首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Development of skills in science communication is a well‐acknowledged gap in graduate training, but the constraints that accompany research (limited time, resources, and knowledge of opportunities) make it challenging to acquire these proficiencies. Furthermore, advisors and institutions may find it difficult to support graduate students adequately in these efforts. The result is fewer career and societal benefits because students have not learned to communicate research effectively beyond their scientific peers. To help overcome these hurdles, we developed a practical approach to incorporating broad science communication into any graduate‐school time line. The approach consists of a portfolio approach that organizes outreach activities along a time line of planned graduate studies. To help design the portfolio, we mapped available science communication tools according to 5 core skills essential to most scientific careers: writing, public speaking, leadership, project management, and teaching. This helps graduate students consider the diversity of communication tools based on their desired skills, time constraints, barriers to entry, target audiences, and personal and societal communication goals. By designing a portfolio with an advisor's input, guidance, and approval, graduate students can gauge how much outreach is appropriate given their other commitments to teaching, research, and classes. The student benefits from the advisors’ experience and mentorship, promotes the group's research, and establishes a track record of engagement. When graduate student participation in science communication is discussed, it is often recommended that institutions offer or require more training in communication, project management, and leadership. We suggest that graduate students can also adopt a do‐it‐yourself approach that includes determining students’ own outreach objectives and time constraints and communicating these with their advisor. By doing so we hope students will help create a new culture of science communication in graduate student education. Estrategias Prácticas para la Comunicación Científica para Estudiantes de Posgrado  相似文献   

2.
Abstract: The influence of conservation biology can be enhanced greatly if it reaches beyond undergraduate biology to students at the middle and high school levels. If a conservation perspective were taught in secondary schools, students who are not interested in biology could be influenced to pursue careers or live lifestyles that would reduce the negative impact of humans on the world. We use what we call the ecology‐disrupted approach to transform the topics of conservation biology research into environmental‐issue and ecology topics, the major themes of secondary school courses in environmental science. In this model, students learn about the importance and complexity of normal ecological processes by studying what goes wrong when people disrupt them (environmental issues). Many studies published in Conservation Biology are related in some way to the ecological principles being taught in secondary schools. Describing research in conservation biology in the language of ecology curricula in secondary schools can help bring these science stories to the classroom and give them a context in which they can be understood by students. Without this context in the curriculum, a science story can devolve into just another environmental issue that has no immediate effect on the daily lives of students. Nevertheless, if the research is placed in the context of larger ecological processes that are being taught, students can gain a better understanding of ecology and a better understanding of their effect on the world.  相似文献   

3.
For land-use science to engage the general public it must successfully translate its concepts and conclusions and make them public outside of traditional scientific venues. Here we explore science-art exhibits, which blend artistic presentations with specific scientific data or themes, as a possible effective way of communicating scientific information and disrupting misconceptions. We describe the process of producing a science-art exhibit on remote sensing and Puerto Rican landscape history from 1937 to the present, sited at a rural Puerto Rican community museum, and examine the visitor experience and educational outcomes of the museum exhibit through analysis of survey data. The exhibit project engaged undergraduate students from a variety of academic backgrounds, introduced land-use science concepts to the public in an engaging format, and was effective at reshaping visitors’ misconceptions of Puerto Rico’s landscape change history.  相似文献   

4.
Abstract:  Some educational psychologists and researchers have argued that there are multiple ways of being intelligent. In the early 1980s, Howard Gardner presented a theory of multiple intelligences by proposing that humans can be described not by a single kind of intelligence, or intelligence quotient score, but rather by a variety of kinds of intelligence. This idea of considering multiple views of intelligence has helped educators look at intelligence from a less rigid, more expansive perspective. I considered how the relatively new concept of naturalistic intelligence, which is the cognitive potential to process information that is exhibited by expert naturalists, might influence the design of undergraduate biology curricula. Naturalistic intelligence can be fostered in undergraduate biology students by emphasizing the need for well-rounded scientific naturalists; developing curricula that involves students in outdoor inquiry-based projects; and helping students learn how to observe both the natural world and their own learning, skills that are essential to developing expert naturalistic knowledge. Professors, graduate students, and administrators can improve the naturalistic intelligence of undergraduate biology students by giving these students opportunities to be involved in outdoor research. Time spent outdoors alone and among people with expertise in natural history, ecology, and conservation biology will have important influences on the knowledge and skills biology undergraduates learn, the careers they pursue, and the contributions they make to conserving Earth's biodiversity.  相似文献   

5.
Scientists in higher education institutions around the globe recognize the importance of engaging with public stakeholders to share their enthusiasm, explain their science, and encourage primary and secondary students to enter the sciences. However, without direct consideration of students’ and teachers’ perspectives and interests, scientists may design activities around their own goals, limiting the impact on school stakeholders (i.e., students, teachers, paraprofessional staff, students’ parents, and other caregivers). We drew from natural and social science research to describe how expanding the conception of place beyond the biophysical can help engage school stakeholders in meaningful ways. We describe the multidimensional PLACE framework that we developed to integrate perspectives, knowledge, and values of all stakeholders in engagement programming. The framework is organized around topics that stakeholders should discuss early on to ensure successful partnerships. We recommend that scientists identify and use pedagogy that is inclusive; language framed around dialogic communication methods; aims and motivations centered on engagement; cultural funds of knowledge of place (i.e., disciplinary, personal, or experiential knowledge); and evaluation of engagement based on meaningful metrics. Two case studies are presented to illustrate how the PLACE framework components, when addressed, can lead to robust, successful partnerships between scientists and schools.  相似文献   

6.
Graduate education programs in conservation science generally focus on disciplinary training and discipline‐specific research skills. However, nonacademic conservation professionals often require an additional suite of skills. This discrepancy between academic training and professional needs can make it difficult for graduate students to identify the skills and experiences that will best prepare them for the conservation job market. We analyzed job advertisements for conservation‐science positions and interviewed conservation professionals with experience hiring early‐career conservation scientists to determine what skills employers of conservation professionals seek; whether the relative importance of skills varies by job sector (government, nonprofit, and private); and how graduate students interested in careers in conservation science might signal competency in key skills to potential employers. In job advertisements, disciplinary, interpersonal, and project‐management skills were in the top 5 skills mentioned across all job sectors. Employers’ needs for additional skills, like program leadership, conflict resolution and negotiation, and technical and information technology skills, varied across sectors. Our interview results demonstrated that some skills are best signaled to employers via experiences obtained outside thesis or dissertation work. Our findings suggest that graduate students who wish to be competitive in the conservation job market can benefit by gaining skills identified as important to the job sector in which they hope to work and should not necessarily expect to be competent in these skills simply by completing their chosen degree path. Guía para el Estudiante de Grado de las Habilidades Necesarias para Carreras de Conservación Académicas  相似文献   

7.
Statistical methods as developed and used in decision making and scientific research are of recent origin. The logical foundations of statistics are still under discussion and some care is needed in applying the existing methodology and interpreting results. Some pitfalls in statistical data analysis are discussed and the importance of cross examination of data (or exploratory data analysis) before using specific statistical techniques are emphasized. Comments are made on the treatment of outliers, choice of stochastic models, use of multivariate techniques and the choice of software (expert systems) in statistical analysis. The need for developing new methodology with particular relevance to environmental research and policy is stressed.Dr Rao is Eberly Professor of Statistics and Director of the Penn State Center for Multivariate Analysis. He has received PhD and ScD degrees from Cambridge University, and has been awarded numerous honorary doctorates from universities around the world. He is a Fellow of Royal Society, UK; Fellow of Indian National Science Academy; Foreign Honorary Member of American Academy of Arts and Science; Life Fellow of King's College, Cambridge; and Founder Fellow of the Third World Academy of Sciences. He is Honorary Fellow and President of International Statistical Institute, Biometric Society and elected Fellow of the Institute of Mathematical Statistics. He has made outstanding contributions to virtually all important topics of theoretical and applied statistics, and many results bear his name. He has been Editor of Sankhya and theJournal of Multivariate Analysis, and serves on international advisory boards of several professional journals, includingEnvironmetrics and theJournal of Environmental Statistics. This paper is based on the keynote address to the Seventh Annual Conference on Statistics of the United States Environmental Protection Agency.  相似文献   

8.
Despite an abundance of research reaffirming biodiversity's importance to the health of the planet and society, species continue to go extinct at an alarming rate. Why has continued research on the value of biodiversity not had the intended effect and what can be done about it? We considered biodiversity loss as a public value failure and the result of a misalignment between the logic of inquiry (which guides scientists) and the logic of action (which guides practitioners). We drew lessons from our own research to propose the creation of a national biodiversity strategy designed to link the logic of inquiry with the logic of action and coordinate the production of actionable conservation science and informed conservation action.  相似文献   

9.
We examined features of citizen science that influence data quality, inferential power, and usefulness in ecology. As background context for our examination, we considered topics such as ecological sampling (probability based, purposive, opportunistic), linkage between sampling technique and statistical inference (design based, model based), and scientific paradigms (confirmatory, exploratory). We distinguished several types of citizen science investigations, from intensive research with rigorous protocols targeting clearly articulated questions to mass-participation internet-based projects with opportunistic data collection lacking sampling design, and examined overarching objectives, design, analysis, volunteer training, and performance. We identified key features that influence data quality: project objectives, design and analysis, and volunteer training and performance. Projects with good designs, trained volunteers, and professional oversight can meet statistical criteria to produce high-quality data with strong inferential power and therefore are well suited for ecological research objectives. Projects with opportunistic data collection, little or no sampling design, and minimal volunteer training are better suited for general objectives related to public education or data exploration because reliable statistical estimation can be difficult or impossible. In some cases, statistically robust analytical methods, external data, or both may increase the inferential power of certain opportunistically collected data. Ecological management, especially by government agencies, frequently requires data suitable for reliable inference. With standardized protocols, state-of-the-art analytical methods, and well-supervised programs, citizen science can make valuable contributions to conservation by increasing the scope of species monitoring efforts. Data quality can be improved by adhering to basic principles of data collection and analysis, designing studies to provide the data quality required, and including suitable statistical expertise, thereby strengthening the science aspect of citizen science and enhancing acceptance by the scientific community and decision makers.  相似文献   

10.
Abstract: Conservation assessment is a rapidly evolving discipline whose stated goal is the design of networks of protected areas that represent and ensure the persistence of nature (i.e., species, habitats, and environmental processes) by separating priority areas from the activities that degrade or destroy them. Nevertheless, despite a burgeoning scientific literature that ever refines these techniques for allocating conservation resources, it is widely believed that conservation assessments are rarely translated into actions that actually conserve nature. We reviewed the conservation assessment literature in peer‐reviewed journals and conducted survey questionnaires of the authors of these studies. Two‐thirds of conservation assessments published in the peer‐reviewed scientific literature do not deliver conservation action, primarily because most researchers never plan for implementation. This research–implementation gap between conservation science and real‐world action is a genuine phenomenon and is a specific example of the “knowing–doing gap” that is widely recognized in management science. Given the woefully inadequate resources allocated for conservation, our findings raise questions over the utility of conservation assessment science, as currently practiced, to provide useful, pragmatic solutions to conservation planning problems. A reevaluation of the conceptual and operational basis of conservation planning research is urgently required. We recommend the following actions for beginning a process for bridging the research–implementation gap in conservation planning: (1) acknowledge the research–implementation gap is real, (2) source research questions from practitioners, (3) situate research within a broader conservation planning model, (4) expand the social dimension of conservation assessments, (5) support conservation plans with transdisciplinary social learning institutions, (6) reward academics for societal engagement and implementation, and (7) train students in skills for “doing” conservation.  相似文献   

11.
Abstract: Conservation scientists are concerned about the apparent lack of impact their research is having on policy. By better aligning research with policy needs, conservation science might become more relevant to policy and increase its real‐world salience in the conservation of biological diversity. Consequently, some conservation scientists have embarked on a variety of exercises to identify research questions that, if answered, would provide the evidence base with which to develop and implement effective conservation policies. I synthesized two existing approaches to conceptualizing research impacts. One widely used approach classifies the impacts of research as conceptual, instrumental, and symbolic. Conceptual impacts occur when policy makers are sensitized to new issues and change their beliefs or thinking. Instrumental impacts arise when scientific research has a direct effect on policy decisions. The use of scientific research results to support established policy positions are symbolic impacts. The second approach classifies research issues according to whether scientific knowledge is developed fully and whether the policy issue has been articulated clearly. I believe exercises to identify important research questions have objectives of increasing the clarity of policy issues while strengthening science–policy interactions. This may facilitate the transmission of scientific knowledge to policy makers and, potentially, accelerate the development and implementation of effective conservation policy. Other, similar types of exercises might also be useful. For example, identification of visionary science questions independent of current policy needs, prioritization of best practices for transferring scientific knowledge to policy makers, and identification of questions about human values and their role in political processes could all help advance real‐world conservation science. It is crucial for conservation scientists to understand the wide variety of ways in which their research can affect policy and be improved systematically.  相似文献   

12.
Environmental education strategies have customarily placed substantial focus on enhancing ecological knowledge and literacy with the hope that, upon discovering relevant facts and concepts, participants will be better equipped to process and dissect environmental issues and, therefore, make more informed decisions. The assumption is that informed citizens will become active citizens––enthusiastically lobbying for, and participating in, conservation‐oriented action. We surveyed and interviewed and used performance data from 432 participants in the Coastal Observation and Seabird Survey Team (COASST), a scientifically rigorous citizen science program, to explore measurable change in and links between understanding and action. We found that participation in rigorous citizen science was associated with significant increases in participant knowledge and skills; a greater connection to place and, secondarily, to community; and an increasing awareness of the relative impact of anthropogenic activities on local ecosystems specifically through increasing scientific understanding of the ecosystem and factors affecting it. Our results suggest that a place‐based, data‐rich experience linked explicitly to local, regional, and global issues can lead to measurable change in individual and collective action, expressed in our case study principally through participation in citizen science and community action and communication of program results to personal acquaintances and elected officials. We propose the following tenets of conservation literacy based on emergent themes and the connections between them explicit in our data: place‐based learning creates personal meaning making; individual experience nested within collective (i.e., program‐wide) experience facilitates an understanding of the ecosystem process and function at local and regional scales; and science‐based meaning making creates informed concern (i.e., the ability to discern both natural and anthropogenic forcing), which allows individuals to develop a personalized prioritization schema and engage in conservation action.  相似文献   

13.
The need for robust evidence to support conservation actions has driven the adoption of systematic approaches to research synthesis in ecology. However, applying systematic review to complex or open questions remains challenging, and this task is becoming more difficult as the quantity of scientific literature increases. We drew on the science of linguistics for guidance as to why the process of identifying and sorting information during systematic review remains so labor intensive, and to provide potential solutions. Several linguistic properties of peer‐reviewed corpora—including nonrandom selection of review topics, small‐world properties of semantic networks, and spatiotemporal variation in word meaning—greatly increase the effort needed to complete the systematic review process. Conversely, the resolution of these semantic complexities is a common motivation for narrative reviews, but this process is rarely enacted with the rigor applied during linguistic analysis. Therefore, linguistics provides a unifying framework for understanding some key challenges of systematic review and highlights 2 useful directions for future research. First, in cases where semantic complexity generates barriers to synthesis, ecologists should consider drawing on existing methods—such as natural language processing or the construction of research thesauri and ontologies—that provide tools for mapping and resolving that complexity. These tools could help individual researchers classify research material in a more robust manner and provide valuable guidance for future researchers on that topic. Second, a linguistic perspective highlights that scientific writing is a rich resource worthy of detailed study, an observation that can sometimes be lost during the search for data during systematic review or meta‐analysis. For example, mapping semantic networks can reveal redundancy and complementarity among scientific concepts, leading to new insights and research questions. Consequently, wider adoption of linguistic approaches may facilitate improved rigor and richness in research synthesis.  相似文献   

14.
Training Conservation Biologists in Human Interaction Skills   总被引:2,自引:0,他引:2  
Questionnaires were sent to 298 graduate programs in conservation biology and other areas of the biological and agricultural sciences and to 702 public and private organizations that employ, or might employ, conservation biologists. The focus of the questionnaires was on the need for training conservation biologists in human interaction skills (e.g., interpersonal communication, leadership, group decision making). Respondents were asked to indicate the current availability of such training at their institutions or organizations. Questionnaires were returned by 28.5% of the graduate programs and 21.1% of the conservation organizations. A majority of both groups of respondents indicated a high need for training in the following seven areas: written and oral communication; explaining science and values of biodiversity to the lay public; group decision making; interpersonal skills; group planning; leadership; and advocacy. Despite the high level of perceived training need, relatively few academic institutions and even fewer conservation organizations offer or require courses in human interaction skills (with the exceptions of written and oral communication and foreign languages). Sixty-four percent of the graduate faculty respondents and 78% of the employer organization respondents indicated that human interaction skills are equally important or more important to the work of conservation biologists than science knowledge and skill. We suggest that follow-up research should be conducted to delineate further the need for human interaction skills training and to assess the relationship between specific human interactions skills and conservation outcomes. We also recommend that a curriculum on human interaction should be designed and developed for conservation biologists, perhaps through a cooperative effort of interested faculty and employers facilitated by the Society for Conservation Biology and conservation organizations.  相似文献   

15.
Ecology, although by definition a science of relationships, evolved from an intuitive rather than a statistical foundation. Some basic ecological concepts have not been examined statistically, so many ecological models contain ambiguities as a result of imprecise interpretation of the data. Spurious correlation is one example. Spurious correlation can obscure genuine interactions between two populations, and suggest erroneous causal relationships. Statistical devices, such as partial correlations, can be used in both simple models and time series analyses to filter spurious distortions from the data. Ecologists can apply these statistical tools to help interpret associations between interacting populations.  相似文献   

16.
The knowledge-action gap in conservation science and practice occurs when research outputs do not result in actions to protect or restore biodiversity. Among the diverse and complex reasons for this gap, three barriers are fundamental: knowledge is often unavailable to practitioners and challenging to interpret or difficult to use or both. Problems of availability, interpretability, and useability are solvable with open science practices. We considered the benefits and challenges of three open science practices for use by conservation scientists and practitioners. First, open access publishing makes the scientific literature available to all. Second, open materials (detailed methods, data, code, and software) increase the transparency and use of research findings. Third, open education resources allow conservation scientists and practitioners to acquire the skills needed to use research outputs. The long-term adoption of open science practices would help researchers and practitioners achieve conservation goals more quickly and efficiently and reduce inequities in information sharing. However, short-term costs for individual researchers (insufficient institutional incentives to engage in open science and knowledge mobilization) remain a challenge. We caution against a passive approach to sharing that simply involves making information available. We advocate a proactive stance toward transparency, communication, collaboration, and capacity building that involves seeking out and engaging with potential users to maximize the environmental and societal impact of conservation science.  相似文献   

17.
Abstract: Graduate education in conservation biology has been assailed as ineffective and inadequate to train the professionals needed to solve conservation problems. To identify how graduate education might better fit the needs of the conservation workplace, we surveyed practitioners and academics about the importance of particular skills on the job and the perceived importance of teaching those same skills in graduate school. All survey participants (n = 189) were alumni from the University of California Davis Graduate Group in Ecology and received thesis‐based degrees from 1973 to 2008. Academic and practitioner respondents clearly differed in workplace skills, although there was considerably more agreement in training recommendations. On the basis of participant responses, skill sets particularly at risk of underemphasis in graduate programs are decision making and implementation of policy, whereas research skills may be overemphasized. Practitioners in different job positions, however, require a variety of skill sets, and we suggest that ever‐increasing calls to broaden training to fit this multitude of jobs will lead to a trade‐off in the teaching of other skills. Some skills, such as program management, may be best developed in on‐the‐job training or collaborative projects. We argue that the problem of graduate education in conservation will not be solved by restructuring academia alone. Conservation employers need to communicate their specific needs to educators, universities need to be more flexible with their opportunities, and students need to be better consumers of the skills offered by universities and other institutions.  相似文献   

18.
Like many federal statutes, the U.S. Endangered Species Act (ESA) contains vague or ambiguous language. The meaning imparted to the ESA's unclear language can profoundly impact the fates of endangered and threatened species. Hence, conservation scientists should contribute to the interpretation of the ESA when vague or ambiguous language contains scientific words or refers to scientific concepts. Scientists need to know at least these 2 facts about statutory interpretation: statutory interpretation is subjective and the potential influence of normative values results in different expectations for the parties involved. With the possible exception of judges, all conventional participants in statutory interpretation are serving their own interests, advocating for their preferred policies, or biased. Hence, scientists can play a unique role by informing the interpretative process with objective, policy‐neutral information. Conversely, scientists may act as advocates for their preferred interpretation of unclear statutory language. The different roles scientists might play in statutory interpretation raise the issues of advocacy and competency. Advocating for a preferred statutory interpretation is legitimate political behavior by scientists, but statutory interpretation can be strongly influenced by normative values. Therefore, scientists must be careful not to commit stealth policy advocacy. Most conservation scientists lack demonstrable competence in statutory interpretation and therefore should consult or collaborate with lawyers when interpreting statutes. Professional scientific societies are widely perceived by the public as unbiased sources of objective information. Therefore, professional scientific societies should remain policy neutral and present all interpretations of unclear statutory language; explain the semantics and science both supporting and contradicting each interpretation; and describe the potential consequences of implementing each interpretation. A review of scientists’ interpretations of the phrase “significant portion of its range” in the ESA is used to critique the role of scientists and professional societies in statutory interpretation.  相似文献   

19.
Science denialism retards evidenced-based policy and practice and should be challenged. It has been a particular concern for mitigating global environmental issues, such as anthropogenic climate change. But allegations of science denialism must also be well founded and evidential or they risk eroding public trust in science and scientists. Recently, 77 published works by scholars, scientists, and science writers were identified as containing invasive species denialism (ISD; i.e., rejection of well-supported facts about invasive species, particularly the global scientific consensus about their negative impacts). We reevaluated 75 of these works but could find no examples of refutation of scientific facts and only 5 articles with text perhaps consistent with one of the 5 characteristics of science denialism. We found, therefore, that allegations of ISD were misplaced. These accusations of science denialism may have arisen because invasion biology defines its subjects—invasive species—based on multiple subjective and normative judgments. Thus, more than other applied sciences its consensus is one of shared values as much as agreed knowledge. Criticisms of invasion biology have largely targeted those subjective and normative judgments and their global imposition, not the knowledge on which the discipline is based. Regrettably, a few invasion biologists have misinterpreted the critique of their values-based consensus as a denial of their science when it is not. To make invasion biology a more robust and widely accepted science and to avoid unnecessary misunderstandings and conflicts, invasion biologists could be more accepting of perspectives originating from other disciplines and more open to values-based critique from scholars and scientists outside their field. This recommendation applies to all conservation sciences, especially those addressing global challenges, because these sciences must serve and be relevant to communities with an extraordinary diversity of cultures and values.  相似文献   

20.
Scientists have traditionally collected data on whether a population is increasing, decreasing, or staying the same, but such studies are often limited by geographic scale and time frame. This means that for many species, understanding of trends comes from only part of their ranges at particular periods. Working with citizen scientists has the potential to overcome these limits. Citizen science has the added benefit of exposing citizens to the scientific process and engaging them in management outcomes. We examined a different way of using citizen scientists (instead of data collection). We asked community members to answer a question directly and thus examined whether community wisdom can inform conservation. We reviewed the results of 3 mail‐in surveys that asked community members to say whether they thought koala populations were increasing, decreasing, or staying the same. We then compared the survey results with population trends derived from more traditional research. Population trends identified through community wisdom were similar to the trends identified by traditional research. The community wisdom surveys, however, allowed the question to be addressed at much broader geographical scales and time frames. Studies that apply community wisdom have the benefit of engaging a broad section of the community in conservation research and education and therefore in the political process of conserving species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号