共查询到6条相似文献,搜索用时 0 毫秒
1.
2.
Nonlinear state-space models have been increasingly applied to study population dynamics and data assimilation in environmental sciences. State-space models can account for process error and measurement error simultaneously to correct for the bias in the estimates of system state and model parameters. However, few studies have compared the performance of different nonlinear state-space models for reconstructing the state of population dynamics from noisy time series. This study compared the performance of the extended Kalman filter (EKF), unscented Kalman filter (UKF) and Bayesian nonlinear state-space models (BNSSM) through simulations. Synthetic population time series were generated using the theta logistic model with known parameters, and normally distributed process and measurement errors were introduced using the Monte Carlo simulations. At higher levels of nonlinearity, the UKF and BNSSM had lower root mean square error (RMSE) than the EKF. The BNSSM performed reliably across all levels of nonlinearity, whereas increased levels of nonlinearity resulted in higher RMSE of the EKF. The Metropolis–Hastings algorithm within the Gibbs algorithm was used to fit the theta logistic model to synthetic time series to estimate model parameters. The estimated posterior distribution of the parameter θ indicated that the 95% credible intervals included the true values of θ (=0.5 and 1.5), but did not include 1.0 and 0.0. Future studies need to incorporate the adaptive Metropolis algorithm to estimate unknown model parameters for broad applications of Bayesian nonlinear state-space models in ecological studies. 相似文献
3.
Measurement errors in spawner abundance create problems for fish stock assessment scientists. To deal with measurement error, we develop a Bayesian state-space model for stock-recruitment data that contain measurement error in spawner abundance, process error in recruitment, and time series bias. Through extensive simulations across numerous scenarios, we compare the statistical performance of the Bayesian state-space model with that of standard regression for a traditional stock-recruitment model that only considers process error. Performance varies depending on the information content in data, as determined by stock productivity, types of harvest situations, and amount of measurement error. Overall, in terms of estimating optimal spawner abundance SMSY, the Ricker density-dependence parameter β, and optimal harvest rate hMSY, the Bayesian state-space model works best for informative data from low and variable harvest rate situations for high-productivity salmon stocks. The traditional stock-recruitment model (TSR) may be used for estimating α and hMSY for low-productivity stocks from variable and high harvest rate situations. However, TSR can severely overestimate SMSY when spawner abundance is measured with large error in low and variable harvest rate situations. We also found that there is substantial merit in using hMSY (or benchmarks derived from it) instead of SMSY as a management target. 相似文献
4.
We develop regional-scale eutrophication models for lakes, ponds, and reservoirs to investigate the link between nutrients and chlorophyll-a. The Bayesian TREED (BTREED) model approach allows association of multiple environmental stressors with biological responses, and quantification of uncertainty sources in the empirical water quality model. Nutrient data for lakes, ponds, and reservoirs across the United States were obtained from the Environmental Protection Agency (EPA) National Nutrient Criteria Database. The nutrient data consist of measurements for both stressor variables (such as total nitrogen and total phosphorus), and response variables (such as chlorophyll-a), used in the BTREED model. Markov chain Monte Carlo (McMC) posterior exploration guides a stochastic search through a rich suite of candidate trees toward models that better fit the data. The Bayes factor provides a goodness of fit criterion for comparison of resultant models. We randomly split the data into training and test sets; the training data were used in model estimation, and the test data were used to evaluate out-of-sample predictive performance of the model. An average relative efficiency of 1.02 between the training and test data for the four highest log-likelihood models suggests good out-of-sample predictive performance. Reduced model uncertainty relative to over-parameterized alternative models makes the BTREED models useful for nutrient criteria development, providing the link between nutrient stressors and meaningful eutrophication response. 相似文献
5.
Stefan Krause Lutz Mattner Richard James Tristan Guttridge Mark J. Corcoran Samuel H. Gruber Jens Krause 《Behavioral ecology and sociobiology》2009,63(7):1089-1096
Analyses of animal social networks derived from group-based associations often rely on randomisation methods developed in
ecology (Manly, Ecology 76:1109–1115, 1995) and made available to the animal behaviour community through implementation of a pair-wise swapping algorithm by Bejder
et al. (Anim Behav 56:719–725, 1998). We report a correctable flaw in this method and point the reader to a wider literature on the subject of null models in
the ecology literature. We illustrate the importance of correcting the method using a toy network and use it to make a preliminary
analysis of a network of associations among eagle rays.
相似文献
Stefan KrauseEmail: |
6.
For modeling the distribution of plant species in terms of climate covariates, we consider an autologistic regression model for spatial binary data on a regularly spaced lattice. This model belongs to the class of autologistic models introduced by Besag (1974). Three estimation methods, the coding method, maximum pseudolikelihood method and Markov chain Monte Carlo method are studied and comparedvia simulation and real data examples. As examples, we use the proposed methodology to model the distributions of two plant species in the state of Florida. 相似文献