首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以深圳港船舶大气污染排放为研究对象,通过自下而上的方法核算深圳远洋船舶和内河船舶的大气污染物排放量。结果表明,2013年深圳港船舶排放可吸入颗粒物1,736t、细颗粒物1,411t、氮氧化物19,992t、二氧化硫13,106t、一氧化碳2,224t、挥发性有机物822t。与全市排放总量相比,船舶排放对细颗粒物、氮氧化物、二氧化硫的排放有重要影响,分担率分别为5.2%、16.4%和58.9%。其中,以远洋船舶为首要来源,占船舶排放总量的90%左右。  相似文献   

2.
借鉴美国经验控制我国船舶大气污染   总被引:1,自引:0,他引:1  
《环境保护》2015,43(1)
船舶排放已成为大气污染物的主要排放源之一。美国在船舶大气污染排放控制方面强调多部门分工协作,实施严格而灵活的船舶燃料标准与排放标准,制定排放清单,重视补贴、税收等经济激励政策运用。我国应借鉴其经验加快颁布实施船舶大气污染物排放标准、制定强制性油品标准,制定排放清单,建立港口企业定期上报清单制度,建立"国家排放控制区"。  相似文献   

3.
船舶排放是我国沿海地区重要的人为排放源,但现有的船舶排放评估研究大多只关注区域尺度的影响分析,而且忽视了排放清单的不确定性,这在一定程度上削弱了评估结果的可靠性.为此,本文利用WRF-SMOKE-CAMQ空气质量模型,定量评估了船舶排放及其不确定性对我国七大沿海港口城市夏季空气质量的影响,结果表明:船舶排放对我国主要沿海港口城市的SO2、NOx和PM2.5浓度贡献范围分别为16.5%~62.5%、21.9%~72.9%和5.9%~26.0%,尤其对宁波、青岛和深圳等港口城市空气质量的影响显著,主要是由于港口较高的船舶排放以及气象传输两方面原因造成的;如果考虑船舶排放清单的总量不确定性,船舶排放对沿海港口城市夏季SO2、NOx和PM2.5的影响分别呈现1.0~3.1,2.1~5.5,0.3~0.9μg/m3的波动;考虑船舶排放清单的时空分配不确定性,船舶排放对沿海港口城市夏季SO2、NOx和PM2.5的影响分别呈现1.9~15.7,5.1~29.3,0.6~2.5μg/m3的波动.可见,船舶排放清单的不确定性对沿海城市船舶排放贡献影响量化有明显的影响.所以在评估船舶排放对港口城市空气质量的影响时,要考虑船舶排放清单的不确定性,尤其是时空分配的不确定性.而合理的时空分配能够提高船舶排放清单的质量和对沿海空气质量模拟的准确性.  相似文献   

4.
基于船舶自动识别系统(Automatic Identification System,AIS)数据表征船舶排放是目前船舶排放空间表征的主流方法,但AIS船舶轨迹点缺失会造成船舶排放量低估和船舶空间分布表征错误,进而影响船舶排放控制区的划分.为改进船舶排放空间表征,本研究以2013年广东省AIS船舶数据为例,采用基于时间和经纬度的三次样条方法对AIS船舶轨迹进行修复,结合动力法计算船舶排放,分析对比AIS轨迹修复前后船舶排放表征的差异,并利用空气质量模型和卫星观测评估AIS轨迹修复对船舶排放表征和广东沿海空气质量模拟的改进效果.结果表明:轨迹修复后广东省海域船舶轨迹点总数由4685773个增至5746664个,船舶NOx排放量增加了0.6%.对于轨迹点与排放缺失集中的粤东海域,轨迹修复后船舶轨迹点数增加了88%,NOx排放量在广东省船舶排放量的占比提升至22%,特别是在粤东重点修复海域NOx排放量增加了2.7倍.原始轨迹在广东省海域较为稀疏,在粤东海域有明显轨迹缺失;轨迹修复后广东省海域船舶轨迹更为密集,粤东海域船舶轨迹得以补充,船舶排放空间分布更连贯.对比模拟结果与卫星观测结果,轨迹修复后粤东重点修复海域船舶模拟浓度与观测浓度的偏差由51%减至6%,总体上船舶排放模拟结果更接近卫星观测结果.  相似文献   

5.
杨晓玲 《交通环保》1998,19(3):36-38
概述了日本有关防止船舶造成的海洋污染法规,包括从船舶上排放油类或油性混合物的规定、从船舶排放有害液体物质的规定和从船舶排放废弃物的规定。  相似文献   

6.
以2019年为基准年,采用自下而上统计法建立江苏省内河船舶(不含长江)大气污染物排放清单,系统分析船舶排放特征,并与2014年排放清单成果进行比较,在此基础上结合既有政策措施现状提出江苏省内河船舶大气污染物防治对策.研究表明:2019年江苏省内河(不计长江)船舶NOx、PM10、PM2.5、SO2、CO、HC排放量分别为38042.80、2884.23、2539.68、38.10、2461.80以及1116.31 t;与2014年船舶排放特征相似,干货船是大气污染物排放贡献最大的船舶类型,200~600吨位范围的船舶大气污染物排放贡献最大,船舶各种主机工况中“正常航行工况”排放贡献最大,内河船舶排放受时间影响较小,航道上运行船舶的大气污染物排放贡献最大;由于江苏省干线航道“两纵五横”的规划与建设,船舶在航道上的排放分布有所分散,船舶排放贡献较大的航道由2014年单一的京杭运河江苏段拓展至多条航道;受使用低硫燃油的政策影响,SO2、颗粒物排放量较2014年均有大幅度下降,分别下降...  相似文献   

7.
厦门市船舶控制区大气污染物排放清单与污染特征   总被引:2,自引:2,他引:0  
以船舶自动识别系统(automatic identification system,AIS)数据,结合大量厦门港口实地调查信息,采用自下而上的动力法对在控制区内航行的船舶进行逐艘计算,得出2018年厦门市船舶控制区大气污染物排放清单,并详细分析了其污染物排放特征及时空分布.结果表明, 2018年厦门市船舶控制区内船舶污染物排放总量共16 413 t,其中进出港船舶污染物排放占82.2%,未进港船舶占17.8%,各污染物中以NO_x的排放量最大,占比达64.2%,不同航行状态下污染物排放量的顺序为停泊巡航低速巡航机动操控锚泊,控制区内船舶的主要污染来源于货船,并以集装箱船的污染物排放量为最大; 1 d中09:00~16:00处于船舶污染物排放高峰期,1 a中以2月的排放量为最低, 3月和5月出现排放峰值;空间特征上各污染物排放高值主要分布于主航道和港区海岸线.  相似文献   

8.
深圳市船舶排放清单与时空特征研究   总被引:11,自引:9,他引:2  
为分析深圳市船舶排放特征,本研究以劳氏船级社数据库(Lloyd's register of shipping,LR)以及船舶自动识别系统(automatic identification system,AIS)为基础,收集整理深圳市各主要船舶类型及其活动水平的本地化参数,使用基于引擎功率和燃料消耗量的排放因子法,估算深圳市2010年船舶排放清单,并利用船舶AIS活动轨迹建立1 km×1 km空间分配因子和时间特征谱.结果表明,2010年深圳市各类船舶排放的SO2、NOx、CO、PM10、PM2.5和VOCs总量分别为13.6×103、23.3×103、2.2×103、1.9×103、1.7×103和1.1×103t,全槽格式集装箱船为最大贡献船型,靠泊模式排放比例最大.船舶排放的高峰期集中在白天时段,但不同船舶的具体峰值有所不同;船舶排放量的空间分布呈面状及带状分布交错,高值排放区为西部港口群、东部大鹏湾海域及主要水运航道.  相似文献   

9.
船舶排放的硫氧化物来源于船用燃料油中硫的燃烧,其危害引起了世界各国的重视。海上环境保护委员会提出了三种控制船舶硫氧化物排放建议的技术:采用低硫含量的燃油,采用液化天然气作为替代燃料,或使用经批准的船舶废气脱硫技术。概述了船舶硫氧化物排放的相关法规要求。调研主要排放控制方法,并着重概述了国内外船舶废气脱硫技术研究进展。  相似文献   

10.
广东省船舶排放源清单及时空分布特征研究   总被引:12,自引:3,他引:9  
分别采用基于船舶引擎功率和耗油量的排放因子法,估算了广东省地区2010年的船舶排放清单,并选取客货运输吞吐量、航道通航能力因子和港口地理坐标等数据作为权重因子,研究了该地区各类船舶排放的时空分布特征.结果表明,广东省各类船舶在2010年的SO2、NO x、CO、PM10、PM2.5和VOCs排放总量分别为14.6×104t、23.1×104t、3.0×104t、7.9×103t、7.2×103t和9.3×103t.广东省客货运输船舶月排放波动较小;渔业船舶在1月、4月和11月份的排放比例最高.广东省客货运输船舶水域排放集中在西江干线水道和珠江三角洲高等级航道网内,港口排放主要分布在广东省珠江三角洲沿海发达城市地区;渔船港口排放量呈显著的沿海条带状空间分布特征.  相似文献   

11.
基于AIS的数据基础运用动力法编制了2016年青岛市港口船舶废气排放清单,并分析了其空间排放特征、不同船舶类型排放特征及不同工况下的排放特征;基线内加基线外12海里以内船舶SO_2、NO_x、PM_(10)、PM_(2.5)、HC、CO排放量分别为1.56、2.34、0.21、0.18、0.09、0.17万t。船舶排放各污染物排放强度最高的区域集中在主航道、港口以及锚地。排放占比较大的船舶类型依次为集装箱船、渔船和油轮。船舶在巡航和停泊工况下的污染排放占比最高,分别为40%~44%和23%~46%;而机动操作状态时的排放占比较低,达到14%~37%。运用WRF-CMAQ模式模拟分析了青岛港船舶废气排放对市环境空气质量的影响,基线内加基线外12海里以内船舶排放对青岛市SO_2、NO_2、PM_(2.5)的贡献比例分别达到15.96%、12.47%、4.09%,贡献浓度分别为3.12、4.02、1.84μg/m~3。  相似文献   

12.
大连海域远洋船舶排放清单   总被引:11,自引:3,他引:8       下载免费PDF全文
为准确评估船用柴油机实际排放,利用船舶自动识别系统(automatic identification system,AIS)采集远洋船舶的船速、航行时间、地理位置信息等实时航行数据,采用动力法对2012年大连港远洋船舶的排放清单进行计算. 结果表明:2012年大连港远洋船舶PM10、NOx、SOx、CO、HC、CO2总排放量分别为5 785(包括4 628 t PM2.5)、51 451、49 437、4 677、2 010及2 885 388 t. 在4种运行工况中系泊工况排放量最大,受船舶类型和污染物种类影响,系泊工况污染物排放所占比例有所不同,但其分担率均在75.0%左右. 船舶排放污染物的空间分析表明,船舶系泊停靠的港口区域是污染物排放最密集的区域. 从船舶类型来看,散货船、集装箱船、邮轮和油轮是污染物主要排放船型,在整个船舶排放清单中,这4类船舶对DPM(柴油机颗粒物)、NOx、SOx、CO、CO2的排放分担率之和分别为90.9%、91.4%、91.9%、91.5%、91.9%. 在船舶的主机、辅机和锅炉3种排放源中,主机是主要排放源,集装箱船和滚装船的主机分担率为90.0%,货船和邮轮的辅机排放分担率达到40.0%.   相似文献   

13.
天津港运输船舶大气污染物排放清单   总被引:7,自引:0,他引:7  
运输船舶产生的大气污染物对港口大气环境有重要影响,但我国对这部分内容的研究却相当薄弱.本文首先对天津港运输船舶的总体情况进行调研,根据其排放控制技术水平合理选择了排放因子;而后采用基于燃料消耗的方法,对2006年天津港运输船舶排放的NOx、HC、CO和PM_(10)进行了计算,建立了天津港运输船舶大气污染物的排放清单;最后对2010年和2020年天津港的运输船舶大气污染排放情况进行了预测.该清单的估算和预测可以为加强排放控制和制定相关法规提供重要依据.  相似文献   

14.
曾凡涛  吕靖 《中国环境科学》2020,40(5):2304-2311
采用基于船舶活动的排放因子法,测算了2018年进出厦门港的船舶排放清单,并在排放数据的基础上,借助外部成本评估工具,从环境和社会两类指标层面上评估了港口的生态效率.结果表明:2018年厦门港船舶排放SOx、NOx、HC、CO、PM2.5、PM2.0和CO2e(二氧化碳当量)的总量分别为3222,11977,490,1118,411,542和710374t;集装箱船为最大贡献船型,船舶主机排放比例最大;对于不同运行工况,巡航工况排放的污染气体最多,停泊工况(包括港内停泊和港外锚泊)排放的温室气体最多;8~12月份的船舶排放量较高.船舶排放的外部总成本约为19.95亿元(约为港口年收入的7.6%),其中NOx、PM10和SOx的外部成本较高.港口生态效率的评估反映了港口生产运营对环境和社会的影响.船舶使用低硫油和岸电能够减少船舶排放,同时能够提高港口的生态效率.  相似文献   

15.
正随着大气污染问题日益严重,加强船舶大气污染物排放治理已成为社会共识.2月1日,我国将首次在珠三角、长三角、环渤海(京津冀)水域设立船舶排放控制区.经初步测算,船舶排放控制区实施后,到2020年,珠三角、长三角、环渤海(京津冀)水域船舶排放硫氧化物和颗粒物将比2015年分别下降65%和30%.自2016年4月1日起,长三角区  相似文献   

16.
内河船舶大气污染物排放特征实测研究   总被引:1,自引:0,他引:1  
为获得内河船舶航行时的大气污染物排放特征,本研究基于船舶尾气测试系统测试了珠三角西江水域内航行的5艘内河船舶,识别了内河船舶气态污染物瞬时排放特征及基于燃油消耗量的排放因子,并探讨了船舶排放的PM_(2.5)化学组分特征及来源.结果表明:船舶在巡航行驶状态下气态污染物的排放浓度变化都较为平稳,货船污染物排放浓度明显高于快艇.CO_2、CO、NO、NO_2、NO_x、SO_2与PM_(2.5)的排放因子范围分别是3135.90~3149.90、3.10~12.03、30.87~41.18、3.90~7.43、36.36~48.61、0.08~5.50、0.32~4.17 g·kg~(-1).内河船舶排放的PM_(2.5)中碳组分、水溶性离子和金属元素的贡献占比分别为43.8%~64.2%、9.7%~39.0%和0.6%~3.4%,其中,有机碳/元素碳(OC/EC)比值范围为0.40~2.69,OC可能受船舶制动影响较大,润滑油损耗是重要来源.  相似文献   

17.
宁波-舟山港船舶排放清单及时空分布特征   总被引:1,自引:0,他引:1  
为了掌握宁波-舟山港船舶的污染排放特征,支撑长江三角洲地区大气污染控制工作,本研究采用基于船舶活动的排放因子法,收集船舶自动识别系统(AIS)提供的当地船舶活动轨迹数据,结合劳氏船级社(LR)等机构的船舶特征信息,建立了2010年宁波-舟山港船舶排放清单,获得了船舶污染源排放的空间分布和小时变化特征谱.结果显示,2010年宁波-舟山港船舶排放的SO_2、NO_x、PM_(10)、PM_(2.5)、VOC和CO总量分别为2.16×10~4、3.50×10~4、2.59×10~3、2.35×10~3、1.50×10~3和3.01×10~3t.集装箱船、散干货船、普通货船、油轮和客船的排放贡献占比分别为45.1%~57.7%、8.9%~12.9%、25.3%~40.7%、4.2%~8.1%和0.2%~0.7%.污染物的排放高峰期出现在9:00~14:00,不同类型船舶的逐时排放呈现不同的规律.排放高值区为由金塘水道、册子水道、螺头水道和虾峙门水道组成的大型航道以及临近的核心港区.  相似文献   

18.
结合在线监测和自动识别系统分析东海沿岸船舶排放特征   总被引:1,自引:0,他引:1  
海运排放大气污染物对空气质量和气候具有重要影响,但是由于船舶类型及其运行工况的复杂性,人们对船舶排放特征的认识仍然不足.东海沿岸是全球航运活动最为密集的地区之一,汇集了各种国内国际运输船只.选取宁波舟山港作为研究地点,使用在线仪器长时间测量主要的环境大气气体和颗粒污染物,并利用自动识别系统(AIS),获得每种船舶的速度.根据后向轨迹区分出:1受船舶排放影响主导的时期(夏季风,由处于完全运行或停泊的船舶占主导地位);2受内陆气流影响主导的时期(冬季风).结果表明二氧化硫(SO2)、氮氧化物(NOx)和黑碳气溶胶(BC)的排放与高速运行的船舶相关,而一氧化碳(CO)可能与较低的运行速度的船舶有关,总颗粒物(PM)与船舶速度没有显著相关关系.主要污染物在巡航工况下的排放增强因子约为怠速工况1~4倍.研究通过对直接环境背景下船舶排放进行原位观测,为评估船舶排放清单提供重要参考.  相似文献   

19.
<正>日前,天津海事局6艘公务船舶获得《船舶能效管理证书》,自2014年9月1日开始实施船舶能效管理,首开国内航行船舶获得能效管理认证并运行的先河。此举将提高天津海事局船舶能源利用效率,降低船舶二氧化碳排放,也将为国内航行船舶实施船舶能效管理提供借鉴和"样本"。船舶能效管理,是指对船舶能源消耗、能源利用效率和二氧化碳排放进行严格的控制和管理。从2013年1月1日起,我国国际航行船舶开始正式实施船舶  相似文献   

20.
将船舶活动状态分为港口邻近区域的机动操纵工况和停泊工况以及海上航路的定速巡航工况;采用基于船舶活动的方法,建立了区域性海运排放测算模型.根据中国船级社船舶数据库,确定了不同类型船舶主、副机标定功率和设计航速与船舶总吨之间的关系;通过对船舶自动识别系统(AIS)船舶流量轨迹图的统计分析,得到了2014年渤海湾地区船舶流量数据;基于所确定的模型参数,计算得到了渤海湾地区海运排放清单.结果表明,2014年渤海湾地区海运NOx、CO、HC、CO2、SO2和PM排放量分别为173808、14436、6144、7208919、120748和15292t;货船、危险品船和客船对海运排放的贡献占比分别约为73%、21%和6%;海上航路定速巡航工况对海运排放的贡献占比约为90%;其中,成山头至老铁山水道和老铁山水道至渤海中部航路排放之和约占海上航路排放的50%;天津港和大连港分别约占港口邻近区域排放的30%和20%.基于AIS统计数据的自下而上方法对区域性海运排放的测算具有可操作性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号