首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The fluorinated compounds sulphur hexafluoride (SF6), perfluorocarbons (CF4, C2F6) and hydrofluorocarbons (HFCs) are atmospheric trace gases with extremely high global warming potentials (GWP). The study examines the real emissions of these compounds in Germany between 1990 and 1995, and develops projections for the years up to 2020. These projections indicate that annual perfluorocarbon releases will drop between the years 1990 and 2000 from 335 t/34 t to 100 t/10 t due to automation measures at the main source (aluminium smelting). Sulphur hexafluoride emissions, however, will remain in the range between 200 and 300 t per annum until the year 2020. By far the largest emitters are car tyres and sound-insulation glazing, non-electrical swithgear, the latter being relatively well sealed and linked to management and reprocessing concepts for used gas. As concerns hydrofluorocarbons which have only been used since 1990 with the specific intention of substituting chlorofluorocarbons (CFCs), an increasing degree of CFC substitution in stationary and mobile refrigeration technology, in canned PUR foams and in asthma sprays must be expected to lead to steeply rising emissions to levels exceeding 9,700 t/a from the year 2007 onwards, if halogen-free alternatives are not used more strongly. Assuming these trends, the cumulative emissions of the stated fluorinated compounds will correspond to a global warming impact of 25 million t CO2 (GWP time horizon: 100 years) by the year 2020.  相似文献   

2.
The Brazilian government has already acknowledged the importance of investing in the development and application of technologies to reduce or prevent CO2 emissions resulting from human activities in the Legal Brazilian Amazon (BA). The BA corresponds to a total area of 5 × 106 km2 from which 4 × 106 km2 was originally covered by the rain forest. One way to interfere with the net balance of greenhouse gases (GHG) emissions is to increase the forest area to sequester CO2 from the atmosphere. The single most important cause of depletion of the rain forest is cattle ranching. In this work, we present an effective policy to reduce the net balance of CO2 emissions using optimal control theory to obtain a compromising partition of investments in reforestation and promotion of clear technology to achieve a CO2 emission target for 2020. The simulation indicates that a CO2 emission target for 2020 of 376 million tonnes requires an estimated forest area by 2020 of 3,708,000 km2, demanding a reforestation of 454,037 km2. Even though the regional economic growth can foster the necessary political environment for the commitment with optimal emission targets, the reduction of 38.9% of carbon emissions until 2020 proposed by Brazilian government seems too ambitious.  相似文献   

3.
Background The use of natural gas has increased in the last years. In the future, its import supply and transport structure will diversify (longer distances, higher share of LNG (liquefied natural gas), new pipelines). Thus the process chain and GHG emissions of the production, processing, transport and distribution might change. Simultaneously, the injection of bio methane into the natural gas grid is becoming more important. Although its combustion is regarded as climate neutral, during the production processes of bio methane GHG emissions are caused. The GHG emissions occurring during the process chain of energy fuels are relevant for the discussion on climate policy and decision making processes. They are becoming even more important, considering the new Fuel Quality Directive of the EU (Dec. 2008), which aims at controlling emissions of the fuel process chains. Aim In the context of the aspects outlined above the aim is to determine the future development of gas supply for Germany and the resulting changes in GHG emissions of the whole process chain of natural gas and bio methane. With the help of two gas consumption scenarios and an LCA of bio methane, the amount of future emissions and emission paths until 2030 can be assessed and used to guide decision processes in energy policy. Results and discussion The process chain of bio methane and its future technical development are outlined and the related emissions calculated. The analysis is based on an accompanying research study on the injection of bio methane to the German gas grid. Two types of biogas plants have been considered whereof the “optimised technology” is assumed to dominate the future market. This is the one which widely exploits the potential of process optimisation of the current “state of the art” plant. The specific GHG emissions of the process chain can thus be nearly halved from currently 27.8?t CO2-eq./TJ to 14.8?t CO2-eq./TJ in 2030. GHG emissions of the natural gas process chain have been analysed in detail in a previous article. Significant modifications and a decrease of specific emissions is possible, depending on the level of investment in the modernisation of the gas infrastructure and the process improvements. These mitigation options might neutralise the emission increase resulting from longer distances and energy intensive processes. In the last section two scenarios (low and high consumption) illustrate the possible development of the German gas supply until 2030, given an overall share of 8–12?% of bio methane. Considering the dynamic emission factors calculated in the former sections, the overall gas emissions and average specific emissions of German gas supply can be given. The current emissions of 215.4 million t CO2-eq. are reduced by 25?% in the low-consumption scenario (162 million t CO2-eq.), where consumption is reduced by 17?%. Assuming a consumption which is increased by 17?% in 2030, emissions are around 7?% higher (230.9 million t CO2-eq.) than today. Conclusions Gaseous fuels will still play a significant role for the German energy supply in the next two decades. The GHG emissions mainly depend on the amount of gas used. Thus, energy efficiency will be a key issue in the climate and energy related policy discussion. A higher share of bio methane and high investments in mitigation and best available technologies can significantly reduce the emissions of the process chain. The combustion of bio methane is climate neutral compared to 56?t CO2/TJ caused by the direct combustion of natural gas (or 111?t CO2/TJ emitted by lignite). The advantage of gaseous energy carriers with the lowest levels of GHG emissions compared to other fossil fuels still remains. This holds true for fossil natural gas alone as well as for the expected future blend with bio-methane.  相似文献   

4.
This work aims to identify the main factors influencing the energy-related carbon dioxide (CO2) emissions from the iron and steel industry in China during the period of 1995–2007. The logarithmic mean divisia index (LMDI) technique was applied with period-wise analysis and time-series analysis. Changes in energyrelated CO2 emissions were decomposed into four factors: emission factor effect, energy structure effect, energy consumption effect, and the steel production effect. The results show that steel production is the major factor responsible for the rise in CO2 emissions during the sampling period; on the other hand the energy consumption is the largest contributor to the decrease in CO2 emissions. To a lesser extent, the emission factor and energy structure effects have both negative and positive contributions to CO2 emissions, respectively. Policy implications are provided regarding the reduction of CO2 emissions from the iron and steel industry in China, such as controlling the overgrowth of steel production, improving energy-saving technologies, and introducing low-carbon energy sources into the iron and steel industry.  相似文献   

5.
The recent global financial crisis has highlighted the need for balanced and efficient investments in the reduction of the greenhouse effect caused by emissions of CO2 on a global scale. In a previous paper, the authors proposed a mathematical model describing the dynamic relation of CO2 emission with investment in reforestation and clean technology. An efficient allocation of resources to reduce the greenhouse effect has also been proposed. Here, this model is used to provide estimates of the investments needed in land reforestation and in the adoption of clean technologies for an optimum emission and abatement of CO2, for the period of 1996–2014. The required investments are computed to minimize deviations with respect to the emission targets proposed in the Kyoto Protocol for European Countries. The emission target can be achieved by 2014 with investments in reforestation peaking in 2004, and a reduction of the expected GDP of 42%, relative to 2006. Investments in clean technology should increase between 2008 and 2010 with maximum transfer figures around 70 million American dollars. Total (cumulative) costs are, however, relatively high depending on the price of carbon abatement and the rate at which the expected CO2 concentration in the atmosphere should be reduced. Results highlight the advantages for policy makers to be able to manage investments in climate policy more efficiently, controlling optimum transfers based on a portfolio of actions that tracks a pre-defined CO2 concentration target.  相似文献   

6.
Agricultural soils are an important source of greenhouse gases (GHG). Biochar application to such soils has the potential of mitigating global anthropogenic GHG emissions. Under irrigation, the topsoils in arid regions experience repeated drying and wetting during the crop growing season. Biochar incorporation into these soils would change the soil microbial environment and hence affect GHG emissions. Little information, however, is available regarding the effect of biochar addition on carbon dioxide (CO2) and nitrous oxide (N2O) emissions from agricultural soils undergoing repeated drying and wetting. Here, we report the results of a 49-day aerobic incubation experiment, incorporating biochar into an anthropogenic alluvial soil in an arid region of Xinjiang Province, China, and measuring CO2 and N2O emissions. Under both drying–wetting and constantly moist conditions, biochar amendment significantly increased cumulative CO2 emission. At the same time, there was a significant reduction (up to ~20 %) in cumulative N2O emission, indicating that the addition of biochar to irrigated agricultural soils may effectively slow down global warming in arid regions of China.  相似文献   

7.
Industrial SO2 is the most important air pollutant in China. This paper outlines the technological impacts on industrial SO2 emissions in China in terms of: amount, intensity, structure of energy consumption and structure of energy-intensive industries. It shows that industrial SO2 emissions have linear growth alongside increases in energy consumption, particularly the rise in coal consumption. The contribution of technological factors to decreases in the intensity of energy consumption is 25%, while the structural factor is 75%. The power industry accounts for 52.6% of total industrial SO2. Optimisation of the structure of energy consumption can reduce SO2 emissions by 1.98 million tonnes per year. We propose the following technological strategies for industrial SO2 abatement: adjustment of the system and structure of thermal power generating units, acceleration of flue gas desulphurisation projects, transformation of industrial structures, development of eco-industries and a reduction in energy consumption per unit product. In addition, an effective way to abate industrial SO2 emissions is to promote governance strategies to stricly enforce SO2 emission standards, conduct emission trading, and formulate incentives for encouraging cleaner production and clean energy development.  相似文献   

8.
Motorized traffic is among the biggest CO2-emitting sources and is additionally dominating NOx emission. Engine technology shifts are approaching, while automobiles developed in Germany and Europe are exported worldwide together with the European emission thresholds for cars. The Diesel car boom induced by EU commission, national EU governments and car industry is accordingly analyzed for sustainability and its effects on environment. German CO2 emission reduction numbers by motorized traffic, as claimed by the government, are questioned. Radiative forcing by soot (black carbon) Diesel car emissions is added on the CO2 emissions by fuel combustion. Diesel cars without particle filters are found to cause an atmospheric warming. Modelled and measured NOx emission data are assessed to mismatch considerably. In spite of an ambitious national NOx reduction plan there is excess NOx emission by the German and European Diesel car boom. In this context environmental sustainability of battery electric vehicles (BEV) is investigated. Direct (by car) und indirect (by power plant) emissions (CO2, NOx, PM10, SO2) of cars with internal combustion engines (ICE) and BEVs, respectively, are calculated and compared. CO2-ecoanalysis revealed advantages for BEVs even operated with current German electricity mix based on around 15?% renewable sources.  相似文献   

9.
In recent years, the world has witnessed an ever-growing concern towards global warming caused by greenhouse gases, such as carbon dioxide (CO2). In order to reduce the emissions of CO2 without limiting economic growth, substantial investments should target the development of clean technology and the expansion of forested areas. Considering the limited availability of resources, investments must be used in the most effective way. The present work proposes a method to efficiently manage these resources by applying the optimal control theory to a new mathematical model that describes the dynamics of the atmospheric CO2. The contributions of this work are twofold: (1) present a model that describes the dynamic relation of CO2 emission with investment in reforestation and clean technology and (2) present a method to efficiently manage the available resources by casting an optimal control problem. The mathematical model uses ordinary differential equations to relate the production of CO2 with forest area and Gross Domestic Product (GDP). The model parameters are adjusted to fit the actual published data. Given an appropriate performance index, the optimal solution is found by numerically solving the Two-Point Boundary Value Problem (TPBVP) that arises from the application of Pontriagyn's Maximum Principle. The sensitivity of the obtained numerical solution is evaluated with respect to the uncertainties in the model parameters. The main objective of this work is to provide a quantitative tool for the efficient allocation of resources to reduce the greenhouse effect caused CO2 emissions.  相似文献   

10.
This study, with FAOSTAT and Taiwan data sources, estimates Taiwan carbon dioxide (CO2) emissions in harvested wood products (HWP) by applying the three accounting methods suggested by the 2006 IPCC Guidelines. The investigation also explores impulse responses of CO2 emissions to economic factors. Results from FAOSTAT and Taiwan data demonstrate an inconsistent production approach (PA) in the signs of the estimated CO2 emissions. Average contributions of HWP from 1990 to 2008 for the stock change approach (SCA), PA and atmospheric flow approach (AFA) in Taiwan are ?3.195 Tg, 0.412 Tg and 10.632 Tg CO2 emissions, respectively. SCA has determined the Taiwan HWP as a carbon reservoir; in contrast, PA and AFA have determined Taiwan HWP as a CO2 emission. The net forest products imports into Taiwan induce the inconsistent signs of HWP carbon sequestration among SCA, PA and AFA. The vector autoregressive model (VAR) results also indicate that real GDP per capita is crucial for SCA CO2 emissions, followed by exchange rate.  相似文献   

11.
This study examines the dynamic causality relationship between international tourism and carbon dioxide (CO2) emissions from transport, real gross domestic product and energy use. The vector error correction model and Granger causality test approach have been used to investigate these relationships for the top ten international tourism destinations spanning the period 1995–2013. Results reveal a unidirectional causality running from CO2 emissions to economic growth without feedback; a bidirectional causality between economic growth and energy use; a bidirectional causality between international tourism and economic growth; and a bidirectional causality between international tourism and energy use. They also suggest that energy use and international tourism both contribute to the decrease of emissions level coming from transport sector, while economic growth leads to the increase of CO2 emissions. This study can be used in policy recommendations by encouraging countries to use clean energy and to stimulate tourism sector for combating global warming.  相似文献   

12.

In the context of global warming and the energy crisis, emissions to the atmosphere of greenhouse gases such as carbon dioxide (CO2) and methane (CH4) should be reduced, and biomethane from landfill biogas should be recycled. For this, there is a need for affordable technologies to capture carbon dioxide, such as adsorption of biogas on activated carbon produced from industrial wastes. Here we converted glycerol, a largely available by-product from biodiesel production, into activated carbon with the first use of potassium acetate as an activating agent. We studied adsorption of CO2 and CH4 on activated carbon. The results show that activated carbon adsorb CO2 up to 20% activated carbon weight at 250 kPa, and 9% at atmospheric pressure. This is explained by high specific surface areas up to 1115 m2g−1. Moreover, selectivity values up to 10.6 are observed for the separation of CO2/CH4. We also found that the equivalent CO2 emissions from activated carbon synthesis are easily neutralized by their use, even in a small biogas production unit.

  相似文献   

13.
Swine slurry is a source of atmospheric pollutants. Emissions of basic and acidic compounds from slurry are largely dependent on the surface pH. In a storage system, the pH at the surface layers changes over time due to the volatilisation of ammonia (NH3), carbon dioxide (CO2) and acetic acid (HAc). In this article, a comprehensive gas emission–pH (GE–pH) coupled model is proposed to describe the simultaneous release of acidic and basic gaseous pollutants from swine slurry. The model was applied to describe the release of NH3, CO2, HAc and hydrogen sulphide (H2S) from standard slurries stored in animal houses, outside storage tanks and lagoons. The modelled results agreed well with values reported in the literature and could be reasonably interpreted. The key parameters affecting the release of gases were: initial pH, initial concentration of total ammonium nitrogen and inorganic carbon, slurry temperature and air velocity. This study suggests that future modelling studies on gas emissions from animal slurry should consider the concentration of inorganic carbon and the frequency in which the slurry surface is mixed or altered, because they affect the surface pH and the release of gaseous pollutants from slurry.  相似文献   

14.
Fossil fuels are currently the major energy source and are rapidly consumed to supply the increasing energy demands of mankind. CO2, a product of fossil fuel combustion, leads to climate change and will have a serious impact on our environment. There is an increasing need to mitigate CO2 emissions using carbon–neutral energy sources. Therefore, research activities are devoted to CO2 capture, storage and utilization. For instance, photocatalytic reduction of CO2 into hydrocarbon fuels is a promising avenue to recycle carbon dioxide. Here we review the present status of the emission and utilization of CO2. Then we review the photocatalytic conversion of CO2 by TiO2, modified TiO2 and non-titanium metal oxides. Finally, the challenges and prospects for further development of CO2 photocatalytic reduction are presented.  相似文献   

15.
Carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are important greenhouse gases (GHGs). The objective of this study is to quantify the aggregate GHG (CH4, N2O and CO2) emissions and estimate economic losses of three ecosystems (marsh, paddy field and upland) in the Sanjiang Plain, excluding the Muling-Xiangkai Plain, south of Wanda Mountain. The results indicate the economic losses from GHG emissions of marshes were from 6.40 to 7.75?×?10CNY (Chinese Yuan), those of paddy fields were from 1.41 to 3.20?×?10CNY; and from uplands were from 0.26 to 0.49?×?10CNY. Using linear trend analysis, the economic losses through GHG emissions of marshes fell between 1982 and 2005, but those from paddy fields and uplands increased. In our study, the sequence in magnitude of the economic losses from GHG emissions was: marshes > paddy fields > uplands. In fact, the economic value of GHG emissions was negative because of these adverse impacts on the environment. This article could provide a reference for calculation of GHG exchange. The results suggest that improvement of fertiliser use efficiency for more precise agricultural management and returning straw to cropland could mitigate GHG emissions and would help to achieve sustainable development.  相似文献   

16.
Biodiesel from non-grain feedstock has been considered as one of the proper substitutes for fossil fuels associated with a series of activities emerging in China in order to meet the resource shortage and develop the energy crops. This paper presents an ecological accounting framework based on embodied energy, emergy, and CO2 emission for the whole production chain of biodiesel made from Jatropha curcas L. (JCL) oil. The energy and materials invested in and CO2 emission from the whole process, including cropping, transportation, extraction, and production, are accounted and calculated. Also, EmCO2, the ratio of real CO2 released to the emergy-based sustainability indicator per joule biodiesel, is proposed in this paper to present a new goal function for low-carbon system optimization. Finally, the results are compared with those of the bioethanol (wheat) production in Henan Province, China, and bioethanol (corn) production in Italy in view of the indices of embodied energy, emergy and CO2 emissions and EmCO2.  相似文献   

17.
Treibhausgas-Emissionen zukünftiger Erdgas-Bereitstellung für Deutschland   总被引:1,自引:1,他引:0  

Background

Natural gas makes a significant contribution to the current energy supply and its importance, in relation to both the German and worldwide energy supplies, will increase further in decades to come. In addition to its high degree of efficiency, the low level of direct GHG combustion emissions is also an advantageous factor. However, around 90% of natural gas is methane (CH4), which is the second most significant GHG due to its high greenhouse potential (21 times higher than CO2). Therefore, high levels of direct gas losses of natural gas in its production, processing, transport and distribution could neutralise its low emission advantages. This is particularly apparent when considering the growing distances between production and use, the demanding production processes and the upcoming worldwide market for LNG (liquefied natural gas).

Aim

This paper aims to analyse and illustrate the future GHG emissions of the whole process chain of natural gas (indirect emissions) to be supplied to the German border over the next 2 decades. This should allow the comparison of total GHG emissions (indirect and direct) of natural gas with the GHG emissions of other fossil fuels. By considering likely changes in gas origin as well as dynamic changes in the infrastructure and technology of gas production, processing and transport until 2030, all relevant factors are included. The study focuses on the emissions of Russian natural gas as Russia is already, and will be in the future, the most important gas supplier to the German and European gas markets.

Results and Discussion

The analysis illustrates a significant change in the gas supply over the next two decades. The EU Gas Fields are in decline and it is predicted that these will run dry. In parallel the share of Russian and Norwegian natural gas, and also the levels of LNG production (e.g. from Algeria or Egypt), will increase. Although the potential for GHG emissions tends to grow as a result of greater transport distances and demanding production and processing activities, high investment in necessary mitigation options (e.g. through replacing older and inefficient technology; updating to state-of-the-art technology) may neutralise the increase. The overall result of these counteracting trends will be to decrease GHG emissions, in a range of around 12% per TJ of direct emissions of natural gas, depending on the level of investment in the modernisation of the Russian gas infrastructure and the improvements of the LNG process. In the two given scenarios the indirect emissions of the natural gas used in Germany will decrease from about 23 million t CO2-eq (2005) to 19.5 or 17.6 million t CO2-eq in the year 2030. In spite of a significant higher gas consumption the emissions are reduced in the first scenario due to technical modifications. In the second scenario the emission reduction is based on the lower gas consumption.

Conclusions

At present, the indirect GHG emissions of the natural gas process chain are comparable to the indirect emissions produced by oil and coal. The emission trend of the natural gas process chain will markedly decrease if the mitigation options are followed consistently. However, in order to ensure the long-term security of natural gas supply for future decades, a high level of investment is essential. With regard to future emissions, the best available technology and, therefore, that which is most economically feasible in the long term, should be used. Under these conditions natural gas — as the fossil fuel with the lowest levels of GHG emissions — can play a major role in the transition to a renewable energy supply for the future.  相似文献   

18.
In Life Cycle Assessment (LCA), carbon dioxide (CO2) emissions from biomass combustion are traditionally assumed climate neutral if the bioenergy system is CO2 flux neutral, i.e. the quantity of CO2 released approximately equals the amount of CO2 sequestered in biomass. This convention is a plausible assumption for fast growing biomass species, but is inappropriate for slower growing biomass, like forests. In this case, the climate impact from biomass combustion can be potentially underestimated if CO2 emissions are ignored, or overestimated, if biogenic CO2 is considered equal to anthropogenic CO2. The estimation of the effective climate impact should take into account how the CO2 fluxes are distributed over time: the emission of CO2 from bioenergy approximately occurs at a single point in time, while the absorption by the new trees is spread over several decades. Our research target is to include this dynamic time dimension in unit-based impact analysis, using a boreal forest stand as case study. The boreal forest growth is modelled with an appropriate function, and is investigated under different forestry regimes (affecting the growth rate and the year of harvest). Specific atmospheric decay functions for biomass-derived CO2 are then elaborated for selected combinations of forest management options. The contribution to global warming is finally quantified using the GWPbio index as climate metric. Results estimates the effects of these practices on the characterization factor used for the global warming potential of CO2 from bioenergy, and point out the key role played by the selected time horizon.  相似文献   

19.
Actions to slow atmospheric accumulation of greenhouse gases also would reduce conventional air pollutants yielding “ancillary” benefits that tend to accrue locally and in the near-term. Using a detailed electricity model linked to an integrated assessment framework to value changes in human health, we find a tax of $25 per metric ton of carbon emissions would yield NOx-related health benefits of about $8 per metric ton of carbon reduced in the year 2010 (1997 dollars). Additional savings of $4–$7 accrue from reduced investment in NOx and SO2 abatement in order to comply with emission caps. Total ancillary benefits of a $25 carbon tax are $12–$14, which appear to justify the costs of a $25 tax, although marginal benefits are less than marginal costs. At a tax of $75, greater total benefits are achieved but the value per ton of carbon reductions remains roughly constant at about $12.  相似文献   

20.
Industrialized countries agreed on a reduction of greenhouse gas emissions under the Kyoto Protocol. Many countries elected forest management activities and the resulting net balance of carbon emissions and removals of non-CO2 greenhouse gases by forest management in their climate change mitigation measures. In this paper a generic dynamic forestry model (FORMICA) is presented. It has an empirical basis. Several modules trace C pools relevant for the Kyoto Protocol and beyond: biomass, litter, deadwood and soil, and harvested wood products. The model also accounts for the substitution of fossil fuels by wood products and bioenergy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号