首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper describes a study of the treatment of surfactant synthetic solutions by chemical and photolytic oxidation. Synthetic solutions of linear alkylbenzene sulfonates (LAS) are treated in this work as this is a model compound commonly used in the formulation of detergents, with a great presence in urban and industrial waste-waters. The application of ultraviolet (UV) radiation combined with hydrogen peroxide to oxidize linear alkylbenzene sulfonates (LAS) is shown to be suitable as a primary oxidation step since conversions of about 50% of the original compounds are achieved in the most favorable cases. Initially, the influence of the operating variables on the degradation levels is analyzed in this work. A kinetic model that considers the contributions of both direct photolysis and radical attack is also worked out. Direct photolysis is performed to determine the quantum yield in the single photodecomposition reaction. In addition, the rate constant of the reaction between hydroxyl radicals and linear alkylbenzene sulfonates in the oxidizing system H2O2/UV is determined for different operational conditions. Finally, the contribution of each oxidation pathway is quantified, resulting in a higher contribution of the radical reaction than of photolysis in all cases.  相似文献   

2.
Bisphenol A is an endocrine disruptor. Complete mineralization of bisphenol A is therefore a primary environmental issue. Here, the combination of ozonation and photocatalysis by TiO2 is proposed for the degradation and final mineralization of bisphenol A. TiO2 films deposited onto two sides of an Al lamina show good stability and high surface roughness. We used a specific experimental setup employing two facing ultraviolet lamps and TiO2 layers, together with an ozone flux. High-performance liquid chromatography–mass spectrometry determinations on bisphenol A solutions sampled at different reaction times and Fourier Transform Infrared analyses of the oxide at the end of the reaction were performed to study the reaction intermediates and the overall degradation mechanism. Our results show that pollutant mineralization achieved with the combined method is far higher, of 55% in the case of 0.3 mM bisphenol A, than those obtained by individual treatments such as photolysis (<3%), ozonation (6%), photocatalysis (6%), and by other combined processes: photolytic ozonation (13%) and catalytic ozonation (15%). This finding is explained by the occurrence of highly synergistic effects.  相似文献   

3.
农药阿维菌素在水中的光解动态及机理   总被引:3,自引:0,他引:3  
为了科学评价农药阿维菌素的环境安全性,采用室内模拟方法研究了其在水环境中的光解动态,考察了波长、光强和添加物质等对阿维菌素光降解的影响,进而利用LC/MS鉴定了其主要降解产物,并对降解机理进行了初步探讨.结果表明:紫外灯辐射波长对阿维菌素的光解速率影响较大,波长越短,越有利于阿维菌素的光降解;模拟太阳光强度越大,阿维菌素的光解速率越快;1%H_2O_2、0.1%TiO_2和10%丙酮作为添加物质都能加快阿维菌素的光解进程;通过分析阿维菌素光解产物的TIC图和质谱图,可能主要有两种代谢产物,分析了其降解途径及机理.  相似文献   

4.
Degradation of azo dyes in water by Electro-Fenton process   总被引:19,自引:0,他引:19  
The degradation of the azo dyes azobenzene, p-methyl red and methyl orange in aqueous solution at room temperature has been studied by an advanced electrochemical oxidation process (AEOPs) under potential-controlled electrolysis conditions, using a Pt anode and a carbon felt cathode. The electrochemical production of Fenton's reagent (H2O2, Fe2+) allows a controlled in situ generation of hydroxyl radicals (·OH) by simultaneous reduction of dioxygen and ferrous ions on the carbon felt electrode. In turn, hydroxyl radicals react with azo dyes, thus leading to their mineralization into CO2 and H2O. The chemical composition of the azo dyes and their degradation products during electrolysis were monitored by high performance liquid chromatography (HPLC). The following degradation products were identified: hydroquinone, 1,4-benzoquinone, pyrocatechol, 4-nitrocatechol, 1,3,5-trihydroxynitrobenzene and p-nitrophenol. Degradation of the initial azo dyes was assessed by the measurement of the chemical oxygen demand (COD). Kinetic analysis of these data showed a pseudo-first order degradation reaction for all azo dyes. A pathway of degradation of azo dyes is proposed. Specifically, the degradation of dyes and intermediates proceeds by oxidation of azo bonds and aromatic ring by hydroxyl radicals. The results display the efficiency of the Electro-Fenton process to degrade organic matter. Electronic Publication  相似文献   

5.
The degradation of selected chlorinated aliphatic hydrocarbons (CAHs) exemplified by trichloroethylene (TCE), 1,1-dichloroethylene (DCE), and chloroform (CF) was investigated with Fenton oxidation process. The results indicate that the degradation rate was primarily affected by the chemical structures of organic contaminants. Hydroxyl radicals (·OH) preferred to attack the organic contaminants with an electron-rich structure such as chlorinated alkenes (i.e., TCE and DCE). The dosing mode of Fenton’s reagent, particularly of Fe2+, significantly affected the degradation efficiency of studied organic compound. A new “time-squared” kinetic model, C = C o exp(?k obs t 2), was developed to express the degradation kinetics of selected CAHs. This model was applicable to TCE and DCE, but inapplicable to CF due to their varied reaction rate constants towards ?OH. Chloride release was monitored to examine the degree of dechlorination during the oxidation of selected CAHs. TCE was more easily dechlorinated thanDCE and CF.Dichloroacetic acid (DCAA) was identified as the major reaction intermediate in the oxidation of TCE, which could be completely removed as the reaction proceeded. No reaction intermediates or byproducts were identified in the oxidation of DCE and CF. Based on the identified intermediate, the reaction mechanism of TCE with Fenton’s reagent was proposed.  相似文献   

6.
The degradation of camphor using titanium/ruthenium dioxide (TiO2/RuO2; 70:30) electrodes was investigated in a photoelectrochemical thin-film reactor under near UV light irradiation. Two different electrolytes (Na2SO4 and NaCl) were used in this work. Camphor degradation was monitored by solvent extraction methods and gas chromatography (GC) analysis. Comparative studies between photoelectrochemical, electrochemical, photolytic, and heterogeneous photocatalytical process were carried out. When NaCl was used, the degradation efficiency of camphor was improved, probably on account of electrochemical generation of active chlorine species and their photochemical conversion to chlorine radicals. Under these conditions camphor was completely mineralized at reaction times of 30 min.  相似文献   

7.
The ozone oxidation of endocrine disruptor bisphenol A in drinking water was investigated. A stainless completely mixed reactor was employed to carry out the degradation experiments by means of a batch model. With an initial concentration of 11.0 mg/L, the removal efficiencies of BPA (bisphenol A) could be measured up to 70%, 82%, and 90% when the dosages of ozone were 1, 1.5, and 2 mg/L, respectively. The impacts on BPA degradation under the conditions of different ozone dosages, water background values, BPA initial concentrations, and ozone adding time were analyzed. The results showed that ozone dosage plays a dominant role during the process of BPA degradation, while the impact of the contact time could be ignored. UV wavelength scanning was used to confirm that the by-products were produced, which could be absorbed at UV254. The value of UV254 was observed to have changed during the ozonation process. Based on the change of UV254, it could be concluded that BPA is not completely degraded at low ozone dosage, while shorter adding time of total ozone dosage, high ozone dosage, and improvement of dissolved ozone concentration greatly contribute to the extent of BPA degradation. The effects of applied H2O2 dose in ozone oxidation of BPA were also examined in this study. The O3-H2O2 processes proved to have similar effects on the degradation of BPA by ozone oxidation.  相似文献   

8.
There is actually a need for efficient methods to clean waters and wastewaters from pollutants such as the bisphenol A endocrine disrupter. Advanced oxidation processes currently use persulfate or peroxymonosulfate to generate sulfate radicals. There are, however, few reports on the use of sulfite to generate sulfate radicals, instead of persulfate or peroxymonosulfate, except for dyes. Here we studied the degradation of the bisphenol A using iron(III) as catalyst and sulfite as precursor of oxysulfur radicals, at initial pH of 6, under UV irradiation at 395 nm. The occurrence of radicals was checked by quenching with tert-butyl alcohol and ethanol. Bisphenol A degradation products were analyzed by liquid chromatography coupled with mass spectrometry (LC–MS). Results reveal that iron(III) or iron(II) have a similar oxidation efficiency. Quenching experiments show that the oxidation rate of bisphenol A is 47.7 % for SO 4 ·? , 37.3 % for SO 5 ·? and 15 % for HO·. Bisphenol A degradation products include catechol and quinone derivatives. Overall, our findings show that the photo-iron(III)–sulfite system is efficient for the oxidation of bisphenol A at circumneutral pH.  相似文献   

9.
UV/H2 O2光氧化降解水中邻二氯苯的研究   总被引:3,自引:0,他引:3  
徐涛  肖贤明  刘红英 《环境化学》2004,23(6):636-640
通过UV/H2O2氧化法,对水中邻二氯苯的降解动力学、降解反应的影响参数进行研究,结果表明,UV/H2O2氧化法能有效降解邻二氯苯,其反应符合准一级反应动力学规律;弱酸性或中性环境有利于降解反应的进行,H2O2的投入量在特定条件下具有一个最佳值通过IC,GC/MS鉴定出降解中间产物主要为2,3二氯苯酚、3,4二氯苯酚、甲酸、乙酸和乙二酸等,据此推导出邻二氯苯在UV/H2O2体系中的降解途径和机理  相似文献   

10.
The results of a study of photocatalytic degradation of phenol using aqueous oxygenated TiO2 (anatase) suspensions in a batch Pyrex photoreactor are reported. The influence on the photodegradation rate of various parameters as pH, phenol and TiO2 content, oxygen partial pressure, anions present in the dispersions was investigated. A complete oxidation of phenol was observed. Intermediate compounds, catechol and quinone, were detected. It was observed that the photodegradation also proceeded with sunlight radiation. A mechanistic and kinetic model, which accounts for the results obtained, is given. Likely reasons for inactivity of the rutile modification for this reaction are also given.  相似文献   

11.
Self-organized, well-crystallized and high aspect-ratio TiO2 nanotube arrays (TNAs) have been prepared by anodic oxidation in dimethyl sulfoxide (DMSO) containing 5 wt% HF at 40 V (vs. Pt). A 50 h anodization results in a nanotube arrays approximately 19.4 μm in length, referred as long tube. As a comparison, the short titania nanotube arrays, about 500 nm in length, was obtained by anodization in HF aqueous solution, referred as short tube. Different characterization techniques (viz. FESEM, TEM, XRD and DRS) are used to study the nanotubular microstructure. The morphology of the nanotube electrodes shows an evident influence on their photocatalytic (PC) and photoelectrochemical reactivity. The long tube reveals enhanced photocurrent response and PC degradation efficiency of organic compounds. The kinetic constant of PC degradation of methylic orange (MO) for long tube electrode is found 1.55 times as high as the short tube. A significant photoelectrochemcial synergetic effect in MO degradation was observed on the long tube electrode and the photoelectrocatalytic (PEC) degradation of MO on long tube is 27% higher than its PC process.  相似文献   

12.
The thermally activated persulfate (PS) degradation of carbon tetrachloride (CT) in the presence of formic acid (FA) was investigated. The results indicated that CT degradation followed a zero order kinetic model, and CO 2 · was responsible for the degradation of CT confirmed by radical scavenger tests. CT degradation rate increased with increasing PS or FA dosage, and the initial CT had no effect on CT degradation rate. However, the initial solution pH had effect on the degradation of CT, and the best CT degradation occurred at initial pH 6. Cl had a negative effect on CT degradation, and high concentration of Cl displayed much strong inhibition. Ten mmol·L–1HCO 3 promoted CT degradation, while 100 mmol·L1NO 3 inhibited the degradation of CT, but SO 4 2– promoted CT degradation in the presence of FA. The measured Cl–concentration released into solution along with CT degradation was 75.8% of the total theoretical dechlorination yield, but no chlorinated intermediates were detected. The split of C-Cl was proposed as the possible reaction pathways in CT degradation. In conclusion, this study strongly demonstrated that the thermally activated PS system in the presence of FA is a promising technique in in situ chemical oxidation (ISCO) remediation for CT contaminated site.  相似文献   

13.
Photocatalytic oxidation using semiconductors is one of the advanced oxidation processes for degradation of organic pollutants in water and air. TiO2 is an excellent photocatalyst that can mineralize a large range of organic pollutants such as pesticides and dyes. The main challenge is to improve the efficiency of the TiO2 photocatalyst and to extend TiO2 light absorption spectra to the visible region. A potential solution is to couple TiO2 with a narrow band gap semiconductor possessing a higher conduction band such as bismuth oxide. Therefore, here we prepared Bi2O3/TiO2 heterojunctions by the impregnation method with different Bi/Ti ratio. The prepared composites have been characterized by UV–Vis diffused reflectance spectra and X-ray diffraction. The photocatalytic activity of the heterojunction has been determined from the degradation of orange II under visible and UV light. Results show that Bi2O3/TiO2 heterojunctions are more effective than pure TiO2-anatase under UV-A irradiation, with an optimum for the Bi/Ti ratio of 5 %, for the photocatalytic degradation of Orange II. However, the photocatalytic activity under irradiation at λ higher than 420 nm is not much improved. Under UV–visible radiation, the two semiconductors are activated. We propose a mechanism explaining why our products are more effective under UV–visible irradiation. In this case the charge separation is enhanced because a part of photogenerated electrons from the conduction band of TiO2 will go to the conduction band of bismuth oxide. In this composite, titanium dioxide is the main photocatalyst, while bismuth oxide acts as adsorbent photosensitizer under visible light.  相似文献   

14.
4A zeolite supported nanoparticulate zero-valent iron (nZVI/4A zeolite), synthesized through borohydride reduction method, was used as a catalyst with H2O2 to build Fenton-like reaction system to degrade methylene blue (MB) in model wastewater. The characteristics and primary mechanisms of the catalyst were investigated. The results show that nZVI/4A zeolite has the potential as a Fenton-like catalyst, and (about 30 mg/L) MB was degraded completely in 3 h with 10 mM H2O2, 0.2 g/L catalyst, and initial pH of 3.0. The MB degradation rates were obtained at least 70% in the tests with initial pH ranged from 2.0 to 9.0 and the catalyst dose rose from 0.2 to 5.0 g/L. Importantly, the catalyst also has a distinctive ability to increase the solution pH value from its initial acidic pH and then maintain the value at close to neutrality. This ability was controlled by both the initial pH and the catalyst dose. MB degradation clarified that hydroxyl radical was the dominated active oxidative specie in the tests with initial acidic pH and low catalyst dose (less 2.5 g/L); otherwise, Fe(VI) oxidation was the main mechanism for MB degradation; and the two processes shared synergistic effect in MB degradation in the present test. The catalyst has high operational stability in both of the composites with low iron leaching (less 2%) and catalyzing ability. Therefore, nZVI/4A zeolite has great potential as a Fenton-like catalyst and is used with H2O2 to build Fenton-like system which could be used to degrade MB efficiently.  相似文献   

15.
A solution of atrazine in a TiO2 suspension, an endocrine disruptor in natural water, was tentatively treated by microwave-assisted photocatalytic technique. The effects of mannitol, oxygen, humic acid, and hydrogen dioxide on the photodegradation rate were explored. The results could be deduced as follows: the photocatalytic degradation of atrazine fits the pseudo-first-order kinetic well with k = 0.0328 s?1, and ·OH was identified as the dominant reactant. Photodegradation of atrazine was hindered in the presence of humic acid, and the retardation effect increased as the concentration of humic acid increased. H2O2 displayed a significant negative influence on atrazine photocatalysis efficiency. Based on intermediates identified with gas chromatography-mass spectrometry (GC-MS) and Liquid chromatography-mass spectrometry (LC-MS/MS) techniques, the main degradation routes of atrazine are proposed.  相似文献   

16.
Removal of carbamazepine from urban wastewater by sulfate radical oxidation   总被引:2,自引:0,他引:2  
The occurrence of bioactive trace pollutants such as pharmaceuticals in natural waters is an emerging issue. Numerous pharmaceuticals are not completely removed in conventional wastewater treatment plants. Advanced oxidation processes may represent an interesting alternative to completely mineralize organic trace pollutants. In this article, we show that sulfate radicals generated from peroxymonosulfate/CoII are more efficient than hydroxyl radicals generated from the Fenton’s reagent (H2O2/FeII) for the degradation of the pharmaceutical compound, carbamazepine. The second-order rate constant for the reaction of SO4 ·− with carbamazepine is 1.92·109 M−1 s−1. In laboratory grade water and in real urban wastewater, SO4 ·− yielded a faster degradation of carbamazepine compared to HO· . Under strongly oxidizing conditions, a nearly complete mineralization of carbamazepine was achieved, while under mildly oxidizing conditions, several intermediates were identified by LC–MS. These results show for the first time in real urban wastewater that sulfate radicals are more selective than hydroxyl radicals for the oxidation of an organic pollutant and may represent an interesting alternative in advanced oxidation processes.  相似文献   

17.
Multi-walled carbon nanotubes (MWCNTs)/TiO2 composite photocatalysts with high photoactivity were prepared by sol-gel process and further characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and UV-vis absorption spectra. Compared to pure TiO2, the combination of MWCNTs with titania could cause a significant absorption shift toward the visible region. The photocatalytic performances of the MWCNTs/TiO2 composite catalysts were evaluated for the decomposition of Reactive light yellow K-6G (K-6G) and Mordant black 7 (MB 7) azo dyes solution under solar light irradiation. The results showed that the addition of MWCNTs enhanced the adsorption and photocatalytic activity of TiO2 for the degradation of azo dyes K-6G and MB 7. The effect of MWCNTs content, catalyst dosage, pH, and initial dye concentration were examined as operational parameters. The kinetics of photocatalytic degradation of two dyes was found to follow a pseudo-first-order rate law. The photocatalyst was used for seven cycles with photocatalytic degradation efficiency still higher than 98%. A plausible mechanism is also proposed and discussed on the basis of experimental results.  相似文献   

18.
Here we demonstrate that an aqueous solution of the herbicide amitrole can be completely depolluted at pH 3.0 by anodic oxidation and electro-Fenton process. Anodic oxidation gives faster degradation with a boron-doped diamond anode than with a Pt anode. Electro-Fenton with a Pt anode and 1 mmol l –1 Fe2+ as catalyst yields the quickest depollution. Amitrole decay always follows a pseudo first-order reaction. NO3 and NH4+ are accumulated in the medium during mineralization, although volatile N-products are also formed. These environmentally friendly electrochemical treatments could be applied to the remediation of wastewaters containing amitrole.  相似文献   

19.
李明玉  曾凡银  房献宝  王君  宋琳 《生态环境》2010,19(10):2474-2478
用热氧化法制备了TiO2/Ti薄膜电极,并用XRD和AFM对TiO2/Ti薄膜电极的晶形和表面形貌进行了表征。结果表明:热氧化法制备的TiO2主要为锐钛型纳米颗粒,直径在40 nm左右。设计了一种新型双槽光电化学反应器,用于废水的处理。以热氧化法制备的TiO2/Ti薄膜电极为阳极进行光电催化反应,同时以石墨电极为阴极用于产生双氧水,并与紫外光组成UV/H2O2体系。考察了双槽反应器中活性艳红X-3B在不同条件下的降解效果。降解结果表明:在新型反应器的阴阳两极槽中,活性艳红不仅在TiO2/Ti阳极槽中被降解,而且在石墨阴极槽中也得到降解;活性艳红在酸性条件下的降解效果最好;相对于单纯的电化学氧化和光催化,光电化学协同作用对X-3B的降解效果最好。  相似文献   

20.

Microplastics have recently become a major environmental issue due to their ubiquitous distribution, uncontrolled environmental occurrences, small sizes and long lifetimes. Actual remediation methods include filtration, incineration and advanced oxidation processes such as ozonation, but those methods require high energy or generate unwanted by-products. Here we tested the degradation of fragmented, low-density polyethylene (LDPE) microplastic residues, by visible light-induced heterogeneous photocatalysis activated by zinc oxide nanorods. The reaction was monitored using Fourier-transform infrared spectroscopy, dynamic mechanical analyser and optical imaging. Results show a 30% increase of the carbonyl index of residues, and an increase of brittleness accompanied by a large number of wrinkles, cracks and cavities on the surface. The degree of oxidation was directly proportional to the catalyst surface area. A mechanism for polyethylene degradation is proposed.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号