首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The distribution and accumulation of trace metals in the sediments of the Cochin estuary during the pre-monsoon, monsoon and post-monsoon periods were investigated. Sediment samples from 14 locations were collected and analysed for the metal contents (Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb), organic carbon, total nitrogen, total sulphur and grain size. The data were processed using statistical tools like correlation, factor and cluster analysis. The study revealed an enrichment of Cd and Zn in the study area particularly at station 2, which is confirmed by enrichment factor, contamination factor and geoaccumulation index. The factor analysis revealed that the source of Cd and Zn may be same. The study indicated that the spatial variation for the metals like Mg, Cr, Fe, Co, Ni, Cu, Zn, Cd and Pb were predominant unlike Mn which shows a temporal variation. The strong association of trace metals with Fe and Mn hydroxides and oxides are prominent along the Cochin estuary. The anthropogenic inputs of industrial effluents mainly control the trace metals enrichment in the Cochin estuary.  相似文献   

2.
Dynamics of heavy metals such as Fe, Mn, Zn, Cr, Cu, Co, Ni, Pb, and Cd in surface water of Mahanadi River estuarine systems were studied taking 31 different stations and three different seasons. This study demonstrates that the elemental concentrations are extremely variable and most of them are higher than the World river average. Among the heavy metals, iron is present at highest concentration while cadmium is at the least. The spatial pattern of heavy metals suggests that their anthropogenic sources are possibly from two major fertilizer plants and municipal sewage from three major towns as well as agricultural runoff. The temporal variations for metals like Fe, Cu, and Pb exhibit higher values during the monsoon season, which are related to agricultural runoff. Concentrations of Ni, Pb, and Cd exceed the maximum permissible limits of surface water quality in some polluted stations and pose health risks. Dissolved heavy metals like Fe, Mn, Cr, Ni, and Pb exhibit a non-conservative behavior during estuarine mixing, while Zn, Cu, and Co distribution is conservative. Distribution of cadmium in the estuarine region indicates some mobilization which may be due to desorption. The enrichment ratio data suggest that various industrial wastes and municipal wastes contribute most of the dissolved metals in the Mahanadi River. The Mahanadi River transports 18.216 × 103 t of total heavy metals into the Bay of Bengal and the calculated rate of erosion in the basin is 128.645 kg km − 2 year − 1.  相似文献   

3.
The chemistry of heavy metals in sediments with respect to bio-availability and chemical reactivity is regulated by pH, texture, and organic matter contents of the sediments and specific binding form and coupled reactivity of the metals within. To focus on the metal distribution (Fe, Mn, Pb, Cd, Zn, Co, Cu, and Cr) and behavior in a fresh water aquifer system along with the ecological toxicity parameters, a four-step sequential extraction method was applied on 18 Eastern Ghats’ type sediments from fluorosis-hit Nayagarh district, India. Geo-accumulation index of metals in the sediments indicates that they are practically uncontaminated and/or less contaminated with and Fe, Mn, and Cu; contaminated to moderately contaminated with Pb, Zn, and Cr; and strongly contaminated with Cd. Rather, more than 80 % recovered Cd metal concentration in sediments constitute the labile fractions. Temporal clustering of metal fractions indicates transition metal fraction distribution claiming the sediment pH regulation. Similarly, base metal distribution accounts for organic carbon and soil conductivity due to their greater availability in exchangeable and sulfide fractions. Correlation analysis and factor analysis scores demonstrate lack of inter-relationship between transition group and base metal fractions. High fluoride concentration in ground water is associated with high sodium-bicarbonate-iron affinity with elevated pH values (i.e., >7.0) and high positive factor score with the total iron concentration in ground water.  相似文献   

4.
The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe?>?Mn?>?Cr?>?Zn?>?Ni?>?Cu?>?Co?>?Pb?>?Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I geo), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I geo values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87 %. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC), which apparently revealed that heavy metals such as Fe, Mn, Cr, Pb, Zn and Cd are influenced by the dynamic nature of flood plain deposits. Agricultural practice and domestic sewage are also influenced on the heavy metal content in the study area.  相似文献   

5.
The concentrations of Mn, Fe, Ni, Cr, Cu, Pb, Zn, As, and Cd were determined to evaluate the level of contamination of To Lich River in Hanoi City. All metal concentrations in 0–10-cm water samples, except Mn, were lower than the maximum permitted concentration for irrigation water standard. Meanwhile, concentrations of As, Cd, and Zn in 0–30-cm sediments were likely to have adverse effects on agriculture and aquatic life. Sediment pollution assessment was undertaken using enrichment factor and geoaccumulation index (I geo). The I geo results indicated that the sediment was not polluted with Cr, Mn, Fe, and Ni, and the pollution level increased in the order of Cu < Pb < Zn < As < Cd. Meanwhile, significant enrichment was shown for Cd, As, Zn, and Pb. Cluster and principal component analyses suggest that As and Mn in sediment were derived from both lithogenic and anthropogenic sources, while Cu, Pb, Zn, Cr, Cd, and Ni originated from anthropogenic sources such as vehicular fumes for Pb and metallic discharge from industrial sources and fertilizer application for other metals.  相似文献   

6.
Twenty-one surface sediment samples were collected from Akkaya Dam. Heavy metal concentrations (Mo, Cu, Pb, Zn, Ni, Co, Mn, Fe, Cr, As, V and Cd), grain size, organic carbon and carbonate contents were studied in order to assess the extent of environmental pollution and to discuss the origin of these contaminants in sediments of dam. The sediments in the study area are mostly very fine sands. However, mud was observed in the northeast of the dam. Sediment pollution assessment was carried out using enrichment factor. The calculation of enrichment factors showed that Mo is depleted by 1.0 whereas Cu, Pb, Zn, Ni, Co, Mn, As, V, Cr and Cd are enriched by 3, 5.4, 7, 2.7, 2.2, 3.4, 42.3, 2.1, 1.8 and 7.2, respectively. Relatively high concentrations heavy metals occurred in north (textile industry area) and east (Karasu River) due to enrichment controlled by anthropogenic wastes. The results of correlation analysis show low–medium positive and negative correlations among metals, grain size, carbonate contents and organic carbon and indicate that heavy metals in sediments of the Akkaya Dam have different anthropogenic sources.  相似文献   

7.
Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had significant negative correlations with total Cu, Pb, Cr, Zn, Cd, and heavy metal fractions. This showed that alkaline phosphatase activity was sensitive to heavy metals in heavily contaminated regions, whereas urease and invertase were less affected. The combination of the various methods may offer a powerful analytical technique in the study of heavy metal pollution in street soil.  相似文献   

8.
This work describes the results of assessment of the heavy metals, Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn in urban soil of Guwahati City, India from 31 sites of five different land use types covering residential, commercial, industrial, public utilities, and roadside. Sequential extraction procedure was used to evaluate the relative distribution of the eight metals in exchangeable, carbonate, reducible (Fe?CMn oxide), organic and sulfide, and residual fractions. Of the eight metals, Cd and Co occur in lower concentrations (Cd <?< Co) in all types of land, and concentration variation from one type of land use to another is not much significant for both the metals. Ni presence is more than Co, and the concentrations show some variation depending on land use status. Average Cr and Cu concentrations are ??100?mg/kg, but Cr has a significantly higher presence in industrial land use. The results are similar in case of Pb. The two metals, Mn and Zn have domination over the other metals, and the values are ??300?mg/kg. Industrial and roadside soil contains much more Mn, while commercial soil is most enriched with Zn. Of the metals, Ni has the largest proportion (~42%) bound to the exchangeable fraction and Co, Cr, and Pb also have appreciable proportion bound to the same fraction. A significant amount of Co is associated with carbonates. The reducible fraction has bound considerable quantity of Mn and Zn, while most of Cu is associated with the organic and sulfide fraction. Both Cd and Pb are dominantly associated with the residual fraction. Computation of the mobility factor of the metals indicates Mn to be the most mobile metal present in the soil samples.  相似文献   

9.
The sediment in Dianchi Lake, a hypereutrophic plateau lake in southwest China, was investigated and the concentration of heavy metals (Cu, Cr, Ni, Zn, Pb, Fe, Mn, and Cd) in the sediment and sediment properties were determined. Their spatial distribution and sources were analyzed using multivariate statistics. The result indicated that the studied metals exhibited three distinct spatial patterns; that is, Cu, Pb, Zn, and Ni had a similar distribution, with a concentration gradient from the north to the south part of the lake; Cd and Cr presented a similar distribution; Fe and Mn presented a quite different distribution than other metals, which indicated their different sources and geochemistry processes. Correlation and cluster analysis (CA) provided origin information on these metals and the CA result was observed corresponding to those three spatial patterns. Principal component analysis further displayed metal source and driving factors; that is, Cu, Pb, Zn, Ni, Cd, and Cr were mainly derived from anthropogenic sources, and Fe and Mn were mainly the result of natural processes. Sediment assessment was conducted using geoaccumulation index (Igeo), potential ecological risk indices, and USEPA guidelines. The result indicated that, generally, Cd was the most serious risk metal; Pb and Cu posed moderate potential ecological risk; Cr, Zn, and Ni had slight ecological risk; Fe and Mn had little risk. Comparison of the assessment tools showed that each of the methods had its limitation and could bias the result, and the combined use of the methodologies and local knowledge on lithology or metal background value of soil in the practice would give a more comprehensive understanding of the metal risk or pollution. Statistical analysis also indicated that nutrients had different impacts on Fe, Mn, and trace elements, which implied that in the assessment of metal risk, nutrients impact should be taken into consideration especially for eutrophic waters.  相似文献   

10.
The three-stage sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb, and Zn, proposed by the Commission of the European Communities Bureau of Reference, was applied to sediment five samples collected from the Sal estuary, Sergipe State, northeast Brazil, in September 2009. The method showed satisfactory recoveries, detection limits, and standard deviations for determinations of trace metals in the sediments. Cd and Pb were the metals most prevalent in the bioavailable fractions (carbonates, Fe and Mn oxides, organic matter, and sulfides), while Ni, Zn, Cu, and Cr showed higher percentages in the inert fraction. The order of mobility of the metals was Cd (66 %) > Pb (65 %) > Zn (59 %) > Ni (57 %) = Cr (57 %) > Cu (56 %). Possible toxicity related to these metals was examined using the risk assessment code, and by comparing the chemical data with sediment quality guideline ERL-ERM values. Results obtained using the two methods were in agreement, and showed low to medium risk for all metals, indicating that adverse effects on aquatic biota should rarely occur.  相似文献   

11.
Delhi has the highest cluster of small-scale industries (SSI) in India. There are generally less stringent rules for the treatment of waste in SSI due to less waste generation within each individual industry. This results in SSI disposing of their wastewater untreated into drains and subsequently into the river Yamuna, which is a major source of potable water in Delhi, thus posing a potential health and environmental risk to the people living in Delhi and downstream. To study the quantity, quality and distribution of heavy metals in liquid waste from industrial areas, wastewater, suspended materials and bed sediments were collected from industrial areas and from the river Yamuna in Delhi. This study has also focused on the efficiency of production processes in small-scale industries in India. Heavy metals such as Fe, Mn, Cu, Zn, Ni, Cr, Cd, Co and Pb were detected using a GBC 902 atomic absorption spectrometer. The concentration of heavy metals observed was as follows: Fe 2-212, Mn 0.3-39, Cu 0.2-20, Zn 0.2-5, Ni 0.6-6, Cr 0.2-53, Cd 0.08-0.2, Co 0.013-0.55, Pb 0.3-0.7 mg L(-1) in wastewater; Fe 5842-78 000, Mn 585-10 889, Cu 206-7201, Zn 406-9000, Ni 22-3621, Cr 178-10 533, Co 17-114, Cd 13-141, Pb 67-50 171 mg kg(-1) in suspended material; and Fe 3000-84000, Mn 479-1230, Cu 378-8127, Zn 647-4010, Ni 164-1582, Cr 139-3281, Co 20-54, Cd 37-65, Pb 228-293 mg kg(-1) in bed residues. This indicates that SSI could be one of the point sources of metals pollution in the river system.  相似文献   

12.
太原市大气颗粒物中重金属的污染特征及来源解析   总被引:6,自引:2,他引:4  
为了解太原市采暖期大气颗粒物不同粒径中重金属的污染特征及其来源,于2012年10月—2013年2月对环境空气中颗粒物采样,用原子吸收分光光度法测定样品中Fe、Pb、Cu、Ni、Cr、Cd、Mn、Zn等8种元素的含量。结果表明,太原市采暖期重金属浓度从高到低依次为FePbMnZnCrCuNiCd。重金属Pb、Mn、Zn、Ni、Cd主要富集在PM2.5中;Cr主要富集在PM10中;Cu主要富集在PM5中;Fe主要在粒径大于2.5μm的粗粒子中富集。除Zn外,其他7种元素浓度均表现为灰霾期采暖期采暖前。通过主因子分析表明,太原市大气颗粒物中重金属主要来源于冶金、有机合成工业、燃煤、汽车尾气、土壤尘等。  相似文献   

13.
Solid waste samples were collected from five small-scale industrial sites in the National Capital Territory (NCT) of Delhi. These industrial sites represent the regional spread of the industrial belt in the NCT of Delhi. Solid waste samples were digested using aqua-regia and HF in air tight teflon bombs for the quantitative analysis of heavy metals (Hg, Pb, Cd, Mn, Fe, Ni, Cu and Zn) by GBC model 902 atomic absorption spectrophotometer. Hg was analysed using hydrid generator attachment. Beside this sequential extraction was used to fractionate five heavy metals (Pb, Ni, Cd, Cu and Zn) into six operationally defined phases, viz. water soluble, exchangeable, carbonate-bound, Fe-Mn oxides, organic-bound and residual fractions to ascertain the relative mobility of these metals. The result obtained showed metal concentration to be in the range of Hg 0.42-2.3; Pb 23-530; Cd 014-224; Mn 494-19 964; Fe 35 684-233 119; Ni 192-1534; Cu 3065-10 144 and Zn 116-23 321 (all units in mg kg(-1)) in all the industrial areas studied. The fractionated toxic metals like Pb, Ni and Cd were observed to be in the range of 25-35, 15-50 and 40-50%, respectively, in mobile or bio-available fractions of solid waste. As this waste is often disposed-off by the roadsides, low lying areas, abandoned quarries or in landfill sites which are often not properly planned, thus posing potential risk to ground and surface water quality to millions of people living downstream.  相似文献   

14.
The chemical speciation of nine heavy metals in intertidal sediments from Quanzhou Bay was determined using a modified sequential extraction procedure, proposed by the Commission of the European Community Bureau of Reference. The results show that Mn presents the highest percentage in the acid-soluble fraction, and Pb and Cu present the highest percentages in the reducible fraction. The highest percentages of Fe, V, Cr, Ni, Zn, and Co were found in the residual fraction. The mobility order of the heavy metals studied on the basis of the nonresidual content of the elements is Mn > Pb > Cu > Co > Zn > Ni > Cr > V > Fe. The assessment on potential ecological risk indices of some heavy metals indicates that Zn, Ni, and Cr show moderate contamination, while Cu and Pb show slighter contamination. On the whole, the comprehensive potential ecological risk index of Cu, Zn, Ni, Cr, and Pb in the sediments presents moderate degree.  相似文献   

15.
The present study was carried out in order to evaluate the statistical apportionment and risk assessment of selected metals (Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Pb, Sr, and Zn) in freshly deposited sediments in Rawal Lake, Pakistan. Composite sediment samples were collected, oven-dried, grounded, homogenized, and processed to assess the water-soluble and acid extractable concentrations of the metals in the water extract and acid extract of the sediments using flame atomic absorption spectrophotometer. Statistical methods were used to identify the possible sources of the metals. Sediment quality guidelines and potential acute toxicity were used to evaluate the ecotoxicological sense of selected metals. Non-carcinogenic health risk assessment was also carried out to determine the potential adverse health risks to the inhabitants. Relatively higher concentration was noted for Ca, Fe, Mg, Na, K, Mn, and Sr in the sediment samples. Principal component analysis and cluster analysis revealed anthropogenic contributions of Cd, Pb, Cr, Mn, Fe, and Li in the sediments. Enrichment factors of the metals in sediments showed severe to moderate enrichment of Cd, Pb, Ca, Fe, Li, Mn, and Sr. Geoaccumulation indices and contamination factors evidenced significant contamination by Cd and Pb, although, on the whole, low degree of contamination was noted. The levels of some metals exceeded the sediment quality guidelines, which revealed frequently adverse biological effects to the dwelling biota in the aquatic ecosystem. The sediments were found to be significantly contaminated by Cd, Pb, Cr, Mn, Fe, and Li.  相似文献   

16.
Concentrations of Fe, Mn, Cr, Cu, Ni, Pb, Zn, Cd and Hg were evaluated in surface sediments of two rivers from north of Morocco, known as Souani and Mghogha rivers. Significantly higher concentrations in mg kg???1 dry weight (dw) of Mn (747.6 vs. 392.9), Cr (86.4 vs. 56.3), Zn (299.5 vs. 138.5) were found in sediment samples from Mghogha when compared with Souani river. Average concentrations of Cd and Hg in several sediment samples from both rivers were above the effect range median that predicts toxic effects to aquatic organisms. The calculation of enrichment factors showed that Mn, Cr, Cu and Ni were depleted, whereas Pb and Hg were enriched. The results of geoaccumulation index revealed that sediments of both rivers were unpolluted with most of the metals and moderately contaminated with Fe and Hg. Some of elevated concentrations of Hg, principally in Mghogha River, were due to anthropogenic sources including the direct discharges of industrial zone.  相似文献   

17.
In this paper, the heavy metal levels (Cu, Pb, Zn, Ni, Mn, Fe, As, Cd, Cr, Hg), organic carbon, and chlorophyll degradation products were studied to prove their ecological effects in Lake Ç?ld?r, where fossil fuels are used as an energy source in the studied area for most of the year, and domestic waste from settlements is discharged directly into the lake. Sediment samples were collected from six sites on the northern shore of Ç?ld?r Lake, Turkey in November 2012. Enrichment (EF) and contamination factor (CF) values were determined, and Pollution Load (PLI) and Potential Ecological Risk (PER) indices were calculated. Average concentrations of heavy metals in the sediments were, in descending order, Fe?>?Mn?>?Zn?>?Ni?>?Cr?>?Cu?>?Pb?>?As?>?Cd?>?Hg, respectively. According to mean values, the source of these elements may be considered natural due to lack of enrichment in Cu, Pb, Zn, Ni, and Cr in the sediment samples. Regarding enrichment of As, Cd, Mn, and Hg, the highest EF belongs to Hg. PLI and PER values indicate there are moderate ecological risk in the lake.  相似文献   

18.
To document the spatial distribution and metal contamination in the coastal sediments of the Al-Khafji area in the northern part of the Saudi Arabian Gulf, 27 samples were collected for Al, V, Cr, Mn, Cu, Zn, Cd, Pb, Hg, Sr, As, Fe, Co, and Ni analysis using inductively coupled plasma-mass spectrometer (ICP-MS). The results revealed the following descending order of the metal concentrations: Sr > Fe > Al > As > Mn > Ni > V > Zn > Cr > Cu > Pb > Co > Hg > Cd. Average levels of enrichment factor of Sr, As, Hg, Cd, Ni, V, Cu, Co, and Pb were higher than 2 (218.10, 128.50, 80.94, 41.50, 12.31, 5.66, 2.95, 2.90, and 2.85, respectively) and that means the anthropogenic sources of these metals, while Al, Zn, Cr and Mn have enrichment factor less than 2, which implies natural sources. Average values of Sr, Hg, Cd, Cr, Ni, and As in the coastal sediments of Al-Khafji area were mostly higher than the values recorded from the background shale and earth crust and from those results along coasts of the Caspian Sea and the Mediterranean Sea. The highest levels of Cu in the northern part of the studied coastline might be due to Al-Khafji desalination plant, while levels of Al, Ni, Cr, Fe, Mn, Pb, and Zn in the central part may be a result of landfilling and industrial sewage. The highest levels of As, Cd, Co, Cu, Hg, and V in the southern part seem to be due to oil pollutants from Khafji Joint Operations (KJO). The higher values of Sr in the studied sediments in general and particularly in locality 7 could relate to the hypersalinity and aragonitic composition of the scleractinian corals abundant in that area.  相似文献   

19.
为探索贵州煤矿区表层水-沉积物中重金属的分布特征及来源,科学制定环境保护与污染治理措施,以新寨河为研究对象,在11个样点共采集66个表层水体和沉积物样品,通过对Cd、Pb、Cr、Zn、Cu、As、Hg、Fe、Mn等9种重金属元素进行分析,揭示其在新寨河的空间分布特征。同时,利用多指数法开展了有毒重金属元素污染状况评价,通过相关性分析和主成分分析解析了重金属的来源。结果表明,新寨河流域表层水体中,Fe、Mn点位超标率达100%。表层水中重金属元素的平均含量排序为Fe>Mn>Zn>Cu>Cr>As>Cd>Pb>Hg,而沉积物中重金属元素的平均含量排序则是Fe>Mn>Zn>Cr>Cu>As>Pb>Cd>Hg,表明新寨河表层水体和沉积物中重金属元素的空间分布存在一定差异。各重金属元素的内梅罗综合污染指数介于0.59~1.13之间,表明新寨河表层水体中重金属的污染程度达到轻微污染水平。单种重金属元素的潜在生态危害系数计算结果显示,90.91%和9.09%的沉积物样点分别被归类为轻微风险和中等风险。所有样点沉积物的潜在生态危害指数介于14.57~120.55之间(均值为72.08),表明新寨河沉积物的潜在生态风险较低。Cu、As在多个样点存在污染现象,需予以重点监控管理。新寨河流域重金属的来源可分为三大类:Cd、Pb、Cr、Zn、Cu为第一类,对应地表径流源;As、Fe、Mn为第二类,对应煤矿开采源;Hg为第三类,对应复合源。  相似文献   

20.
The contents of heavy metals (Fe, Mn, Pb, Cu, Cd, and Hg) dissolved in water and suspended solids of Gökova Bay—partly and fully sampled in 2005 and 2006, respectively—are quite higher than the average values encountered in uncontaminated sea water. The high concentrations are associated with terrestrial inputs from the mining zones and anthropogenic (domestic + industrial) sources. Moreover, the distribution of Fe and Cu is affected by primary production because these elements function as nutrients in biological activities. The Cr, Ni, and Fe concentrations of surface sediments are above the shale average. The Cr and Ni contents of surface sediments representative of river mouths strongly correlate with total phosphorus contents. In a sulfide-poor environment, Pb and Cu were concentrated at a higher ratio in surface sediments than Cd, probably due to higher stabilities of their surface complexes with amorphous iron oxides and clay minerals existing as major components in the sediments. The exceptional enrichment of Zn may be attributed to double oxide formation with amorphous iron oxides in sediments. The high metal values are most probably caused by terrestrial inputs from anthropogenic sources and the mining zones at the southeast part of the bay. The Al, Mn, Pb, Cu, Zn, and Hg contents are below the shale average. The low values have possibly originated from the coarse-grained sandy sediments having a low affinity for metals. There are no distinct differences in the metal distributions in water and suspended matter between the years 2005 and 2006 in the bay, probably due to low sedimentation rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号