共查询到20条相似文献,搜索用时 0 毫秒
1.
A potential solution to reduce global warming is to store greenhouse gases. Greenhouse gas storage has been recently improved using several materials and techniques. However, the actual storage capacity is slow, limited, and costly. Here, we tested the use of an accelerating agent, sodium dodecyl sulfate, and coal to produce methane hydrate for methane storage. Experiments of storing methane gas in coal samples have been carried out under high pressures, 4 or 6 MPa, and low temperature of 273.15 K. Results reveal that sodium dodecyl sulfate improved the rate up to 58.26 cm3/min and the capacity up to 179.97 volume at standard temperature and pressure per unit volume of coal. This finding shows that sodium dodecyl sulfate is efficient to accelerate the formation of methane hydrate. We also found that storage capacity increased with pressure. We conclude that our method allows a gas storage capacity higher than any other medium materials reported previously. 相似文献
2.
3.
4.
Ectomycorrhizal fungi (EMF), a phylogenetically and physiologically diverse guild, form symbiotic associations with many trees and greatly enhance their uptake of nutrients and water. Elevated CO2, which increases plant carbon supply and demand for mineral nutrients, may change the composition of the EMF community, possibly altering nutrient uptake and ultimately forest productivity. To assess CO2 effects on EMF communities, we sampled mycorrhizae from the FACTS-I (Forest-Atmosphere Carbon Transfer and Storage) research site in Duke Forest, Orange County, North Carolina, USA, where Pinus taeda forest plots are maintained at either ambient or elevated CO2 (200 ppm above ambient) concentrations. Mycorrhizae were identified by DNA sequence similarity of the internal transcribed spacer ribosomal RNA gene region. EMF richness was very high; 72 distinct phylotypes were detected from 411 mycorrhizal samples. Overall EMF richness and diversity were not affected by elevated CO2, but increased CO2 concentrations altered the relative abundances of particular EMF taxa colonizing fine roots, increased prevalence of unique EMF species, and led to greater EMF community dissimilarity among individual study plots. Natural variation among plots in mean potential net nitrogen (N) mineralization rates was a key determinant of EMF community structure; increasing net N mineralization rate was negatively correlated with EMF richness and had differential effects on the abundance of particular EMF taxa. Our results predict that, at CO2 concentrations comparable to that predicted for the year 2050, EMF community composition and structure will change, but diversity will be maintained. In contrast, high soil N concentrations can negatively affect EMF diversity; this underscores the importance of considering CO2 effects on forest ecosystems in the context of background soil chemical parameters and other environmental perturbations such as acid deposition or fertilizer runoff. 相似文献
5.
大气CO2与植物氮素营养的关系 总被引:6,自引:0,他引:6
大气CO2浓度升高对植物吸收氮素,以及对植物和土壤中的氮浓度、C/N比和氮循环都存在着影响。大气CO2浓度与植物氮素营养之间存在着交互作用。大气CO2浓度升高对植物氮素营养影响的结果与氮浓度、氮形态等因素有关。 相似文献
6.
油菜地CO2、N2O排放及其影响因素 总被引:2,自引:0,他引:2
2005年11月至2006年5月采用静态箱法对成都平原典型水稻 - 油菜轮作区油菜地CO2、N2O排放通量进行原位测定.结果表明,CO2排放通量为121.4~1 585.8 mg·m-2·h-1,平均656.8 mg·m-2·h-1;N2O排放通量为18.0~521.0 μg·m-2·h-1,平均168.0 μg·m-2·h-1.在整个油菜生长期内,地下5 cm土壤温度与CO2、N2O排放通量之间呈指数函数关系.3种不同处理油菜地CO2、N2O排放通量均为常规处理>无氮处理>裸地处理.土壤温度、施氮和植物生长是影响油菜地CO2、N2O排放的主要因素. 相似文献
8.
We present an overview of possible biotechnological applications for using carbon dioxide for the synthesis of chemicals.
These approaches are very appealing as they contribute to the implementation of new synthetic methodologies that reduce waste
and make a better use of carbon and energy. Several synthetic approaches will be considered including both the incorporation
of the whole COO moiety or its reduction to other C1 molecules. Each option will be discussed making a comparison between the natural and artificial process in order to highlight
the possibility to learn from Nature and develop useful mimetic or enzymatic systems. 相似文献
9.
Complete oxidation of methane on Co3O4-SnO2 catalysts 总被引:1,自引:0,他引:1
Xingfu Tang Jiming Hao Junhua Li 《Frontiers of Environmental Science & Engineering》2009,3(3):265-270
Co3O4-SnO2 hybrid oxides were prepared by the coprecipitation method and were used to oxidate methane (CH4) in presence of oxygen. The Co3O4-SnO2 with a molar ratio of Co/(Co + Sn) at 0.75 exhibited the highest catalytic activity among all the Co3O4-SnO2 hybrid oxides. Experimental results showed that the catalysts were considerably stable in the CH4 combustion reaction, and were verified by X-ray photoelectron spectra (XPS). It was found that Co3O4 was the active species, and SnO2 acted as a support or a promoting component in the Co3O4-SnO2 hybrid oxides. The surface area was not a major factor that affected catalytic activity. The hydrogen temperatureprogrammed reduction (H2-TPR) results demonstrated that the interaction between cobalt and tin oxides accelerated the mobility of oxygen species of Co3O4-SnO2, leading to higher catalytic activity. 相似文献
10.
Methane mussels (Bathymodiolus sp., undescribed; personal communication by R. Turner to CRF) were collected in September 1989 and April 1990 from offshore Louisiana in the Gulf of Mexico. These mussels contain endosymbiotic methane-oxidizing bacteria and are capable of utilizing environmental methane as a source of energy and carbon. Oxygen consumption, methane consumption, and carbon dioxide production were measured in mussels with intact symbionts, functionally aposymbiotic mussels, and separated symbiont preparations under controlled oxygen and methane conditions, in order to study the roles of the symbionts and the hosts in methane utilization. The association was found to be very efficient in fixing methane carbon (only 30% of CH4 consumed is released as CO2), and to be capable of maximal rates of net carbon uptake of nearly 5 mol g-1 h-1. Rates of oxygen and methane consumption were dependent upon oxygen and methane concentrations. Maximal consumption rates were measured at 250 to 300 M O2 and 200 to 300 M CH4, under which conditions, oxygen consumption by the gill tissues (containing symbionts) had increased more than 50-fold over rates measured in the absence of methane. A model is proposed for the functioning of the intact association in situ, which shows the symbiosis to be capable of achieving growth rates (net carbon assimilation) in the range of 0.003 to 0.50% per day depending upon oxygen and methane concentrations. Under the conditions measured in the seep environment (200 M O2, 60 M CH4), a mussel consuming methane at rates found to be typical (4 to 5 mol g-1 h-1) should have a net carbon assimilation rate of about 0.1% per day. We suggest that the effectiveness of this symbiosis arises through integration of the morphological and physiological characteristics inherent to each of the symbiotic partners, rather than from extensive specialization exhibited by other deep-sea chemotrophic associations. 相似文献
11.
Studies on 14CO2-assimilation in marine rhodophyceae 总被引:2,自引:0,他引:2
B. P. Kremer 《Marine Biology》1978,48(1):47-54
Experiments on enzymatic (in vitro) and in vivo CO2-fixation using a variety of marine Rhodophyceae such as Porphyra umbilicalis (L.) J.Ag., Rhodomela confervoides (Huds.) Silva, Corallina officinalis L. and Chondrus crispus Stackh. revealed that carbon assimilation in the Rhodophyceae is almost exclusively performed by photosynthesis via ribulose-1, 5-di-phosphate carboxylase, whereas light-independent CO2-fixation via -carboxylation by phosphoenolpyruvate carboxykinase scarcely exceeds 1% of the total carbon fixation potential of the plants. Activity of phosphoenolpyruvate carboxylase could not be detected. With respect to the main accumulation products of photosynthetic CO2-fixation, the Rhodophyceae investigated are not uniform: Corallina officinalis L., Rhodymenia palmata (L.) Grev., and Gigartina stellata (Stackh.) Batt. have been found to accumulate 14C in the neutral compound floridoside (=2-O-glycerol--D-galactopyranose), whereas Delesseria sanguinea (Huds.) Lamour., Ceramium cubrum (Huds,) C.Ag., and Rhodomela confervoides (Huds.) Silva, representing members of the Delesseriaceae, Ceramiaceae and Rhodomelaceae, respectively, do not photosynthesize floridoside, but show intense 14C-labelling in an acidic constituent, mannosidoglycerate (= digeneaside). This compound is reported for the first time as a rapidly 14C-labelled and accumulated photosynthate in a variety of red algal species exclusively belonging to the Ceramiales. 相似文献
12.
固定CO2基因工程菌的构建 总被引:4,自引:0,他引:4
构建了含有RubisCOForm II基因的可转化大肠杆菌紫色非硫杆菌穿梭质粒(PMPB2),将其转化紫色非硫杆菌野生型Rhodopseudomonaspalustris No.7 和紫色非硫杆菌RubisCOForm I缺陷型RhodopseudomonaspalustrisNo.7DFI,获得2 株RubisCO基因工程菌MG11 和MG14,二者的RubisCO 酶活性比对照菌分别提高76 .7% 和83.3% .连续传40 代表明,重组质粒在受体菌中是较稳定的 相似文献
13.
菌根真菌对大气CO2浓度升高的响应研究进展 总被引:2,自引:0,他引:2
大气CO2浓度升高对植物的光合作用、呼吸作用等产生直接影响,进而影响到运送到根系中碳的量,菌根真菌也随之受到影响.本文对全球CO2浓度升高对菌根真菌的影响、菌根真菌在植物对大气CO2增加响应中的作用、菌根真菌在大气CO2浓度增加条件下对整个生态系统的作用等进行了综述,同时对当前存在的问题和未来的发展做了探讨.图1参37 相似文献
14.
15.
V. R. Johnson C. Brownlee R. E. M. Rickaby M. Graziano M. Milazzo J. M. Hall-Spencer 《Marine Biology》2013,160(8):1813-1824
Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant increases in chlorophyll a concentrations and in diatom abundance although we did not detect any changes in cyanobacteria. SEM analysis revealed major shifts in diatom assemblage composition as CO2 levels increased. The responses of benthic microalgae to rising anthropogenic CO2 emissions are likely to have significant ecological ramifications for coastal systems. 相似文献
16.
通勤行为作为城市居民交通出行的主要组成部分,通勤碳排放的有效控制成为低碳交通发展的重点。以广州4个典型社区为例,构建结构方程模型,基于居民日常通勤行为的微观角度测算社区居民通勤碳排放,深入分析社区居民通勤碳排放的影响机理。结果表明:小汽车通勤成为居民高碳通勤的最主要因素;通勤距离和方式是决定社区居民通勤碳排放的两个直接影响因素;相对于个体社会经济属性和居民态度偏好来说,居住空间环境变量对于居民通勤碳排放的影响更为显著;居民态度偏好对于居民未来的通勤方式将起一定的作用,在公共交通通勤群体对小汽车通勤的强烈欲望以及小汽车通勤群体对小汽车通勤的行为依赖双重因素的推动下,若技术、政策和空间环境保持不变,随着经济社会的发展,未来通勤高碳化趋势明显。 相似文献
17.
Helen S. Findlay Michael A. Kendall John I. Spicer Stephen Widdicombe 《Marine Biology》2010,157(4):725-735
Ocean acidification and global warming are occurring concomitantly, yet few studies have investigated how organisms will respond
to increases in both temperature and CO2. Intertidal microcosms were used to examine growth, shell mineralogy and survival of two intertidal barnacle post-larvae,
Semibalanus balanoides and Elminius modestus, at two temperatures (14 and 19°C) and two CO2 concentrations (380 and 1,000 ppm), fed with a mixed diatom-flagellate diet at 15,000 cells ml−1 with flow rate of 10 ml−1 min−1. Control growth rates, using operculum diameter, were 14 ± 8 μm day−1 and 6 ± 2 μm day−1 for S. balanoides and E. modestus, respectively. Subtle, but significant decreases in E. modestus growth rate were observed in high CO2 but there were no impacts on shell calcium content and survival by either elevated temperature or CO2. S. balanoides exhibited no clear alterations in growth rate but did show a large reduction in shell calcium content and survival under
elevated temperature and CO2. These results suggest that a decrease by 0.4 pH(NBS) units alone would not be sufficient to directly impact the survival of barnacles during the first month post-settlement.
However, in conjunction with a 4–5°C increase in temperature, it appears that significant changes to the biology of these
organisms will ensue. 相似文献
18.
三江源区植被固定CO2释放O2功能评价 总被引:10,自引:1,他引:10
植被在固定CO2释放O2和大气与陆地生态系统碳循环中起着十分重要的作用,是区域和全球环境变化的主要反馈和调节系统,具有重要的生态功能,体现出生态服务价值。根据三江源区多次科考调查及相关资料,计算各种植被类型的净初级生长量,进而根据光合作用方程式、造林成本法、碳税法和工业制氧法估算其固定CO2和释放O2的物质量及其价值量。结果表明:三江源区植被年净初级生长量为8.67×107t·a-1,固定CO21.41×108t·a-1,释放O21.04×108t·a-1。根据造林成本法和碳税法估算出三江源区植被固定CO2的价值为2.8926×1010元·a-1。利用造林成本法和工业制氧法估算出释放O2的价值为3.9157×1010元·a-1。三江源区植被固定CO2释放O2物质量和价值量中,草甸贡献率最高,其次是落叶灌丛、沼泽和草原。本研究对地处青藏高原腹地、生态系统脆弱且空气稀薄的江河源区的生态系统结构和功能的研究具有重要意义。 相似文献
19.
利用FACE(free-air carbon dioxide enrichment,开放式空气CO2浓度增高)试验平台,研究大气CO2浓度增高对土壤氨氧化细菌的数量、优势菌群及其硝化活性的影响.结果表明,大气CO2浓度增高时,土壤氨氧化细菌的数量在常氮水平上趋于减少,而在高氮水平上与对照没有差异.大气CO2浓度增高对土壤氨氧化细菌的优势菌群也产生明显影响.CO2浓度增高条件下,亚硝化球菌(Nitrosococcus sp.)和亚硝化弧菌(Nitrosovibrio sp.)是优势菌属;而在对照条件下,亚硝化单胞菌(Nitrosomonas sp.)和亚硝化球菌(Nitrosococcus sp.)是优势菌属.另外,CO2浓度增高条件下优势菌株的硝化活性也有不同程度的减弱. 相似文献
20.
日本是关注全球气候变化并作出行动最早的国家之一,根据其法律大中城市以上的行政区必须编制温室气体减排规划,包括排放清单、趋势预测、减排目标、措施及效果分析、方案实施与监督等。日本环境省为了帮助地方政府编制该规划,提供了城市层面的温室气体排放清单的编制方法指导。本文以横滨市为例,比较完整地介绍日本城市CO2排放清单编制基本方法,为我国城市碳排放清单编制提供参考。 相似文献