首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dune hummocks (small aeolian dunes formed by sand deposition in and around pioneer plants) are the smallest vegetated dune unit; they occur along the entire South African coastline but are poorly studied. Structural properties and distribution of the two main hummock-forming plants:Arctotheca populifolia (a pioneer species with fast growth rate and rapid turnover) andGazania rigens (a later colonizer with slower growth) were investigated. A marked vegetation succession exists across the floor of the slack as a result of the migration of transverse dune ridges across the slack.Arctotheca hummocks were initiated on the newly exposed eastern margin of the slack, and were replaced about midway across the width of the slack byGazania hummocks. Hummocks increased in size with distance from the eastern side of the slack.Gazania hummocks attain a greater vegetation height, support a greater vegetation complexity and mass, and attain a larger maximum size thanArctotheca hummocks. Succession, defined as both the replacement of plant species as well as site modification within the plants over time, was evident. Since the growth form and dynamics determine (1) the ability of plants to trap wind-borne soil and detritus, (2) the shape of the hummocks, and (3) the habitat complexity available to spiders and insects, the ecology of the hummocks is probably determined largely by the vegetation characteristics of the hummock-forming plants.  相似文献   

2.
Summary. Recent economic and social changes in north Mediterranean regions have led to an important rural depopulation. Consequently, meadows developed on abandoned agricultural lands (characterized by high species richness) undergo reforestation. These former fields are mainly colonized by Pinus halepensis Miller, which is known to synthetize a wide range of secondary metabolites, among these, some could influence plant succession through allelopathy. The allelopathic potential of P. halepensis, was tested against two target species (Lactuca sativa L. and Linum strictum L.) with aqueous extracts obtained from different organs (root and needle) taking into account the individual age (±10, ±30 and > 60 years old). Root and needle extracts affected differently germination and growth of the two target species, the responses varying with concentration of extracts, age and organs tested. The strongest inhibitory effect was observed on the germination and growth of L. strictum, exposed to needle extracts of young P. halepensis (±10 years old), and root extracts of older P. halepensis (> 30 years old). These extracts contained several phenolic acids (e.g. 4-hydroxybenzoic acid and p-coumaric acid), which are known as allelochemicals and their concentrations vary with age and organ tested. Hence, P. halepensis could influence secondary succession through the release of potential allelochemicals in the environment by leaf leachates or root exudates.  相似文献   

3.
The coastline near the southern tip of Africa is characterized by large mobile dunes that are driven along wide beaches by strong winds throughout the year. This results in the blockage of the river mouths causing severe flooding of the low-lying farmland of the Agulhas Plain during the rainy winter season. Large parts of the driftsands were stabilized with the European dune pioneer species Marram grass (Ammophila arenaria), which has proved highly invasive along the North American west coast. In order to establish the potential invasiveness ofA. arenaria in South African coastal dune systems and its role in the succession of a large stabilization area, studies were carried out on De Mond Nature Reverve. Using aerial photos, maps and planting records, the vegetation of sites of various ages were sampled. By means of this chronosequence of stands, there is clear evidence that succession takes place at De Mond. Four communities are distinguished, varying from recent plantings ofA. arenaria to mature dune thicket or dune fynbos (heath) vegetation. These relate to four different stages of succession,A. arenaria occurring in reduced abundance in the older communities. After 50 years, formerA. arenaria areas are usually covered by dense dune scrub and in some places even in asteraceous dune fynbos. Succession is most rapid in sheltered, moist dune slacks, butA. arenaria remains vigorous in conditions favourable for its growht, i.e. on exposed, steep dune slopes with strong sand movement.A. arenaria does not appear to spread unaidedly at De Mond and has been successfully used for temporary dune stabilization.  相似文献   

4.
Whiteford Burrows is a coastal dune spit wetland in South Wales that is susceptible to morphological change. The height of the ridge of groundwater within the sand aquifer is essentially proportional to the width of the spit. The water table elevation impacts both the frequency and duration of slack flooding events and, therefore, slack ecology. A severe late winter storm event on 17 March 1995 caused extensive erosion of the foreshore, reducing the effective width of the dune system by 4 % and the water table elevation by up to 1 m. This observed relationship allows water level elevations in the dune system to be hindcast using historical maps and air photos which record past change in dune morphology. These historical data indicate that the dunes were relatively broad in the nineteenth century and the slacks were humid and liable to regular winter flooding. The system slowly dried out towards the 1940s as the spit thinned, when subsequent widening allowed the water table to rise and once again flood slack floors in winter. Despite these changes, the alkalinity of the Whiteford Burrows dune system has inhibited organic matter accumulation and maintained conditions needed for the persistence of a diverse basiphilous vegetation assemblage in many of the slacks.  相似文献   

5.
We investigated the influence of the mineralogical composition of marine sediments on bacterial activity in experimental microcosms. Calcite and quartz were added to natural marine sediments and microbial response in terms of total bacterial abundance and biomass, β-D-glucosidase exo-enzymatic activity and bacterial incorporation of a radio-labelled (3H-leucine) substrate were investigated for a period of one month. We report here that after 15 days the mineralogical composition of the sediment (calcite vs. quartz) had an impact on bacterial abundance and activity (reduced for ca 15% and 56%, respectively). However, such impact was mitigated or even disappeared in high organic nutrient conditions.  相似文献   

6.
We investigated the influence of the mineralogical composition of marine sediments on bacterial activity in experimental microcosms. Calcite and quartz were added to natural marine sediments and microbial response in terms of total bacterial abundance and biomass, β-D-glucosidase exo-enzymatic activity and bacterial incorporation of a radio-labelled (3H-leucine) substrate were investigated for a period of one month. We report here that after 15 days the mineralogical composition of the sediment (calcite vs. quartz) had an impact on bacterial abundance and activity (reduced for ca 15% and 56%, respectively). However, such impact was mitigated or even disappeared in high organic nutrient conditions.  相似文献   

7.
During 1994–1995 and 1997–1998 spiders were sampled with pitfall traps in a botanically rich, mesophytic, calcareous dune grassland in Belgium. As a consequence of intensive cattle grazing, vegetation variation in a large part of the area had diminished. The study area was also patchily grazed by rabbits. Community analysis with TWINSPAN revealed five distinct spider communities. Ecological differentiation was best explained by combination of the habitat variables: distance from grazed or non-grazed vegetation,Rosa pimpinellifolia cover and grass cover in both summer and winter. Species diversity was highest in the border zone between the cattle-grazed and non cattle-grazed sites. Correlation of the most abundant spider species with the vegetation determinants explains the ecological differentiation between the spider communities. Species were classified into seven major groups that reflect the species’ habitat preferences. The group showing clear association with non cattle-grazed, tall vegetation consists of common species. Characteristic species for the intensively cattle-grazed sites are common aeronauts and rare species such asWalckenaeria stylifrons, Mastigusa arietina, Ceratinopsis romana andPardosa monticola. The latter are shown to be dependent on ungrazed vegetation for juvenile development and overwintering. Intensive grazing results in homogeneous short vegetation, which can only be colonized by ‘open ground’ species with a well-developed dispersal capacity, or by species which are not dependent on litter-rich situations for juvenile development. An extensive cattle grazing regime results in a patchy mosaic grassland where, in addition to the above mentioned groups of species, other species survive by migrating between the buffered litter rich ungrazed vegetation and the short vegetation. Additionally, some typical and rare species prefer the transition zone between the grazed and the ungrazed vegetation because they are associated with specific habitat structures or inhabiting ant-species.  相似文献   

8.
During 1994–1995 and 1997–1998 spiders were sampled with pitfall traps in a botanically rich, mesophytic, calcareous dune grassland in Belgium. As a consequence of intensive cattle grazing, vegetation variation in a large part of the area had diminished. The study area was also patchily grazed by rabbits. Community analysis with TWINSPAN revealed five distinct spider communities. Ecological differentiation was best explained by combination of the habitat variables: distance from grazed or non-grazed vegetation,Rosa pimpinellifolia cover and grass cover in both summer and winter. Species diversity was highest in the border zone between the cattle-grazed and non cattle-grazed sites. Correlation of the most abundant spider species with the vegetation determinants explains the ecological differentiation between the spider communities. Species were classified into seven major groups that reflect the species’ habitat preferences. The group showing clear association with non cattle-grazed, tall vegetation consists of common species. Characteristic species for the intensively cattle-grazed sites are common aeronauts and rare species such asWalckenaeria stylifrons, Mastigusa arietina, Ceratinopsis romana andPardosa monticola. The latter are shown to be dependent on ungrazed vegetation for juvenile development and overwintering. Intensive grazing results in homogeneous short vegetation, which can only be colonized by ‘open ground’ species with a well-developed dispersal capacity, or by species which are not dependent on litter-rich situations for juvenile development. An extensive cattle grazing regime results in a patchy mosaic grassland where, in addition to the above mentioned groups of species, other species survive by migrating between the buffered litter rich ungrazed vegetation and the short vegetation. Additionally, some typical and rare species prefer the transition zone between the grazed and the ungrazed vegetation because they are associated with specific habitat structures or inhabiting ant-species. Nomenclature: Roberts (1987, 1995) forAraneae; van der Meijden et al. (1990) for vascular plants; Corly et al. (1981) for bryophytes; Schaminée et al. (1996) for vegetation associations.  相似文献   

9.
Spatial and temporal variations in nitrogen fixation and denitrification rates were examined between July 1991 and September 1992 in the intertidal regions of Tomales Bay (California, USA). Microbial mat communities inhabited exposed mudflat and vegetated marsh surface sediments. Mudflat and marsh sediments exhibited comparable rates of nitrogen fixation. Denitrification rates were higher in marsh sediments. Nitrogen fixation rates were lowest during January at both sites, whereas highest rates occurred during summer and fall. Denitrification rates were highest during fall and winter months in marsh sediments, while rates in mudflat sediments were highest during summer and fall. In mudflat sediments, nitrogen fixation and denitrification rates, integrated over 24 h, ranged from 6 to 79 mg N m-1 d-1 and 1 to 10 mg N m-2 d-1, respectively. Rates of denitrification represented between 6 and 20% of nitrogen fixation rates during the day, but exceeded or were equivalent to nitrogen fixation rates at night. The highest integrated rates of both nitrogen fixation and denitrification occurred during July, whereas, the highest percent loss occurred during spring when denitrification rates amounted to 20% of nitrogen fixation rates during the day. Over an annual cycle, inputs of fixed N to mudflat communities occurred exclusively during daylight. These results underscore the importance of determining integrated diel rates of both nitrogen fixation and denitrification when constructing N budgets. Using this approach, it was shown that microbial denitrification can represent a significant loss of combined nitrogen from mats on daily as well as monthly time scales.  相似文献   

10.
The importance of species interactions and recruitment variability was examined during the first year and a half of primary succession (1988–1989) on an exposed rocky seashore near Halifax, Nova Scotia. Previous work suggested that emergent rock on these shores is normally dominated by fucoid rockweeds because predatory whelks control the sessile animal competitors, mussels and barnacles, and because herbivorous littorinids control ephemeral algal competitors. Abundances of all species except seasonal ephemeral algae were very small throughout this experiment and we found no significant effects of carnivory, herbivory, plant-animal competition or plant-plant competition. A slight facilitation of Fucus recruitment is attributed to a thin mat of ephemeral, blue-green algae. Very few other studies have directly manipulated intertidal ephemeral algae. As primary succession may be very rare in this assemblage, these results may be specific to these circumstances, but they highlight the varying importance of species interactions with variable recruitment. In particular, it appears that variations in recruitment success may be important to community structure, even when recruitment is not limited by propagule supply. The scale of the study also provides insight into successional processes occurring after the recent, extensive ice-scour of exposed seashores in this region.  相似文献   

11.
The response of the Baltic Sea spring bloom was studied in mesocosm experiments, where temperatures were elevated up to 6°C above the present-day sea surface temperature of the spring bloom season. Four of the seven experiments were carried out at different light levels (32–202?Wh?m?2 at the start of the experiments) in the different experimental years. In one further experiment, the factors light and temperature were crossed, and in one experiment, the factors density of overwintering zooplankton and temperature were crossed. Overall, there was a slight temporal acceleration of the phytoplankton spring bloom, a decline of peak biomass and a decline of mean cell size with warming. The temperature influence on phytoplankton bloom timing, biomass and size structure was qualitatively highly robust across experiments. The dependence of timing, biomass, and size structure on initial conditions was tested by multiple regression analysis of the y-temperature regressions with the candidate independent variables initial light, initial phytoplankton biomass, initial microzooplankton biomass, and initial mesozooplankton (=copepod) biomass. The bloom timing predicted for mean temperatures (5.28°C) depended on light. The peak biomass showed a strong positive dependence on light and a weaker negative dependence on initial copepod density. Mean phytoplankton cell size predicted for the mean temperature responded positively to light and negatively to copepod density. The anticipated mismatch between phytoplankton supply and food demand by newly hatched copepod nauplii occurred only under the combination of low light and warm temperatures. The analysis presented here confirms earlier conclusions about temperature responses that are based on subsets of our experimental series. However, only the comprehensive analysis across all experiments highlights the importance of the factor light.  相似文献   

12.
Seagrass mortality due to oversedimentation: an experimental approach   总被引:3,自引:0,他引:3  
Mortality due to oversedimentation of the Mediterranean seagrassPosidonia oceanica was experimentally evaluated by field manipulations of the sediment level. Increased levels of sediment placed over plant shoots and rhizomes induced significant shoot mortality, even at moderate burial levels (ca. 5 cm). When sediment was added to reach levels 15 cm higher than the initial one, a 100 % mortality was observed after 200–300 days. The response of the plant was independent of site and depth. These results can be used in ecological risk assessment of coastal activities which potentially affect sediment deposition.  相似文献   

13.
《Ecological modelling》2005,183(4):435-449
A cellular automata model of a sand dune plant community on Galveston Island, Texas, USA was utilized to test hypotheses regarding individual plant interactions and their impact upon community organization. Simulations demonstrated that both an environmental gradient and facilitative succession resulted in the formation of characteristic sand dune patterns. The results showed that the plant patterns were due to individual plant responses to their environment within their local neighborhood, yet these responses were constrained by the global history of the community. The local neighborhood was related to the “zone of influence” concept, “field of neighborhood” models, and “ecological field” theory. It is proposed that plants responded individualistically to environmental conditions within the local neighborhood and that plants were constrained by the community-unit beyond the local neighborhood. The ratio of the scale of environmental variability versus the scale of a plant's local neighborhood determined the relative importance of the individual and the community in forming pattern. This work makes important contributions to the Gleasonian–Clementsian debate, sand dune successional theory, and in pattern-based, deductive hypothesis testing with cellular automata models.  相似文献   

14.
This study reports on a primary succession on a beach plain on the Dutch Wadden island of Schiermonnikoog. Vegetation succession started in 1959 when a sand dike was constructed to prevent structural erosion of the area by storm floods. Since then the sandy beach behind the dike has been protected from the direct influence of the North Sea. Heavy storms in 1972, however, created a large gap in the dike which has remained open since. Occasional storm floods during winter penetrate deeply into the area and salt water can cover parts of the beach plain for several months. This had a pronounced impact on the vegetation. Vegetation maps for six different years and data from a permanent plot have been used to reconstruct vegetation succession over a 42-yr period. Certain parts of the area seem to have changed little, while others have developed a grassland or scrub cover. The heavy storms and associated processes such as sand blowing, intensive flooding and increased salinity have created a disturbance/stress gradient of progressive and regressive succession across the beach plain. In certain places the vegetation cover has repeatedly been destroyed and succession re-initiated. It is concluded that the different stages of succession and associated diversity of plant species only can persist through the maintenance of the natural dynamics of the area.  相似文献   

15.
Soil microbial communities have the metabolic and genetic capability to adapt to changing environmental conditions on very short time scales. In this paper we combine biogeochemical and molecular approaches to reveal this potential, showing that microbial biomass can turn over on time scales of days to months in soil, resulting in a succession of microbial communities over the course of a year. This new understanding of the year-round turnover and succession of microbial communities allows us for the first time to propose a temporally explicit N cycle that provides mechanistic hypotheses to explain both the loss and retention of dissolved organic N (DON) and inorganic N (DIN) throughout the year in terrestrial ecosystems. In addition, our results strongly support the hypothesis that turnover of the microbial community is the largest source of DON and DIN for plant uptake during the plant growing season. While this model of microbial biogeochemistry is derived from observed dynamics in the alpine, we present several examples from other ecosystems to indicate that the general ideas of biogeochemical fluxes being linked to turnover and succession of microbial communities are applicable to a wide range of terrestrial ecosystems.  相似文献   

16.
Ecological patterns vary in space and time. Therefore, when using dynamic models in ecology, the spatial aspect should not be neglected prematurely since it could possibly change the model outcomes to a considerable extent. In view of this problem, we describe here a method how to construct a non-spatial version from a spatially explicit simulation model. The principle idea is to suppress the spatial correlations of cells in a grid in time by continuously re-assigning a random neighbourhood for each cell on the grid. Since this procedure actually eliminates the spatial dimensions, it allows to quantify the unadulterated impact of spatial processes on the model results. To illustrate an important application of this approach in the context of forest management we use a grid-based model that simulates succession of Norway spruce (Picea abies (L.) Karst.) at mountainous sites after blowdown events. The output of this model is compared with the results of the deduced non-spatial version of this model regarding the predicted amount of re-growing trees. The non-spatial version dramatically overestimates the number of spruce trees on different microsites. Thus, the uncritical use of the non-spatial model might give reason to wrong management decisions that are based on too optimistic predictions. In practice, this may lead to dangerous situations, especially in mountain forests serving as protection against avalanches and landslides. This example demonstrates the successful applicability of our approach. Our method can be interpreted as a contribution to an extended sensitivity analysis: it analyses the sensitivity of the results due to structural changes of the model. This sensitivity allows one to estimate the redundancy or the necessity of spatially explicit processes in a model with regard to the parsimony principle of modelling. Since our approach is not dependent on special features of the simulation model used here, it is assumed to be applicable for other spatial models, too, and can thus be considered of general interest for a diligent model analysis.  相似文献   

17.
18.
An experiment to test the two Coasian propositions, conducted at the University of Arizona, using students as subjects is reported. Experimental conditions included incomplete information and economic liability rules. The experimental results statistically support the efficiency proposition. Support for the neutrality proposition arises in the case of long-time negotiations. Behavioral findings such as altruism and other interesting results are discussed together with their practical implications.  相似文献   

19.
以膜生物反应器中的活性污泥为研究对象,考察接种驯化至膜污染时期的微生物群落结构的特征和演变过程.在试验运行中,定期采集样品提取DNA,并应用PCR-DGGE技术探究微生物菌群的变化.结果表明,在反应器运行接种5 d后,微生物群落结构已发生较大改变,与接种污泥相似性指数下降到47.8%;在运行的整个过程中,微生物种群多样性都要低于接种污泥,随着处理工艺运行,种群间进行逐步有序的演替.在运行后期,跨膜压力增速提高,此时占优势地位的菌种是Enterococcus faecalis、Comamonas sp.、不可培养的Fusobacterium sp.,可能是导致膜污染的主要菌种.  相似文献   

20.
Cromsigt JP  Olff H 《Ecology》2006,87(6):1532-1541
Recent theoretical studies predict that body size-related interspecific differences in spatial scale of perception and resource use may contribute to coexistence of species that compete for the same class of resources. These studies provide a new theoretical framework for explaining resource partitioning patterns among African ungulates that coexist in spatially heterogeneous savanna grasslands. According to these studies, different-sized ungulates can coexist because larger species forage at a coarser scale but can tolerate lower quality food, whereas smaller species need higher quality food but forage at a finer scale. To test this hypothesis in an African savanna, we created an experimental mosaic with variation in grain (spatial detail) and quality of short-grass patches and directly observed the visitation of naturally occurring grazers to this mosaic over a two-year period (total of 903 observation hours). Of the seven species that visited our experiment, warthog, impala, zebra, and white rhino visited long enough to allow data analysis. We showed that warthog and impala avoided plots with a finer grain of short grass and that warthog preferred fertilized plots to unfertilized plots. Zebra and white rhino did not avoid the finer grain plots. Our results suggest that differences in grain and quality of a resource might indeed contribute to partitioning of this resource by savanna ungulates. Although four focal species is unusually high for an experimental study on resource partitioning among naturally occurring savanna ungulates, this number is too low to evaluate the allometric basis of our hypothesis. Our results, however, encourage wider experimental testing of the role of spatial heterogeneity in facilitating the coexistence of potentially competing savanna herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号