首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diminishing wood supply and high formaldehyde emission from synthetic adhesive-bonded lignocellulose boards have become concerns. In this research, new adhesive-free boards made from xylanase–laccase-modified bamboo particles were developed. The bamboo particles were pretreated first with xylanase and then with laccase. The synergistic pretreatment was performed according to a Taguchi experiment that included six variables: xylanase treatment (enzyme concentration: 10, 20, 30 U/g; reaction pH: 8, 9, 10; reaction time: 30, 60, 90 min) and laccase treatment (enzyme concentration: 10, 20, 30 U/g; reaction pH: 2, 3, 4; reaction time: 30, 60, 90 min). The particles were hot-pressed to harvest the self-bonded boards, whose physical–mechanical properties were evaluated. The results showed that all six variables (except laccase reaction time) caused significant effects at 0.05 level on physical–mechanical properties of boards. The optimum pretreatment parameters were determined to be xylanase (20 U/g, pH 9, 60 min) and laccase (20 U/g, pH 4, 60 min). The optimized flexural strength, flexural modulus, internal bonding, and 2 h thickness swelling of boards met the highest requirements in Chinese national standard GB/T 4897 (2015) for particleboards. The performance of proposed boards was also better than that of reported self-bonded bamboo particleboards with only a laccase pretreatment.  相似文献   

2.
Recycling today constitutes the most environmentally friendly method of managing wood waste. A large proportion of the wood waste generated consists of used furniture and other constructed wooden items, which are composed mainly of particleboard, a material which can potentially be reused. In the current research, four different hydrothermal treatments were applied in order to recover wood particles from laboratory particleboards and use them in the production of new (recycled) ones. Quality was evaluated by determining the main properties of the original (control) and the recycled boards. Furthermore, the impact of a second recycling process on the properties of recycled particleboards was studied. With the exception of the modulus of elasticity in static bending, all of the mechanical properties of the recycled boards tested decreased in comparison with the control boards. Furthermore, the recycling process had an adverse effect on their hygroscopic properties and a beneficial effect on the formaldehyde content of the recycled boards. The results indicated that when the 1st and 2nd particleboard recycling processes were compared, it was the 2nd recycling process that caused the strongest deterioration in the quality of the recycled boards. Further research is needed in order to explain the causes of the recycled board quality falloff and also to determine the factors in the recycling process that influence the quality degradation of the recycled boards.  相似文献   

3.
The effects of manufacturing parameters on mechanical properties of medium density fibreboard (MDF) bonded with modified soy protein-based glue were studied to find an appropriate manufacture technology. Physical properties of MDF made with different amount of wax emulsion were measured. Results indicated that water repellent had no obvious influence on physical properties of soy protein-based MDF boards. The fiberboards bonded with soy protein-based glue showed stronger water resistance properties than those bonded with urea–formaldehyde (UF) resins. Furthermore, the soy protein-based MDF boards had good quality [25.2% 24 h soak thickness swell (TS), 29.9 MPa modulus of rupture (MOR), 3130 MPa modulus of elasticity (MOE)], which met requirements of Chinese national standard. Practical processing parameters were obtained by orthogonal experiment, i.e., glue content 8.0%, hot-press temperature 200 °C, and hot-press time 150 s.  相似文献   

4.
The technical properties of three layered cement-bonded boards (CBBs) made from wastepaper and sawdust were investigated. The CBBs were produced at three density levels of 1000, 1200 and 1300 kg/m3 and at four cement/particle ratios of 2.0:1, 2.5:1, 3.0:1 and 3.5:1 on a weight to weight basis. The technical properties evaluated were modulus of rupture (MOR), modulus of elasticity (MOE), water absorption (WA) and thickness swelling (TS). The MOR values ranged from 4.85 to 11.69 MPa and MOE values ranged from 2.80 to 5.57 GPa. The mean values of WA and TS after 24 h of water soaking of the CBBs ranged from 18.18% to 40.49% and 3.55% to 12.13%, respectively. MOR and MOE of the CBBs increased with increase in board density, but MOR decreased with the increase in cement/particle ratio. On the other hand, WA and TS decreased with increase in board density and cement/particle ratio. CBBs produced from wastepaper and sawdust at cement/particle ratios of 3.0:1 and 3.5:1 are suitable for building construction such as paneling, ceiling and partitioning.  相似文献   

5.
The objective of this work was to determine some physical and mechanical properties of the high density polyethylene (HDPE) composites reinforced with various mixtures of the paper sludge and the wood flour, and to evaluate the coupling agent performance. The waste sludge materials originating from two different sources including paper making waste water treatment sludge (PS) and ink-eliminated sludge (IES) were characterized in terms of physico-chemical properties. In the experiment, four levels of paper sludge (20, 30, 40 and 60 wt%), three levels of wood flour (20, 40 and 60 wt%), and two levels of coupling agent (MAPE) content (2 and 3 wt%) were used. The flexural properties of the composites were positively affected by the addition of the sludge. Especially, tensile modulus improved with the increase of paper sludge content. With the addition of MAPE, flexural properties improved considerably compared with control specimens (without any coupling agent). The results showed that the water absorption (WA) and thickness swelling (TS) values of the samples decreased considerably with increasing sludge content in the composite, while they increased with increasing wood flour content. It is to be noted that with incorporation of MAPE in the composite formulation, the compatibility between the wood flour and HDPE was enhanced through esterification, which reduced the WA and TS and improved the mechanical properties. Composites made with IES exhibited superior physico-mechanical properties compared with the PS filled composites. Overall results suggest that the waste paper sludge materials were capable of serving as feasible reinforcing fillers for thermoplastic polymer composites.  相似文献   

6.
Agricultural wastes, oil palm trunk (OPT) veneer and oil palm empty fruit bunch (EFB) mat were used for the preparation of hybridized plywood using 250 and 450 g/m2 of urea formaldehyde (UF) as gluing agent. The mechanical (flexural strength, flexural modulus, screw withdrawal, shear strength), physical (density, water absorption, thickness swelling and delamination) and thermal (TGA) properties of the biocomposites were studied. Images taken with a scanning electron micrograph (SEM) indicated an improvement in the fiber–matrix bonding for the laminated panel glued with 450 g/m2 of UF.  相似文献   

7.
In this paper the reuse of recycled LDPE in combination with the incorporation of EPDM modifier in the production of greenhouse films has been investigated. A three-layer film (60-100-40 micron thickness) containing recycled LDPE in the middle layer and a high UV-stabilized 40-micron outer layer was developed and proven to be commercially successful. Films with 25% and 50% recycled material content were produced. The effect of natural weathering on the film properties over a period of 15 months has been observed. Changes in physical and mechanical property were determined. The addition of EPDM to the raw resin was found to improve the extrudability of the compound and improve the weather resistivity of the film. The EPDM-modified films containing 25% to 50% recycled material retained approximately 95% and 75%, respectively, of their original extensibility after 9 months' exposure to natural weathering. Optimization of EPDM and UV stabilizer concentration was carried out to develop a balanced film with excellent mechanical and physical properties and resistance to weathering conditions. The use of UV stabilizer concentrations slightly higher than commercial practice in the outer layer of the multilayer film can be justified by the cost reduction by the incorporation of recycled LDPE materials.  相似文献   

8.
This paper presents a comparison between printed circuit boards from computers and mobile phones. Since printed circuits boards are becoming more complex and smaller, the amount of materials is constantly changing. The main objective of this work was to characterize spent printed circuit boards from computers and mobile phones applying mineral processing technique to separate the metal, ceramic, and polymer fractions. The processing was performed by comminution in a hammer mill, followed by particle size analysis, and by magnetic and electrostatic separation. Aqua regia leaching, loss-on-ignition and chemical analysis (inductively coupled plasma atomic emission spectroscopy - ICP-OES) were carried out to determine the composition of printed circuit boards and the metal rich fraction. The composition of the studied mobile phones printed circuit boards (PCB-MP) was 63 wt.% metals; 24 wt.% ceramics and 13 wt.% polymers; and of the printed circuit boards from studied personal computers (PCB-PC) was 45 wt.% metals; 27 wt.% polymers and ceramics 28 wt.% ceramics. The chemical analysis showed that copper concentration in printed circuit boards from personal computers was 20 wt.% and in printed circuit boards from mobile phones was 34.5 wt.%. According to the characteristics of each type of printed circuit board, the recovery of precious metals may be the main goal of the recycling process of printed circuit boards from personal computers and the recovery of copper should be the main goal of the recycling process of printed circuit boards from mobile phones. Hence, these printed circuit boards would not be mixed prior treatment. The results of this paper show that copper concentration is increasing in mobile phones and remaining constant in personal computers.  相似文献   

9.
The aim of this paper is to evaluate the compatibility of sewage sludge ash (SSA) with various types of commercially available cements (CEM I and CEM II types, cements with several proportions of clinker). The behaviour of mortars fabricated with various percentages (10-30% by weight) of the cement replaced by SSA has been analyzed in terms of workability, mechanical strength, porosity and shrinkage/expansion. SSA exhibits moderate pozzolanic activity; the highest compressive strengths were obtained with 10% of the cement replaced by SSA. The CEM II/B-M (V-LL) 42.5R cement is considered ideal for preparing mortars containing SSA. Shrinkage data demonstrate that sulphates present in SSA are not reactive towards cement.  相似文献   

10.
The study of the ceramic characteristics of sludge ashes, alone or mixed with additives (kaolin, montmorillonite, illitic clay, powdered flat glass) includes characterization of additives, preparation of probes (dry or wet mixed), thermal treatment (up to 1200 degrees C, except melting or deformation) and control (densities, compressive strengths and water absorption). Thermal treatment increases the density and compressive strength of probes (both parameters go through maxima, with later decreases) and decreases the absorption of water. The densification is also revealed by the evolution of the ratio of decrease of volume/loss of mass. The maximum values of compressive strengths were obtained for 25% of illitic clay, montmorillonite and glass powder. Densification concerning probes with sludge ashes alone does not occur with kaolin. Experimental data were adjusted to exponential relationships between compressive strengths and densities for every composition, and also to a general equation for all probes. The apparent density obtained was adjusted to a non-linear dependence with temperature, leading to a maximum in density and permitting calculating the temperature of occurrence of this maximum. The adjustment was not possible for probes containing kaolin, requiring presumably higher temperatures to densify. Water absorption has low values for ashes or kaolin probes, intermediate values for illite and powdered flat glass probes and high values for montmorillonite probes. Excepting with kaolin, ceramic materials with better characteristics than sludge ashes without additives were obtained at lower treatment temperatures.  相似文献   

11.
Biodegradable composites can be produced by the combination of biodegradable polymers (BP) as matrix and vegetal fibers as reinforcement. Composites of a commercial biodegradable polymer blend and curauá fibers (loaded at 5, 15 and 20 wt%) were prepared by melt mixing in a twin-screw extruder. Chemical treatments such as alkali treatment of the fiber and addition of maleic anhydride grafted polypropylene (MA-g-PP) as coupling agent were performed to promote polymer/fiber interfacial adhesion so that mechanical performance can be improved. The resulting composites were evaluated through hardness, melt flow index and tensile, flexural and impact strengths as well as water absorption. Thermal analysis and Fourier transform infrared spectroscopy were also employed to characterize the composites. The polymer/fiber interface was investigated through scanning electron microscopy analysis. The biodegradability of composites was evaluated by compost-soil burial test. The addition of curauá fiber promoted an increase in the mechanical strengths and composites treated with 2 wt% MA-g-PP with 20 wt% curauá fiber showed an increase of nearly 75% in tensile and 56% in flexural strengths besides an improvement in impact strength with respect to neat polymer blend. Nevertheless, treated composites showed an increase in water absorption and biodegradation tests showed that the addition of fiber retards degradation time. The retained mass of BP/20 wt% fiber composite with MA-g-PP and neat BP was 68 and 26%, respectively, after 210 days of degradation test.  相似文献   

12.
The large quantity of wash water used in the electroplating and etching process in the manufacturing of printed circuit boards (PCBs) contains a high level of heavy metal ions (Cu++, Zn++, Ni++, Cr+++, Pb++). These potentially toxic ions are removed from the wash water effluent through a polyelectrolyte flocculation and hydroxide precipitation process during which a hydroxide sediment sludge rich in metal ions and polymers is generated. This sediment sludge possesses some unique characteristics and properties in terms of composition, fine particle size distribution, high specific surface area, and a tendency to agglomerate after drying. Direct disposal of this classified “special waste” (Department of Environment of Northern Ireland, The Special Waste Regulations, Northern Ireland, 1998) at landfill sites may cause serious soil and underground water pollution through a gradual ionic leaching process. This paper describes an experimental investigation, exploratory in nature, which employs microwave radiation for detoxification of the sediment sludge through microwave heating, drying and metal ion immobilization within the sediment solids. The effectiveness of microwave assisted binding and immobilization of the metal ions within the sediment solids was studied in conjunction with an evaluation of microwave energy efficiency in comparison to the more conventional convective heating and drying processes. Given a sufficient amount of microwave radiation, leaching of Cu2+ and Pb2+ was reduced by 2700% and 1080%, respectively, over a period of 12 weeks, and further leaching was not detectable within six months at simulated local landfill aqueous conditions. This paper also attempts, through experimental observation, to add to the very limited understanding of the complex interactions and binding of free metal ions with the polymeric materials and metal hydroxides under the influence of an electromagnetic field. The high specific surface of the sediment solids and their adsorption properties were further explored and characterized in a study of adsorption of reactive dyes by the microwave processed solids.  相似文献   

13.
This study was carried out to explore the possibility of making cement-bonded composite building products using eucalypt (Eucalyptus camaldulensis) and poplar (Populus deltoides). The experimental design consisted of three treatments—mixture of fibrous materials, cement and calcium chloride (CaCl2) contents. Some physical properties, vis. water absorption (WA) and thickness swelling (TS), were investigated. The ratio of woodwool : cement was 40:60 and 60:40 by weight. Results showed that, water uptake increased with increasing woodwool content. In addition, boards fully made with poplar woodwools had superior properties compared to the eucalypt and mixed woodwools. The presence of eucalypt woodwools in mixture of fibrous materials typically resulted in increase in TS and WA. It is interesting to note that a dose of 5% of CaCl2 by weight of cement can enhance the effect of cement. Application of Duncan’s Multiple Range Test for the mean values of the results showed that the effects of all variables and their interactions on the mechanical properties in terms of TS and WA were highly significant.  相似文献   

14.
Pulverization of waste printed circuit boards   总被引:1,自引:0,他引:1  
A new pulverization method to reduce the volume of waste printed circuit boards is reported. About 50% of printed circuit boards with integrate circuits (ICs) could be pulverized by our method in one 20-min batch, but boards without ICs could not be pulverized. By repeating the process three times, about 95% of printed circuit boards with ICs could be made into a fine powder with particles less than 106µm. A weight-drop test was also performed to examine the strength of the printed circuit boards and clarify the mechanism of pulverization. When a weight was dropped on the solder-welding side of the board ruptures occurred more easily than when the weight was dropped on the IC-mounted side. With a heavy weight, the IC was fractured more easily when the potential energy was low. Where the stress was concentrated, two types of rupture location were found on printed circuit boards with ICs. One was where the IC was connected to the printed circuit board. The other was where the surface had undulations. It also became clear that the fracture of printed circuit boards depends on the impacting weight rather than on the potential energy.  相似文献   

15.
The arsenic–iron sludge generated in most of the treatment systems around the world is discharged into the nearest watercourse, which leads to accumulative rise of arsenic and iron concentrations in water. In this study, attempts were made to use the arsenic–iron sludge in making bricks and to analyze the corresponding effects on brick properties. The water treatment plant sludge is extremely close to brick clay in chemical composition. So, the sludge could be a potential substitute for brick clay. This study involved the addition of sludge with ratios 3%, 6%, 9% and 12% of the total weight of sludge–clay mixture. The physical and chemical properties of the produced bricks were then determined and evaluated and compared to control brick made entirely from clay. Results of different tests indicated that the sludge proportion and firing temperature were the two key factors in determining the quality of bricks. The compressive strength of 3%, 6%, 9% and 12% sludge containing brick samples were found to be 14.1 MPa, 15.1 MPa, 9.4 MPa and 7.1 MPa, respectively. These results indicate that the compressive strength of prepared bricks initially increased and then decreased with the increase of sludge proportion. Leaching characteristics of burnt bricks were determined with the variation of pH at a constant temperature. The optimum amount of sludge that could be mixed with clay to produce good bonding of clay–sludge bricks was found to be 6% (safely maximum) by weight.  相似文献   

16.
In this paper, a new effective recycling method for rice husks and waste expanded polystyrene is developed by using a combination of both wastes. A styrene solution of waste expanded polystyrene is used as a binder for rice husks-plastics composites. The composites are prepared with various mix proportions by a hot press molding method, and tested for apparent density, water absorption, expansion in thickness, and dry and wet flexural strengths. From the test results, the apparent density of the composites is increased with increasing binder content and filler-binder ratio. Their flexural strength and wet flexural strengths reach maximums at a binder content of 30.0% and a filler-binder ratio of 1.0. Their water absorption and expansion in thickness are decreased with increasing binder content and filler-binder ratio. Since the composites have a high flexural strength and water resistance, their uses as building materials are expected.  相似文献   

17.
Canola straw as an agricultural residue has been investigated for MDF production. The variables were steaming time (2, 5 and 8 min), the resin content (9% and 11%), and press time (4 and 6 min). Common physical and mechanical properties of experimental boards including modulus of rupture (MOR), modulus of elasticity (MOE), internal bond strength (IB) and thickness swelling (TS) were measured. Fiber properties of canola straw including length, diameter and cell wall thickness were determined. The results showed that all the tested mechanical properties improved with the increase of steaming time level. The results were close to the minimum requirements of MDF specified in the ANSI A208.2 standard. Dimensional stability of the MDFs improved as adhesive content increased. The IB values are positively affected by the increase of press time. MDF properties made from canola straw possess acceptable qualities as compared to those made from other non-wood plants. Furthermore, the fiber dimensions of canola straw were also in the range of reported values in hardwoods.  相似文献   

18.
In the present work, the feasibility of using sludge generated in wastewater treatment plants of textile industry as a partial replacement for clay in the conventional brick manufacturing process is examined. Physico-chemical properties of the sludge and clay were studied. The characteristics of bricks with replacement of sludge (0–50 %) with an increment of 3 % were determined. All the brick samples satisfied the requirements of Indian Standards norms in terms of weight loss on ignition. The bricks with sludge up to 15 % satisfied the prescribed norms for compressive strength and water absorption. Results also showed that the brick weight loss on ignition was mainly attributed to the organic matter content in the sludge being burnt off during the firing process. The characteristics of bricks such as efflorescence, density and weight loss on ignition for bricks with replacement of clayey soil with textile sludge up to 15 % also satisfied the requirements of the Indian Standard. Thus, textile sludge up to 15 % can be effectively added to make brick material.  相似文献   

19.
Two combustion tests were performed in a fluidized bed combustor of a thermo-electric power plant: (1) combustion of coal; (2) co-combustion of coal (68.7% w/w), sewage sludge (9.2% w/w) and meat and bone meal (MBM) (22.1% w/w). Three samples of ashes (bottom, circulating and fly ashes) were collected in each combustion test. The ashes were submitted to the following assays: (a) evaluation of the leaching behaviour; (b) stabilization/solidification of fly ashes and evaluation of the leaching behaviour of the stabilized/solidified (s/s) materials; (c) production of concrete from bottom and circulating ashes. The eluates of all materials were submitted to chemical and ecotoxicological characterizations. The crude ashes have shown similar chemical and ecotoxicological properties. The s/s materials have presented compressive strengths between 25 and 40 MPa, low emission levels of metals through leaching and were classified as non-hazardous materials. The formulations of concrete have presented compressive strengths between 12 and 24 MPa. According to the Dutch Building Materials Decree, some concrete formulations can be used in both scenarios of limited moistening and without insulation, and with permanent moistening and with insulation.  相似文献   

20.
In the first part of this study, the treatability of marble processing wastewater by the coagulation-flocculation process was investigated. Optimum coagulant-flocculant doses for turbidity removal in wastewater from the cutting, faience and equalization processes were determined as 500, 200 and 500 ppm of Al2(SO4)3; 300, 500 and 300 ppm of FeCl3 and 600, 400 and 200 ppm of Agrofloc 100 (AGRON Water Treatment Technologies and Chemical Marketing Industry and Trade Limited Company, Izmir, Turkey), respectively. It was found that the removal of total solids from cutting and equalization process wastewaters was highest for the 100 ppm dosage of all chemicals used. The amount of total solids removed from faience process wastewater by Agrofloc 100 was higher than that removed by the other chemicals used. The removals of suspended solids from cutting, faience and equalization process wastewaters were similar to each other for each of the chemicals. The pH values after treatment by Agrofloc 100 were higher than the values determined after treatment by other chemicals for all process wastewater. Electrical conductivity values, however, were lower for Agrofloc 100 than for the others. Settled sludge volume experiments showed that settled sludge volumes decreased with time. The results of the quiescent settling experiment showed that the settling type could be termed flocculent settling. In the second part of the study, the usage of waste sludge from marble processing as an additive material in cement was investigated. The waste sludge originated from the wastewaters of different steps of the marble processing plant. Waste sludge was replaced with cement at various percentages by weight to prepare the mixtures of mortar. The specimens poured into the moulds were held for 24 h, removed from the moulds and held again for 28 days in lime-saturated water at 23 degrees C. Compressive and flexural strengths were evaluated with respect to percentages of waste sludge replaced with cement. The maximum compressive and flexural strengths were observed for specimens containing a 6% waste sludge when compared with control and it was also found that waste sludge up to 9% could effectively be used as an additive material in cement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号