, the compressive strength of the concrete. In this study, a theoretical model was proposed to shed light on the mechanisms of decrease in compressive strength due to the addition of rubber particles as well as improvement in compressive strength through modification of particle surfaces. The literature suggests that the compressive strength can be improved by soaking the rubber particles in alkaline solution first to increase the inter-phase bonding between the rubber particles and cement. Instead, we discovered that the loss in compressive strength was due to local imperfections in the hydration of cement, induced by the addition of heterogeneous and hydrophobic rubber particles. Microscopic studies showed that the rubber particles disturbed the water transfer to create channels, which were prone to cracking and led to a loss in the compressive strength. Unexpectedly, no cracking was found along the surfaces of the rubber particles, indicating that the bonding strength between the rubber particles and cement phases was not the critical factor in determining the compressive strength. Therefore, a theoretical model was proposed to describe the water transfer in the Rubcrete specimens to explain the experimental data. In the model, the local water available for hydration (Q) is: Q = -A(slv)/6piv, where Q, A(slv), and v are mass flow rate (kg s(-1)), Hamaker constant (J), and dynamic viscosity (m2 s(-1)), respectively. By maximizing the quantity Q and, in turn, the Hamaker constant A(slv), the compressive strength could be improved. The Hamaker constant A(slv) for water film on rubber particle surfaces was smaller than that for the hydrated cement particles; the water transfer rate was lower in the presence of rubber particles because the Hamaker constant A(slv) for water film on rubber particle surfaces was smaller than that on the hydrated cement particles. Thus, the compressive strength of Rubcrete could be improved by increasing the Hamaker constant of the system. This was achieved by increasing the refractive indices of the solids (n(s)). The refractive indices of materials increase with increases in functional groups, such as OH and SH on the surface. The model provided a possible mechanism for the efficacy of treating rubber particles with NaOH in improving the compressive strength. By using NaOH solution treatment, an oxygen-containing OH group was formed on the rubber surface to increase the Hamaker constant of the system, leading to higher compressive strength. Based on this mechanism, a novel method for modification of the rubber particles was also proposed. In this process, the rubber particles were partially oxidized with hot air/steam in a fluidized bed reactor to produce the hydrophilic groups on the surface of the particles. Preliminary results obtained so far are promising in accordance with the theory.  相似文献   

16.
Cure characteristics, Mooney viscosity and physico-mechanical properties of natural rubber (NR) containing CTAB modified kaolin have been studied. NR mix containing 6 phr (parts per hundred part rubber) of CTAB modified kaolin showed significant increases in cure rate and state of cure as compared to gum NR compound and a mix containing the same amount of unmodified kaolin. Lower Mooney viscosity of the NR mix containing CTAB modified kaolin suggested improved processability. Reinforcing effect of CTAB modified kaolin in NR was evident from higher chemical crosslink density index, tensile modulus, hardness, tensile strength and tear strength. Besides, the NR vulcanizate containing 6 phr of CTAB modified kaolin showed lower abrasion loss and heat build-up which could be beneficial for applications such as tire treads.  相似文献   

17.
One of the major environmental issues in Iraq is the large quantity of waste iron resulting from the industrial sector which is deposited in domestic waste and in landfills. A series of 109 experiments and 586 tests were carried out in this study to examine the feasibility of reusing this waste iron in concrete. Overall, 130 kg of waste iron were reused to partially replace sand at 10%, 15%, and 20% in a total of 1703 kg concrete mixtures. The tests performed to evaluate waste-iron concrete quality included slump, fresh density, dry density, compressive strength, and flexural strength tests: 115 cubes of concrete were molded for the compressive strength and dry density tests, and 87 prisms were cast for the flexural strength tests. This work applied 3, 7, 14, and 28 days curing ages for the concrete mixes. The results confirm that reuse of solid waste material offers an approach to solving the pollution problems that arise from an accumulation of waste in a production site; in the meantime modified properties are added to the concrete. The results show that the concrete mixes made with waste iron had higher compressive strengths and flexural strengths than the plain concrete mixes.  相似文献   

18.
This study focuses on determining the engineering characteristics of asphalt concrete using mineral fillers with recycled waste lime, which is a by-product of the production of soda ash (Na(2)CO(3)). The materials tested in this study were made using a 25%, 50%, 75%, and 100% mixing ratio based on the conventional mineral filler ratio to analyze the possibility of using recycled waste lime. The asphalt concretes, made of recycled waste lime, hydrated lime, and conventional asphalt concrete, were evaluated through their fundamental engineering properties such as Marshall stability, indirect tensile strength, resilient modulus, permanent deformation characteristics, moisture susceptibility, and fatigue resistance. The results indicate that the application of recycled waste lime as mineral filler improves the permanent deformation characteristics, stiffness and fatigue endurance of asphalt concrete at the wide range of temperatures. It was also determined that the mixtures with recycled waste lime showed higher resistance against stripping than conventional asphalt concrete. It was concluded from various test results that a waste lime can be used as mineral filler and, especially, can greatly improve the resistance of asphalt concrete to permanent deformation at high temperatures.  相似文献   

19.
This paper aims to investigate the fresh and hardened properties of lightweight aggregate concretes that are prepared with the use of recycled plastic waste sourced from scraped PVC pipes to replace river sand as fine aggregates. A number of laboratory prepared concrete mixes were tested, in which river sand was partially replaced by PVC plastic waste granules in percentages of 0%, 5%, 15%, 30% and 45% by volume. Two major findings are identified. The positive side shows that the concrete prepared with a partial replacement by PVC was lighter (lower density), was more ductile (greater Poisson's ratios and reduced modulus of elasticity), and had lower drying shrinkage and higher resistance to chloride ion penetration. The negative side reveals that the workability, compressive strength and tensile splitting strength of the concretes were reduced. The results gathered would form a part of useful information for recycling PVC plastic waste in lightweight concrete mixes.  相似文献   

20.
研究了冷冻胶粉粒度对橡胶胶料力学性能的影响,发现添加冷冻胶粉会使胶料的力学性能下降,胶粉粒度越大,胶料性能下降的程度越严重。同时还发现,薄通处理可以改善胶粉的表面活性,减轻胶粉粒度对胶料性能的影响,改善胶料的力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号