首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimal foraging theory predicts that individuals should become more opportunistic when intraspecific competition is high and preferred resources are scarce. This density-dependent diet shift should result in increased diet breadth for individuals as they add previously unused prey to their repertoire. As a result, the niche breadth of the population as a whole should increase. In a recent study, R. Svanb?ck and D. I. Bolnick confirmed that intraspecific competition led to increased population diet breadth in threespine stickleback (Gasterosteus aculeatus). However, individual diet breadth did not expand as resource levels declined. Here, we present a new method based on complex network theory that moves beyond a simple measure of diet breadth, and we use the method to reexamine the stickleback experiment. This method reveals that the population as a whole added new types of prey as stickleback density was increased. However, whereas foraging theory predicts that niche expansion is achieved by individuals accepting new prey in addition to previously preferred prey, we found that a subset of individuals ceased to use their previously preferred prey, even though other members of their population continued to specialize on the original prey types. As a result, populations were subdivided into groups of ecologically similar individuals, with diet variation among groups reflecting phenotype-dependent changes in foraging behavior as prey density declined. These results are consistent with foraging theory if we assume that quantitative trait variation among consumers affects prey preferences, and if cognitive constraints prevent individuals from continuing to use their formerly preferred prey while adding new prey.  相似文献   

2.
以西藏贡嘎县为研究对象,运用生态学原理,定量估算了西藏高原农业生态系统中氮素循环的数量特征,为该系统的调控与结构优化提供了理论依据。  相似文献   

3.
This paper deals with the purposeful marking of trails as a mechanism for coordinating movement. Patterns of motion are adapted to the environmental conditions, the functions to be carried out, and the condition of the organism; therefore, the networks of trails must change both quantitatively and qualitatively over time. The nature of such changes, and how they are controlled at the individual level are discussed. In particular, we show that slight modulations in individual traits, in the trail marker, or in the size of the group can account for major changes in movement patterns at the population level such as abrupt transitions from diffuse area-covering networks to focused trunk trails. Using a mathematical model and computer (cellular automata) simulation we show that trunk trails carrying a high density of traffic can form spontaneously under suitable conditions from an initially randomly distributed group. The key to this self-organizing property stems from interactions between individuals that lead to a collective effect in recruitment to trails: the influence of small groups of individuals increases rapidly with group size. The dichotomy between high traffic (strong) trunk trails versus diffuse (weak) networks is discussed.  相似文献   

4.
This paper extends the application of the cumulative size based mechanistic model, which has previously been shown to describe diverse aphid population size data well. The mechanistic model is reviewed with a focus on the explanatory role of the birth and death rate formulation. An analysis of two data sets, one on the mustard aphid and the other on the pecan aphid, indicates that multiple linear regression equations based on the estimated birth and death rate parameters alone account for nearly all (R2 > 0.95) of the variability in two key population attributes, namely the peak count and the cumulative density. This indicates that population size variables may be projected directly from the growth rate parameters using linear equations. Such linear relationships based on the birth and death rate parameters are shown to hold also for certain generalized mechanistic models for which the analytical solution is not available. The birth and death rate coefficients, therefore, constitute a new succinct set of variables that could be included in the predictive modeling of aphid populations, as well as other insect and animal populations with local collapse which follow similar growth dynamics.  相似文献   

5.
In this study a conceptual framework for assessing the statistical properties of a non-stochastic spatial interpolator is developed through the use of design-based finite population inference tools. By considering the observed locations as the result of a probabilistic sampling design, we propose a standardized weighted predictor for spatial data starting from a deterministic interpolator that usually does not provide uncertainty measures. The information regarding the coordinates of the spatial locations is known at the population level and is directly used in constructing the weighting system. Our procedure captures the spatial pattern by means of the Euclidean distances between locations, which are fixed and do not require any further assessment after the sample has been drawn. The predictor for any individual value turns in a ratio of design-based random quantities. We illustrate the predictor design-based statistical properties, i.e. asymptotically p-unbiasedness and p-consistency, for simple random sampling without replacement. An application to a couple of environmental datasets is presented, for assessing predictor performances in correspondence of different population characteristics. A comparison with the equivalent non-spatial predictor is presented.  相似文献   

6.
We tested several hypotheses to explain low between-year territory fidelity in a breeding population of yellow-headed blackbirds (Xanthocephalus xanthocephalus). During a 5-year study the population of territorial males declined by two-thirds and some of the marshes that supported territories significantly deteriorated. Individual males held territories and bred for an average of 1.9 years. Of males that bred for at least 2 years, 30% skipped owning a territory in the study area during at least 1 year of their breeding lifetimes. Our information suggests that they may have bred outside of the area in those years. Of males with territories in two or more breeding seasons, 60% changed breeding marshes at least once. Males changed territories during 42.9% of between-year opportunities to do so. We found no support for the hypotheses that male yellow-headed blackbirds: (1) are more likely to move when territory density is low; (2) are likely to abandon territories that are deteriorating; or (3) change territories to improve their reproductive success. We suggest three non-mutually exclusive explanations for the yellow-headed blackbird's weak site fidelity: (1) it is a response to habitat deterioration and to other factors that may be causing the population's decline; (2) the males, being migratory, make fresh settlement decisions each year after they arrive on the breeding grounds in the general vicinity of their previous year's breeding; (3) yellow-headed blackbirds may have evolved in, and be adapted to, highly unstable habitats, moving frequently in response to changes in local breeding site conditions. Correspondence to: L.D. Beletsky  相似文献   

7.
Satellite transmitters were deployed on ten green turtles (Chelonia mydas) nesting in Rekawa Sanctuary (RS-80.851°E 6.045°N), Sri Lanka, during 2006 and 2007 to determine inter-nesting and migratory behaviours and foraging habitats. Nine turtles subsequently nested at RS and demonstrated two inter-nesting strategies linked to the location of their residence sites. Three turtles used local shallow coastal sites within 60 km of RS during some or all of their inter-nesting periods and then returned to and settled at these sites on completion of their breeding seasons. In contrast, five individuals spent inter-nesting periods proximate to RS and then migrated to and settled at distant (>350 km) shallow coastal residence sites. Another turtle also spent inter-nesting periods proximate to RS and then migrated to a distant oceanic atoll and made forays into oceanic waters for 42 days before transmissions ceased. This behavioural plasticity informs conservation management beyond protection at the nesting beach.  相似文献   

8.
9.
对近年来农业生态系统能流和能量分析研究的某些新进展进行了介绍和评述,重点介绍了HTOdum所创立的能值概念和Giampietro等人提出的生物物理资本概念。对这些新概念在农业生态系统分析中的应用进行了讨论。  相似文献   

10.
As settled juveniles and adults, blue rockfish (Sebastes mystinus) are nonmigratory inhabitants of kelp and rocky reef habitats along the California coast, USA, and prior to settlement, they possess a pelagic larval and juvenile stage lasting 3–5 months. A previous study of adults revealed two cryptic species within S. mystinus and evidence of reproductive isolation in a region where both cryptic adults co-occur. Given this pattern of reproductive isolation, we investigated the degree of hybridization or introgression in individual year-classes shortly after juvenile settlement in two different years (2001 and 2002). Using microsatellite markers, we found little indication of hybridization in new juvenile year-classes despite an adult population that comprised both cryptic species. However, we found an average of two percent of hybrid or introgressed individuals in regions with a low frequency of one of the two species. Therefore, while the lack of hybrids or introgression supports the hypothesis of reproductive isolation between the cryptic species within S. mystinus, the age-structured analysis also revealed a spatial pattern of low-frequency differences in the number of introgressed individuals. These results suggest that reproductive barriers may breakdown when one of the two species predominates the regional adult gene pool.  相似文献   

11.
Ezard TH  Becker PH  Coulson T 《Ecology》2007,88(10):2496-2504
There have been numerous reports of changes in phenology, which are frequently attributed to environmental change. Age-dependent change in phenotypic traits, fledgling production, and the timing of events in the life cycle is also widespread. This means that changes in the age structure of a population could generate changes in phenology, which may be incorrectly attributed to environmental change or microevolution. Here, estimates of selection for arrival date, arrival mass, and laying date are compared when age is and is not corrected for. This is achieved using long-term individual-based data collected from a breeding colony of Common Terns (Sterna hirundo) and a novel fitness measure: individual contributions to population growth. The failure to correct for age generated deceptive estimates of selection in eight out of nine comparisons. In six out of nine comparisons, the direction of selection differed between age-corrected and uncorrected estimates. Persistent individual differences were detected: individuals remained within the same part of the phenotype distribution throughout life. The age-corrected estimates of selection were weak and explained little variation in fitness, suggesting that arrival date, arrival mass, and laying date are not under intense selection in this population. These results also demonstrate the importance of correcting for age when identifying factors associated with changes in seabird phenology.  相似文献   

12.
In this paper, we analyzeatabases on birds and insects to assess patterns of functional diversity in human-dominated landscapes in the tropics. A perspective from developed landscapes is essential for understanding remnant natural ecosystems, because most species experience their surroundings at spatial scales beyond the plot level, and spillover between natural and managed ecosystems is common. Agricultural bird species have greater habitat and diet breadth than forest species. Based on a global data base, bird assemblages in tropical agroforest ecosystems were composed of disproportionately more frugivorous and nectarivorous, but fewer insectivorous bird species compared with forest. Similarly, insect predators of plant-feeding arthropods were more diverse in Ecuadorian agroforest and forest compared with rice and pasture, while, in Indonesia, bee diversity was also higher in forested habitats. Hence, diversity of insectivorous birds and insect predators as well as bee pollinators declined with agricultural transformation. In contrast, with increasing agricultural intensification, avian pollinators and seed dispersers initially increase then decrease in proportion. It is well established that the proximity of agricultural habitats to forests has a strong influence on the functional diversity of agroecosystems. Community similarity is higher among agricultural systems than in natural habitats and higher in simple than in complex landscapes for both birds and insects, so natural communities, low-intensity agriculture, and heterogeneous landscapes appear to be critical in the preservation of beta diversity. We require a better understanding of the relative role of landscape composition and the spatial configuration of landscape elements in affecting spillover of functionally important species across managed and natural habitats. This is important for data-based management of tropical human-dominated landscapes sustaining the capacity of communities to reorganize after disturbance and to ensure ecological functioning.  相似文献   

13.
An individual-based model was developed to predict the population dynamics of Daphnia magna at laboratory conditions from individual life-history traits observed in experiments with different feeding conditions. Within the model, each daphnid passes its individual life cycle including feeding on algae, aging, growing, developing and – when maturity is reached – reproducing. The modelled life cycle is driven by the amount of ingested algae and the density of the Daphnia population. At low algae densities the population dynamics is mainly driven by food supply, when the densities of algae are high, the limiting factor is “crowding” (a density-dependent mechanism due to chemical substances released by the organisms or physical contact, but independent of food competition).  相似文献   

14.
Nonnative invasive species are one of the main global threats to biodiversity. The understanding of the traits characterizing successful invaders and invasion-prone ecosystems is increasing, but our predictive ability is still limited. Quantitative information on biotic homogenization and particularly its temporal dynamics is even scarcer. We used freshwater fish distribution data in the Iberian Peninsula in four periods (before human intervention, 1991, 1995, and 2001) to assess the temporal dynamics of biotic homogenization among river basins. The percentage of introduced species among fish faunas has increased in recent times (from 41.8% in 1991 to 52.5% in 2001), leading to a clear increase in the similarity of community composition among basins. The mean Jaccard's index increase (a measure of biotic homogenization) from the pristine situation to the present (17.1%) was similar to that for Californian fish but higher than for other studies. However, biotic homogenization was found to be a temporally dynamic process, with finer temporal grain analyses detecting transient stages of biotic differentiation. Introduced species assemblages were spatially structured along a latitudinal gradient in the Iberian Peninsula, with species related to sport fishing being characteristic of northern basins. Although the comparison of fish distributions in the Iberian Peninsula and France showed significant and generalized biotic homogenization, nonnative assemblages of northeastern Iberian basins were more similar to those of France than to those of the rest of the Iberian Peninsula, indicating a main introduction route. Species introduced to the Iberian Peninsula tended to be mainly piscivores or widely introduced species that previously had been introduced to France. Our results indicate that the simultaneous analysis of the spatial distribution of introduced assemblages (excluding native species that reflect other biogeographical patterns) and their specific traits can be an effective tool to detect introduction and invasion routes and to predict future invaders from donor regions.  相似文献   

15.
Mutualistic relationships between ants and aphids are well studied but it is unknown if aphid-attending ants place a greater relative importance on defending aphids from aphid-predators or from competing ant colonies. We tested the hypothesis that aphid-attending ants defend their aphids against aphid-predators more aggressively than against ants from neighboring colonies. We conducted introduction trials by placing an individual non-predatory insect, an aphid-predator, or a foreign conspecific ant on the leaf of a resident ant. We found that ants did not attack non-predatory insects, but did attack competing ants and aphid-predators. When we presented resident ants with both the threats (i.e., predator and competitor) at the same time, residents always attacked potential competitors as opposed to aphid-predators. We suggest this behavior may reduce the likelihood of raids by neighboring colonies. Ants appear to balance both the energetic costs of making an attack and the costs associated with losing aphids to a predator, against the benefits of signaling their defensive ability to rivals and/or preventing rivals from gaining knowledge of a potential food resource.  相似文献   

16.
Summary A bivoltine east Texas population of the pipevine swallowtail butterfly (Battus philenor) exhibits a seasonal shift in the shapes of non-host leaves upon which ovipositing females land. Field mark-recapture studies and analysis of the behavior of wild females of different ages were used to distinguish between two alternative mechanisms for the shift in the populations's predominant leaf-shape search mode: seasonal differences in the outcome of learning for successively emerging naive foragers which exhibit one preference for most of their lives vs. synchronous switching by experienced foragers from one learned preference to another. Results supported each hypothesis: (1) Since wild butterflies are short-lived, the seasonal shift in searching behavior must reflect at least partly the successive emergence of naive females that learn to prefer host species with different leaf shapes. The leaf-shape preferences of older females were, in fact, stronger and less variable than those of younger individuals. About 80% of 51 marked individuals maintained stable leaf-shape search modes over recapture events, exhibiting slightly stronger preferences in later observation periods. (2) Almost 16% of marked females switched search modes across recapture events. Unmarked females sometimes switched search modes within an observation period; switching occurred only after the discovery of the host species with a leaf shape differing from that originally preferred. Switching by individual butterflies was generally more frequent at the time an adult brood shifted from one dominant search mode to another. Individual switching within an adult brood was more common in those years in which the population's shift in predominant search mode occurred during that brood.The evolution of rapid learning by naive females and conservative switching by experienced females is discussed in relation to a quantitative model of switching dynamics.  相似文献   

17.
Summary Urine odors from 4 species of blind subterranean mole rats belonging to theSpalax ehrenbergi superspecies in Israel were evaluated to determine whether there were discriminable differences in the odors that were specific to different individuals, populations, and species of mole rats. Trained laboratory rats assessed these differences in an automated olfactometer using an operant conditioning paradigm. They demonstrated the discriminability of the urine odors in the 3 categories by their correct responses in generalization trials. These characteristic species, population and individual odors may provide these solitary, territorial and blind rodents a means for diverse chemical communication in spacing behavior, reproduction, species isolation and speciation.  相似文献   

18.
Irruptive population dynamics appear to be widespread in large herbivore populations, but there are few empirical examples from long time series with small measurement error and minimal harvests. We analyzed an 89-year time series of counts and known removals for pronghorn (Antilocapra americana) in Yellowstone National Park of the western United States during 1918-2006 using a suite of density-dependent, density-independent, and irruptive models to determine if the population exhibited irruptive dynamics. Information-theoretic model comparison techniques strongly supported irruptive population dynamics (Leopold model) and density dependence during 1918-1946, with the growth rate slowing after counts exceeded 600 animals. Concerns about sagebrush (Artemisia spp.) degradation led to removals of >1100 pronghorn during 1947-1966, and counts decreased from approximately 700 to 150. The best models for this period (Gompertz, Ricker) suggested that culls replaced intrinsic density-dependent mechanisms. Contrary to expectations, the population did not exhibit enhanced demographic vigor soon after the termination of the harvest program, with counts remaining between 100 and 190 animals during 1967 1981. However, the population irrupted (Caughley model with a one-year lag) to a peak abundance of approximately 600 pronghorn during 1982-1991, with a slowing in growth rate as counts exceeded 500. Numbers crashed to 235 pronghorn during 1992-1995, perhaps because important food resources (e.g., sagebrush) on the winter range were severely diminished by high densities of browsing elk, mule deer, and pronghorn. Pronghorn numbers remained relatively constant during 1996-2006, at a level (196-235) lower than peak abundance, but higher than numbers following the release from culling. The dynamics of this population supported the paradigm that irruption is a fundamental pattern of growth in many populations of large herbivores with high fecundity and delayed density-dependent effects on recruitment when forage and weather conditions become favorable after range expansion or release from harvesting. Incorporating known removals into population models that can describe a wide range of dynamics can greatly improve our interpretation of observed dynamics in intensively managed populations.  相似文献   

19.
Environmental and Ecological Statistics - This paper presents an extension of the Geostatistical model under preferential sampling in order to accommodate possible local repulsion effects. This...  相似文献   

20.
In population modeling, a considerable level of complexity is often required to provide trustworthy results, comparable with field observations. By assuring sufficient detail at the individual level while preserving the potential to explore the consequences at higher levels, individual-based modeling may thus provide a useful tool to investigate dynamics at different levels of organization. Still, population dynamics resulting from such models are often at odds with observations from the field. This may be partly caused by a lack of focus on the individual dynamics under conditions of food stress and starvation. I developed a physiologically structured, individual-based simulation model to investigate life history of Daphnia and its effect on population dynamics in response to the productivity of the system. In verifying model behavior with available literature data on life history and physiology, I paid special attention to the dynamics of food intake and the verification of individual level results under conditions of food limitation and starvation. I show that the maximum filtering rates under low food levels used in the current model are much closer to measured filtering rates than the ones used in other models. Being consistent with results on physiology and life history from experiments at a wide range of food availability (including starvation), the model generates low amplitude or high amplitude population density cycles depending on the productivity of the system, as observed in field and experimental populations of Daphnia and with the minimum population densities being one to two orders of magnitude lower in the high amplitude than in the low amplitude cycles. To generate results which are not only qualitatively but also quantitatively comparable to experimental and field observations, however, a crowding effect on the filtering response has to be incorporated in the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号