首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
采用滇池不同湖区的湖水进行藻类生长潜力试验(AGP试验),研究了稳定环境下,氮、磷两种可控的水华诱导因素对滇池铜绿微囊藻生长潜力的影响.结果表明,滇池各个湖区藻类生长的主要控制因子并不一致,北部与西部湖区,磷是两湖区藻类生长的主要限制性营养物质;湖心与南部湖区,磷和氮都是蓝藻生长的主要控制因子,但它们单独作用都不能有效促进铜绿微囊藻的生长.实验N/P(质量比)在4~20之间,这一范围内N/P对滇池铜绿微囊藻生长没有显著影响.  相似文献   

2.
污水氮,磷的去除技术   总被引:3,自引:0,他引:3  
富营养化,是指由于人类的活动,使水中的营养盐类(氮及磷等)浓度增加,通过光合成后,藻类与水生植物(一次生产者)异常繁殖的现象。欲控制富营养化,必须限制氮、磷的排放,以限制一次生产者的繁殖。国外污水处理厂氮、磷的排放标准分别为15mg/l和0.5mg/l。现行的二级处理,排放水氮、磷大多是超标的。因此,研究氮、磷的去除技术,十分必要。处理后污水所具有的繁殖藻类的能力,可用藻类繁殖潜在能力AGP(Algal Growth Potential)来评价。AGP的测定方法为,在供试水样中接种特定的藻类,在一定的照度、温度下,培养藻类至繁殖恒定期。然后将适量试样用1.2μm的膜过滤,测定藻体量,或用粒子汁数器求出藻体干燥重量。其数值表示培养期间繁殖的藻类。用此方法,测得二级处理水的  相似文献   

3.
Zn~(2+)对滇池藻类生长的影响   总被引:4,自引:1,他引:4  
有关氮、磷对滇池藻类生长的影响研究,已有大量的报道,有关其它元素对滇池藻类影响的研究报道较少。本研究以滇池藻样为实验对象,实验不同Zn2+浓度对滇池藻类的影响情况,结果表明,高Zn2+浓度以抑制滇池藻类生长为主,低Zn2+浓度以促进滇池藻类生长为主。实验结果表明,在控制滇池湖藻类生长时,除了要注意控制N,P之外,还应考虑Zn2+对藻类生长的影响。  相似文献   

4.
利用在系统实验基础上建立的生态学模型对生物稳定塘的常规运行状态进行了模拟和计算,得到以下主要结论:多级塘各塘中的有机碳、无机氮及溶解性总磷浓度均随进水浓度的升高而增大,因而使用多级塘仍须严格控制进水水质;生物稳定塘系统有较高的去除有机氮的能力,但去除总氮的能力有限,出水中无机氮浓度仍较高;藻类含碳、氮、磷对进水浓度变化的响应规律一致,存在一个使藻类生长最佳的营养物浓度,本模拟中该浓度为进水C_(oi)=72.00mg/L,TN_i=23.80mg/L,TP_i=2.46mg/L,藻类浓度的提高有利于溶解性营养物质的去除;菌含碳、氮、磷对进水浓度变化的响应规律服从Monod方程。  相似文献   

5.
研究了高效藻类塘系统处理太湖地区农村污水脱氮除磷效果及其强化措施。高效藻类塘和水生生物塘HRT分别为8d和4d,出水溶解CODCr的浓度低于100mg/L。高效藻类塘系统的总氮和氨氮的全年平均去除率分别为46.6%和90.4%。两级高效藻类塘内氨氮的去除途径主要包括生物同化、氨氮的挥发和硝化作用等,其中硝化作用为主导作用;水生生物塘去除总氮的主要途径为颗粒有机氮的沉淀去除和硝态氮的反硝化。出水总磷浓度全年平均值为3.33mg/L,高效藻类塘系统的脱氮除磷能力欠佳。通过降低水生生物塘内水深、采用废弃石膏作为填料构建了新型复合水生生物塘,HRT=1.6d条件下,复合水生生物塘出水总氮和总磷可分别保持在5mg/L左右和<1mg/L,可达到GB18918-2002一级B排放标准。  相似文献   

6.
高效藻类塘系统处理农村污水脱氮除磷及其强化研究   总被引:3,自引:1,他引:2  
研究了高效藻类塘系统处理太湖地区农村污水脱氮除磷效果及其强化措施。高效藻类塘和水生生物塘HRT分别为8d和4d,出水溶解CODCr的浓度低于100mg/L。高效藻类塘系统的总氮和氨氮的全年平均去除率分别为46.6%和90.4%。两级高效藻类塘内氨氮的去除途径主要包括生物同化、氨氮的挥发和硝化作用等,其中硝化作用为主导作用;水生生物塘去除总氮的主要途径为颗粒有机氮的沉淀去除和硝态氮的反硝化。出水总磷浓度全年平均值为3.33mg/L,高效藻类塘系统的脱氮除磷能力欠佳。通过降低水生生物塘内水深、采用废弃石膏作为填料构建了新型复合水生生物塘,HRT=1.6d条件下,复合水生生物塘出水总氮和总磷可分别保持在5mg/L左右和<1mg/L,可达到GB18918-2002一级B排放标准。  相似文献   

7.
用水库、人工湖泊作饮用水源会遇到不少环境污染问题,使水质受到威胁,水处理变得困难。其中最麻烦的是水体中的营养物质,如氮、磷过多而造成的富营养化。在大多数湖泊中藻类的生长,也即富营养化的程度取决于进入水体中磷的量。根据OECD(经济合作与开发组织)的研究,湖水中的总磷浓度与透光层的叶绿素a浓度有显著的相关统计关系,因此必须控制磷进入水体。湖泊、水库底部的底泥也是重要的营养物来源,它可以连续向水中释放营养物使藻类大量繁殖。富营养化在浅水湖泊尤为严重,水库、人工湖泊一般来说不会太深(<20米),所以更值得注意。  相似文献   

8.
湖泊沉积物既是氮磷等营养物质的储存库,也是水体营养盐的二次污染源,可以缓冲水体氮磷浓度变化,进而影响水体营养盐的生物可利用性和藻类生长.本文以太湖梅梁湾为研究对象,通过模拟实验研究沉积物参与下外源氮磷脉冲式输入对水体营养盐浓度和藻类生长的影响,并阐明氮磷在沉积物、水和藻类间的迁移转化及再分配过程.结果表明,当以0.30 mg·(L·d)-1的速率脉冲式输入氮时,实验组(有沉积物)水体氮浓度远低于相应的对照组(无沉积物),沉积物参与下水体氮约以0.144~0.156 mg·(L·d)-1的速率脱除,根据单位面积估算水体脱氮速率约为40.793~44.193 mg·(m2·d)-1,脱氮量约占外源氮的48%~52%;而相应对照组水体约以0.021~0.039 mg·(L·d)-1的速率脱氮,脱氮量仅占外源氮的7%~13%,可见沉积物-水界面作为浅水湖泊反硝化等脱氮过程的主要场所,对减轻湖泊氮负荷具有重要贡献.当以0.015 mg·(L·d)-1的速率脉冲式输入...  相似文献   

9.
选取2种常用水生漂浮植物凤眼莲与大薸作为研究对象,以某大型再生水厂再生水作为培养介质,研究对再生水中氮、磷的深度净化能力。实验结果表明:实验期间,凤眼莲相较于大薸,单株生物量更大,且增殖更迅速。在相同种植密度(24株/m~2)下,凤眼莲和大薸生长率分别为165,56. 8 g/(m~2·d),对TN去除率分别为96. 3%和73. 7%,去除负荷为374,286 mg/(m~2·d),大薸组对磷的去除效果优于凤眼莲组,去除率分别达到100%和94%,对磷的去除负荷分别为39,42 mg/(m~2·d);但是,实验进行10 d后,大薸出现叶片发黄、根部腐败状况,导致水体中氮、磷含量升高,而凤眼莲长势良好,去除效果能够保持。因此,对比2种植物的生长特点及对氮、磷的去除能力,优先选用凤眼莲作为再生水净化植物,如选用大薸,则应在腐败前进行打捞处理,避免腐败后氮、磷重新进入水体形成污染。  相似文献   

10.
氮磷胁迫下藻-菌群落的变化研究   总被引:2,自引:0,他引:2  
近年来,由于水体富营养化而导致的蓝藻水华在我国太湖与滇池等淡水湖泊频繁爆发,已成为严重的环境问题,而氮、磷则是引起水体富营养化的重要营养因子。文章通过藻细胞计数、细菌群落的DGGE监测,以及典型对应CCA分析,系统研究了不同的氮磷浓度、N/P比对藻-菌群落结构的影响及其相互关系。结果表明,氮磷浓度和N/P比均会影响藻类生长,其中,氮磷浓度较N/P比对藻类生物量的影响更大;N/P=12为藻类生长的最适条件,氮限制(N/P=3)和磷限制(N/P=48)均会抑制藻类生长;添加外源氮磷可促进细菌的生长,提高其多样性,但随着N/P比的提高,其种群多样性呈逐渐下降趋势;细菌群落主要由β-proteobacteria类细菌组成,其次是α-proteobacteria,然后是Bacteroidetes和γ-proteobacteria。与氮、磷营养盐相比,藻类群落对细菌群落的影响更大。  相似文献   

11.
采集滇池白山湾、滇池草海、太湖(武进段水域)以及江苏省农科院2号塘生长的凤眼莲,进行了批式厌氧发酵对比试验研究.结果发现,凤眼莲的产气潜力和水体氮磷水平有关系.水体氮磷浓度最高的滇池草海凤眼莲产气量最高,为390mL/gTS(498mL/gVS);水质最好的滇池白山湾的凤眼莲产气量最低,为289mL/gTS(334mL/gVS).白山湾凤眼莲的纤维素、半纤维素和粗蛋白等组分的降解率均最低.4个水体凤眼莲产生的有机酸均以乙酸和丙酸为主,草海凤眼莲发酵产生的有机酸浓度最高,可达2466mg/L,白山湾凤眼莲最低,仅为915mg/L.研究发现水体氮、磷浓度影响凤眼莲化学组分含量的差异及结构组成(根冠比),可能是影响凤眼莲厌氧生物降解性能及产气量差异的主要因素.  相似文献   

12.
望雪  程豹  杨正健  刘德富  徐雅倩 《环境科学》2018,39(5):2126-2134
为分析澜沧江梯级水库建设对澜沧江流域沉积物-水界面交换过程的影响,于2016年2~3月对澜沧江云南段间隙水-上覆水氮、磷营养盐进行了调查与分析.结果表明,澜沧江自然河道沉积物间隙水总氮(TN)均值为15.254 mg·L~(-1),显著高于水库均值6.577 mg·L~(-1);但其总磷(TP)均值为0.654 mg·L~(-1),低于水库区域的1.432 mg·L~(-1).澜沧江流域沉积物间隙水氮、磷浓度均高于上覆水浓度,上覆水-间隙水垂向TN浓度在表层沉积物处达到最大值,且自然河道总溶解氮(DTN)扩散通量均值为2.117 mg·(m~2·d)~(-1),高于水库的均值0.785 mg·(m~2·d)~(-1);但其总溶解磷(DTP)扩散通量为0.044 mg·(m~2·d)~(-1),低于水库的均值0.053 mg·(m~2·d)~(-1),上覆水氮盐主要来源于沉积物间隙水.澜沧江梯级水库建设导致的沉积物组成差异与水体扰动差异是间隙水-上覆水界面交换差异的主要原因.  相似文献   

13.
调水型水库藻类对调水氮、磷浓度与水量的响应   总被引:1,自引:1,他引:0  
万由鹏  尹魁浩  彭盛华 《环境科学》2015,36(6):2054-2060
以南方某典型的调水型水库为研究对象,采用EFDC模型建立了水库的三维水动力和富营养化模型,并根据长历时的水文和水质数据对模型进行了率定和验证.基于模型计算结果,分析了水库氮、磷浓度对藻类生长的影响,计算了藻类对调水氮、磷浓度及调水量的响应关系.结果表明,水库氮、磷浓度对藻类生长的限制作用很小.在降幅相同的情况下,降低磷浓度比降低氮浓度的藻类浓度降幅更大,削减60%的氮,叶绿素a无明显下降,削减60%的磷,叶绿素a平均下降12.4%,分别削减90%的氮和磷,叶绿素a分别平均下降17.9%和35.1%.当调水量高于现状的20%,藻类浓度随调水量增大而降低,当调水量低于20%,藻类浓度随调水量增大而升高,调水量比现状增大1倍,叶绿素a平均降低25.7%,调水量降至20%,叶绿素a平均升高38.8%.本研究对于支撑水源地的富营养化控制工作具有重要意义.  相似文献   

14.
马航  朱强  朱亮  李祥  黄勇  魏凡凯  杨朋兵 《环境科学》2016,37(8):3094-3100
为了研究硫自养反硝化处理高含氟光伏废水的可行性,室温(20~25℃)下,采用驯化后的硫自养反硝化生物膜反应器,探究了不同进水F-浓度对硫自养反硝化脱氮效能的影响.结果表明,当进水F-浓度为0~700 mg·L~(-1)时,随着F-浓度的提升,反应器的脱氮效能逐渐提升,且当F-浓度为700 mg·L~(-1)时,可获最大TN去除速率1.0 kg·(m3·d)-1.当进水F-浓度在700~900 mg·L~(-1)时,经短期驯化,TN去除速率可稳定在0.81~0.87 kg·(m~3·d)~(-1).当进水F-浓度提升至900 mg·L~(-1)以上时,反应器的TN去除速率随进水F-浓度的提升而下降,最低至0.4~0.5 kg·(m~3·d)~(-1).以光伏废水为研究对象,在进水F-浓度为800 mg·L~(-1)左右,进水NO_3~--N浓度为390~420 mg·L~(-1),HRT为8.8 h的条件下,经50 d运行后,获得稳定的脱氮效能,TN去除速率为1.1 kg·(m~3·d)~(-1),出水TN为15~25 mg·L~(-1),达到污水接管排放标准.采用传统反硝化工艺和硫自养反硝化工艺脱氮处理光伏废水的成本分别为2.468元·t~(-1)和2.072 8元·t~(-1),硫自养反硝化工艺更节约脱氮处理成本.  相似文献   

15.
从三峡库区次级河流139m回水区采集水样,选用L9(34)正交表进行藻类培养试验,以Chla最大浓度作为指标选择适合藻类生长的适宜条件.结果表明,当控制水样温度为20℃、光照为8000lx、活性磷酸盐和溶解无机氮浓度分别为2.86μmol·L-1、85.71μmol·L-1时藻类生长最好;磷为限制该水域藻类生长的营养元素,藻类生长氮磷元素适宜摩尔比约为30:1.在适宜生长条件下,对数期藻细胞比生长率达到1.03d-1,稳定期Chla最大浓度达到110mg·m-3.  相似文献   

16.
滇池沉积物间隙水中氮、磷形态及相关性的研究   总被引:26,自引:1,他引:26  
胡俊  刘永定  刘剑彤 《环境科学学报》2005,25(10):1391-1396
对滇池40个样点沉积物间隙水中的氮、磷形态与浓度分析研究结果表明,滇池沉积物间隙水中磷的区域分布特征与其在水体中的分布特征相似,滇池南部间隙水中无机磷浓度较高,有机磷的浓度极低,而北部有机磷浓度较高;间隙水中氨氮(NH4^+ -N),浓度高出硝酸盐氮(NO3^- -N)浓度约2个数量级,间隙水中氮向上覆水的扩散主要以氨氮为主.滇池沉积物间隙水中氮、磷浓度远高于水体中氮磷浓度,有较强的释放趋势.进一步研究间隙水中氮、磷的关系则表明,沉积物间隙水中总磷和总氮未见明显相关性,但间隙水中总磷、有机磷均与硝酸盐态氮呈负相关.  相似文献   

17.
水库库尾区的水环境多变,是水库生态系统突变的重要策源地.为探究大型水库水源地水环境演变特征及其突变的促发机制,以新安江水库为例,通过库尾河口断面18个月水质浮标的高频记录及3 d一次的藻类群落结构人工鉴定数据等,分析了气象水文过程影响下的水库库尾区的水温、溶解氧、浊度及营养盐等环境指标及藻类群落结构的高频变化特征,揭示了降雨、入流及季节温度变化等关键气象水文过程对水库水质及藻类群落结构的影响机制.结果表明:①在27 m深的河流入库区的水体温度和溶解氧存在明显的季节分层,相应水体藻类叶绿素a和营养盐等指标也同步发生分层,水温分层从气温达到14℃以上的3月中旬开始,至气温降至24℃后的10月中旬结束,期间较大降雨和入流多次破坏水温分层;②河道入库区水体氮、磷等营养盐变幅大,总磷浓度变幅为0. 011~0. 188 mg·L-1之间,总氮浓度变幅为0. 75~2. 76 mg·L-1之间,总磷和总氮中的溶解态占比分别为56%及88%,降雨入流对水体营养盐浓度影响巨大,3 d的累积降雨与水体氮、磷浓度显著正相关,3~6月(雨季)的营养盐含量明显高于其...  相似文献   

18.
以太湖中沉水植物优势种金鱼藻(Ceratophyllum demersum)、狐尾藻(Myriophyllum spicatum)、苦草(Vallisneria natans)和马来眼子菜(Potamogeton maackianus)为研究对象,研究了不同水体营养水平(低浓度TN 0.47 mg/L,TP 0.021 mg/L;中浓度TN 1.40 mg/L,TP0.072 mg/L;高浓度TN 2.18 mg/L,TP 0.090 mg/L)对其生物量、各器官形态指标及氮磷积累的影响。结果表明:植物生长指标方面,苦草、狐尾藻、金鱼藻在中浓度条件下的生物量增长幅度最大;植物茎叶指标随水体营养的变化与根长变化趋势不一致。植物各器官氮、磷含量均随水体营养变化保持相似的规律,且植物氮含量为叶茎根,植物磷含量为根茎、叶。氮磷积累方面,4种沉水植物的叶片氮元素积累的能力显著高于茎和根;低浓度下狐尾藻的氮积累量最大,苦草磷积累量最大,两者适合低浓度下种植收割去除水体环境中的氮、磷;中、高浓度下金鱼藻的氮磷积累量均为最大(中浓度下N 6 587.37 mg/m~2,P 744.63 mg/m~2;高浓度下N 6 096.63 mg/m~2,P 692.36 mg/m~2),其可作为较高营养浓度下种植、刈割转移水体氮磷的理想物种。  相似文献   

19.
夏季滇池不同来源溶解性有机磷特征及其生物有效性   总被引:3,自引:0,他引:3  
夏季选取了滇池不同来源(滇池湖体、入湖河流和大气降雨)水样,研究了其溶解性有机磷(DOP)含量及分布特征,并利用酶水解技术表征了其DOP生物有效性.结果表明,滇池湖体、入湖河流和大气降雨DOP浓度分别在0.001~0.117,0.002~1.722,0.006~0.112mg/L(平均0.027,0.197,0.037mg/L),分别占溶解性总磷(DTP)的18.3%~92.5%,4.2%~100%,25.4%~100%(平均55.3%,60%,58.9%),不同来源DTP均以DOP为主,入湖河流DOP浓度明显高于滇池湖体和大气降雨.不同来源DOP酶可水解磷(EHP)浓度分别为n.d.~0.058,n.d.~0.673,n.d.~0.031mg/L(平均0.017,0.064,0.010mg/L),分别占DOP的0%~127.5%,0%~105.6%,0%~55.6%(平均77.9%,38.7%,23.2%).不同来源DOP酶水解率(EHP/DOP)较高,滇池湖体DOP酶水解率明显高于入湖河流和大气降雨.不同来源DOP时空分布特征明显,且其生物有效性存在较大差异.其中,滇池湖体EHP以活性单酯磷和类植酸磷为主,入湖河流和大气降雨EHP以活性单酯磷为主,尤其是大气降雨二酯磷和类植酸磷含量较少,滇池湖体、入湖河流和大气降雨DOP生物有效性依次降低.不同来源DOP是与溶解性反应磷(SRP)同等规模的生物可利用磷源,二者共同维持了滇池富营养化.滇池治理要从全流域出发,考虑不同来源各形态磷对水质的影响.  相似文献   

20.
滇池沉积物氮内源负荷特征及影响因素   总被引:3,自引:0,他引:3  
研究了滇池沉积物间隙水氮浓度垂向分布特征,根据Fick扩散定律定量估算了沉积物-水界面氮扩散通量,并探讨了其影响因素.结果表明:滇池沉积物间隙水溶解性总氮(DTN)主要以氨态氮(NH4+-N)形式存在,占其总量的72.30%,其浓度随深度增加而升高;其次为溶解性有机氮(DON),占其总量的24.59%,其浓度随深度的增加先升高后降低,最后趋于稳定;硝态氮(NO3--N)所占比例较低,浓度随深度的增加而降低.滇池沉积物-水界面NH4+-N扩散通量分布范围为12.73~59.74mg/(m2·d)[均值30.18mg/(m2·d)],全湖年均氨氮释放量为3305.04t,其中草海、外海北部、东北部及南部湖区扩散通量较大,达35mg/(m2·d),全湖呈由北向南逐渐降低的空间分布特征;全湖年均DON释放量为1147.55t,其全湖分布特征与氨氮一致;NO3--N扩散通量分布范围为-2.70~0.27mg/(m2·d)[均值-0.50mg/(m2·d)],总体表现为由上覆水向沉积物扩散.与我国其他湖泊相比,滇池具有较大沉积物氮内负荷,其沉积物-水界面NH4+-N扩散通量较高,对湖泊水体氨氮浓度贡献较大,且其与沉积物总氮、有机质、可交换态氮和可交换态氨氮含量呈显著正相关,即滇池沉积物NH4+-N释放主要受其可交换态氮,特别是可交换态中氨氮含量影响;同时,滇池沉积物DON潜在释放风险也较大,且与沉积物C/N有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号