首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sparingly soluble contaminants are less likely to affect human health through food chain transfers, such as plant uptake or passage through animal-based foods, because mobility in these pathways is limited by solubility. Direct ingestion or inhalation of contaminated soil becomes the dominant pathway. However, both of these can be selective processes. Clay-sized particles carry the bulk of the sparingly soluble contaminants, and mechanisms that selectively remove and accumulate clay from the bulk soil also concentrate the contaminants. Erosion is another process that selectively removes clays. This project examined the degree of clay and contaminant-concentration enrichment that could occur by these processes, using U, Th and Pb as representative contaminants and using a clay and a loam soil. Erosion by water in natural rainfall events caused concentration enrichments up to 7 fold, and enrichments varied with characteristics of the erosion events. Enrichments were higher for the coarser, loam soil. Adhesion to skin gave modest enrichments of 1.3 fold in these soils, but up to 10 fold in sandy soils studied subsequently. Adhesion to plant leaves, where there was no root contact with contaminated soil, gave leaf concentrations comparable to situations where the roots contacted the contaminated soil. Clearly, adhesion to leaves is an important component of plant accumulation of sparingly soluble contaminants.  相似文献   

2.
The use of clay by humans for medicinal and wellness purposes is most probably as old as mankind. Within minerals, due to its ubiquitous occurrence in nature and easy availability, clay was the first to be used and is still used worldwide. Healing clays have been traditionally used by man for therapeutic, nutritional and skin care purposes, but they could impart some important health and skin care risks. For instance, clay particles could adsorb and make available for elimination or excretion any potential toxic elements or toxins being ingested or produced, but they could adsorb and make available for incorporation, through ingestion or through dermal absorption, toxic elements, e.g. heavy metals. Edible clays, a particular case of healing clays, have been traditionally used by man for nutritional and therapeutic purposes. Geophagy, the deliberate soil eating, earth eating, clay eating and pica (medical condition or eating disorder shown by individuals addicted to eat earth substances), has been observed in all parts of the world since antiquity, reflecting cultural practice, religious belief and physiological needs, be they nutritional (dietary supplementation) or as a remedy for disease. This paper pretends to review historical data, basic concepts and functions, as well as benefits and risks of the use of healing clays, in general, for therapeutic and cosmetic purposes, and of edible clays, in particular, for therapeutic purposes.  相似文献   

3.
We undertook a quantitative estimation of health risks to residents living in the Slovak Republic and exposed to contaminated groundwater (ingestion by adult population) and/or soils (ingestion by adult and child population). Potential risk areas were mapped to give a visual presentation at basic administrative units of the country (municipalities, districts, regions) for easy discussion with policy and decision-makers. The health risk estimates were calculated by US EPA methods, applying threshold values for chronic risk and non-threshold values for cancer risk. The potential health risk was evaluated for As, Ba, Cd, Cu, F, Hg, Mn, NO3 ?, Pb, Sb, Se and Zn for groundwater and As, B, Ba, Be, Cd, Cu, F, Hg, Mn, Mo, Ni, Pb, Sb, Se and Zn for soils. An increased health risk was identified mainly in historical mining areas highly contaminated by geogenic–anthropogenic sources (ore deposit occurrence, mining, metallurgy). Arsenic and antimony were the most significant elements in relation to health risks from groundwater and soil contamination in the Slovak Republic contributing a significant part of total chronic risk levels. Health risk estimation for soil contamination has highlighted the significance of exposure through soil ingestion in children. Increased cancer risks from groundwater and soil contamination by arsenic were noted in several municipalities and districts throughout the country in areas with significantly high arsenic levels in the environment. This approach to health risk estimations and visualization represents a fast, clear and convenient tool for delineation of risk areas at national and local levels.  相似文献   

4.
The study aimed to quantitate the uptake by beef cattle of organochlorine pesticides in from soil. Although such uptake is known to occur, uptake rates have not been accurately measured for these animals and cannot be inferred from data obtained with dairy cattle. In this study, cattle received a diet, of a standard feedlot ration supplemented with organochlorine-pesticide (aldrin?+?dieldrin) contaminated soil. The levels of pesticides in the feed would approximate uptake through normal grazing. Samples of the subcutaneous fat were removed periodically and analysed for pesticide content. Uptake of dieldrin (but not other pesticides present in the soil) was rapid and substantial. Uptake from sandy soils was more efficient than that from clay soils. The experiment was terminated after 8 weeks, because of the high levels of dieldrin in the tissues. Depuration of the accumulated pesticides was a slow and complex process, requiring a longer period than accumulation.  相似文献   

5.
微塑料广泛存在于大气、土壤和水体环境中,其对人体的危害正受到广泛关注.本文阐述了当前对微塑料在哺乳动物的暴露途径、毒性作用和毒性机制的认识.空气-呼吸系统、食物/饮水-消化系统以及洗漱/护肤产品-皮肤等都是目前最常见的微塑料人体暴露途径,其中消化系统暴露是最主要的方式.目前的研究显示肠道、肝脏和肾脏是主要的微塑料富集部...  相似文献   

6.
A recent hypothesis in the zooplankton literature states that zooplankton acclimate to ambient food concentrations such that higher digestive enzyme activities and, consequently, higher maximum ingestion rates are achieved at higher food levels. To test this hypothesis, adult female Calanus pacificus, collected from the main basin of Puget Sound, Washington, USA, in August 1979 and May 1982, were conditioned for 2 wk at different concentrations of the diatom Thalassiosira weissflogii (=fluviatilis). Ingestion rates and the activity of the digestive enzymes laminarinase, maltase, and cellobiase were measured periodically during acclimation and in a block-designed feeding experiment at the end of acclimation. Consistent with the hypothesis, maximum ingestion rate and digestive enzyme activity were positively correlated. However, in contrast to the hypothesized mechanism, this result arose because both maximum ingestion rate and digestive enzyme activity were negatively correlated with food concentration during acclimation. The enhanced ingestion of copepods following long-term (12 to 14 d) acclimation to low food is similar to that previously described for short-term (e.g. 1 d) starvation. It might be energetically optimal for copepods experiencing a patchy food environment to maintain higher levels of digestive enzymes at low food concentrations in order to exploit high concentrations of food when encountered.  相似文献   

7.
In order to investigate the ecological and human health risks of metal(loid)s (Cu, Pb, Zn, Ni, Cd, Mn, Cr, and As) in peri-urban soils, 43 surface soil samples were collected from the peri-urban area around Nanjing, a megacity in China. The average contents were 1.19, 67.8, 37.6, 105, 167, 44.6, 722, and 50.8 mg kg?1 for Cd, Cr, Ni, Pb, Zn, Cu, Mn, and As, respectively. A significant positive correlation was found between Cu, Pb, Zn, Cd, Mn, and As (p < 0.01), and Cr had a significant positive correlation with Ni (p < 0.01). Geoaccumulation indices indicate the presence of Cd and As contamination in all of the peri-urban soil samples. Potential ecological risk indices show that the metal(loid)s in the soil could result in higher ecological risks. Cd is the main contributor to the risk, followed by As. The levels of Cu, Pb, Zn, Cd, Mn, and As in stomach and intestinal phases show a positive linear correlation with their total contents. Mn, Zn, Ni, Cd, and Pb in stomach phase showed higher bioaccessibility, while in intestinal phase, Cu, Cr, and As had the higher bioaccessibility. The carcinogenic risk in children and adults posed by As, Pb, and Cr via ingestion was deemed acceptable. The non-carcinogenic risks posed by these metal(loid)s via ingestion to children are higher than to adults and mainly result from As.  相似文献   

8.
Rice and wheat are rich sources of essential elements. However, they may also accumulate potentially toxic elements (PTE). Bulgur, the popular alternative to rice in the eastern Mediterranean, is produced by processing wheat, during which PTE content may change. This study determined PTE concentrations in rice and bulgur collected from 50 participant households in the city of Izmir, Turkey, estimated ingestion exposure, and associated chronic-toxic and carcinogenic human health risks. Comparison of the determined concentrations to the available standard levels and the levels reported in the literature revealed that Cd, Co, and Pb in rice might be of concern. The estimated health risks of individual participants supported this result with exceedance of respective threshold or acceptable risk levels at the 95th percentile. Population risk estimates indicated that the proportion with higher than the threshold or acceptable risk is about 10, 24, and 12% for Cd, Co, and Pb in rice, respectively. Results of this study showed that health risks associated with PTE exposure through bulgur consumption are lower than those of rice, and below the threshold or acceptable risk levels.  相似文献   

9.
Transfer of soil contaminants into the food chain has long been a concern. However, certain aspects of the pathways involved have not been fully investigated. One is the enrichment of contaminant concentrations through physical processes such as size-sorting of soil particles. Fine particles selected from soil by processes such as adhesion onto plants will have much higher contaminant concentrations than the original soil. A saturation kinetics model of the process of soil adhesion to leaf surfaces was developed. The model helps identify the parameters that are least-well known and need experimental support. The ratio of clay and sand wash-off half times was especially important. With nominal values for the input parameters, estimated enrichments agreed well with observations to date, and ranged from slightly over unity for medium- and fine-textured soils to about tenfold for sandy soils. With a few reasonable assumptions, the model was generalised to apply to other soil adhesion scenarios such as adhesion to skin. The generalised model can be applied with minimal need for setting-specific information.  相似文献   

10.
The key point of food plant agriculture is how to regulate the harmonious relationship between the soil and the plant environment. This study deals with radionuclide uptake by two food plant and two fruit tree species in relation to the geochemical characteristics of the soil. Uranium and thorium content was determined in coastal black sand and inland cultivated soils. Four commonly cultivated species Eruca sativa, Lycopersicon esculentum, Psidium guajava and Mangifera indica were investigated. Physical and chemical properties of the soil were analysed in relation to uranium and thorium uptake by plants. The results revealed the ability of plants to accumulate uranium and thorium in their edible portions. The absorbed radionuclides were positively correlated with their concentrations in the soil and the geochemical characteristics of the soil. The transfer of radioactive elements from soil to plant is a complex process that can be regulated by controlling the geochemical characteristics of the soil, including pH, clay, silt and organic matter content that reduce the bioavailability of soil radionuclides to plants, and in turn reduce the risks of biota and human exposure to radionuclide contamination.  相似文献   

11.
In this study, we investigated the toxic effects of water-soluble elements from a contaminated soil via gavage in a single dose, simulating a geophagy event. The contaminated soil was collected in a field located in an industrial complex, and the control soil was collected in a reference area. Metabolic and behavioral parameters in Wistar male rats were measured after 24 and 96 h of gavage. After 96 h, the major organs were weighed, blood was collected to check hematological parameters, the bone marrow was taken for the micronucleus test, and the liver was used for evaluating the total antioxidant capacity, lipoperoxidation and protein carbonylation. Animals exposed to contaminated soil presented a few significant alterations by comparison with control animals: TBARS and protein carbonyl levels increased, the relative weight of the kidneys increased, metabolic parameters (body weight gain, food intake, water consumption, urine and feces production) depressed and there was behavioral alteration. These findings suggest that soils impacted by atmospheric contaminants can affect the organism physiological status jeopardizing the health of populations living in industrial areas. Finally, this study reassures that ingestion of potentially contaminated soils, even for short periods of time, can cause health risks.  相似文献   

12.
姜林  钟茂生  张丹  夏天翔 《生态环境》2011,(6):1168-1175
随土壤不慎经口摄入是PAHs对人体健康造成危害的重要途径之一,目前该暴露途径下PAHs的健康风险计算主要基于土壤中总PAHs浓度进行计算。但是,这种计算方法并未考虑PAHs在土壤中的赋存状态及经口摄入后在人体不同器官中的毒理动力学过程,导致计算结果过于保守,修复目标过于严格,修复成本过高。针对这一问题国外相关研究人员已开展基于土壤中PAHs生物可利用性的健康风险评价研究并取得较大进展,但在国内就如何在风险评价过程中引入PAHs生物可利用性及其面临的障碍缺乏系统性报道。在对土壤中PAHs赋存形态及其随土壤经口腔摄入后在人体消化及循环系统中的动态分配最新研究成果进行综述的基础上,通过对该暴露途径下现有风险计算模型存在问题及原因进行分析,提出基于土壤中PAHs可利用浓度进行风险计算,并对相应计算模型进行推导以及模型参数的获取方法进行了简要概括,以解决目前模型计算结果过于保守的问题。同时,对于在现有分层次进行场地健康风险评价思路中如何科学地纳入基于土壤中PAHs可利用浓度进行风险计算的思路以及在实际风险评价中应用该思路还需进行的研究工作进行了简要讨论。  相似文献   

13.
Environmental concerns have been raised that suspended solids in turbid water adversely affect human health, and that their removal increases in the cost of water treatment. The Yongdam dam reservoir, located in the southwestern region of Korea, is severely affected by inflowing turbid water after storms. In this study, soil samples were collected from 37 sites in the Yongdam upstream basin to investigate mineralogical and environmental factors associated with the turbidity potential of soils in water environments. Turbidity potential was estimated by measuring the turbidity of soil-suspension solutions after settling for 24 h. The mineralogy of the soils was dominated by four minerals—quartz, microcline, albite, and muscovite—with lesser amounts of hornblende, chlorite, kaolinite, illite, and mixed layer illite. The quartz content was the most variable of the soil mineralogy among the collected samples. Principal-components analysis (PCA) was used to examine relationships between turbidity potential and other soil properties. The variables considered in the PCA included turbidity potential, quartz content, albite content, mean size of soil particles, clay content, clay mineral content, zeta potential, conductivity, and pH of the soil-suspension solution. The first two components of the PCA explained 52% of the overall variation of the selected variables. The first component was possibly explained by physical properties such as the size of the soil particles; the second was correlated with chemical properties of the soils, for example dissolution and extent of weathering. Closer examination of the PCA results revealed that the quartz content of the soils was negatively correlated with their turbidity potential. A linear correlation (r = 0.63) was obtained between measured turbidity potential and that predicted using multiple regression analysis based on the content of clay-sized particles, clay minerals, and quartz, and the conductivity of the soil-suspension solution.  相似文献   

14.
A field survey of mercury pollution in environmental media and human hair samples obtained from residents living in the area surrounding the Chatian mercury mine (CMM) of southwestern China was conducted to evaluate the health risks of mercury to local residents. The results showed that mine waste, and tailings in particular, contained high levels of mercury and that the maximum mercury concentration was 88.50 μg g?1. Elevated mercury levels were also found in local surface water, paddy soil, and paddy grain, which may cause severe health problems. The mercury concentration of hair samples from the inhabitants of the CMM exceeded 1.0 μg g?1, which is the limit recommended by the US EPA. Mercury concentrations in paddy soil were positively correlated with mercury concentrations in paddy roots, stalks, and paddy grains, which suggested that paddy soil was the major source of mercury in paddy plant tissue. The average daily dose (ADD) of mercury for local adults and preschool children via oral exposure reached 0.241 and 0.624 μg kg?1 body weight per day, respectively, which is approaching or exceeds the provisional tolerable daily intake. Among the three oral exposure routes, the greatest contributor to the ADD of mercury was the ingestion of rice grain. Open-stacked mine tailings have resulted in heavy mercury contamination in the surrounding soil, and the depth of appreciable soil mercury concentrations exceeded 100 cm.  相似文献   

15.
规模化养殖快速发展,常使用兽药来防治各种禽畜病害,导致大量兽药随动物粪便排出体外.含有残留兽药的粪便作为有机肥施入农田而造成土壤污染,对人类健康和生态系统产生潜在危害.养殖业使用的主要兽药种类为抗生素类药物,且用量逐年增加,目前土壤中兽药残留浓度范围为μg·kg-1级到g·kg-1级.在总结国内外及本课题组相关研究的基础上,论文较为系统地概述了兽药对植物生长和土壤微生物群落功能和结构的影响,探讨了今后兽药生态毒理学研究的主要方向.抗生素类兽药对植物和土壤微生物群落的影响受兽药种类、土壤因子(如有机质含量、矿物类型等)的影响.植物吸收抗生素类兽药可能是主动吸收过程,且大量在植物根系内累积,同时也可在植物地上部累积.抗生素类兽药极易诱导产生大量抗药菌,并可能诱导产生群落抗性(Pollution-Induced Community Tolerance,PICT),将对包括人类在内的生态系统健康产生深远影响.  相似文献   

16.
Geophagy, the deliberate consumption of earth materials, is common among humans and animals. However, its etiology and function(s) remain poorly understood. The major hypotheses about its adaptive functions are the supplementation of essential elements and the protection against temporary and chronic gastrointestinal (GI) distress. Because much less work has been done on the protection hypothesis, we investigated whether soil eaten by baboons protected their GI tract from plant secondary metabolites (PSMs) and described best laboratory practices for doing so. We tested a soil that baboons eat/preferred, a soil that baboons never eat/non-preferred, and two clay minerals, montmorillonite a 2:1 clay and kaolinite a 1:1 clay. These were processed using a technique that simulated physiological digestion. The phytochemical concentration of 10 compounds representative of three biosynthetic classes of compounds found in the baboon diet was then assessed with and without earth materials using high-performance liquid chromatography with diode-array detection (HPLC–DAD). The preferred soil was white, contained 1% halite, 45% illite/mica, 14% kaolinite, and 0.8% sand; the non-preferred soil was pink, contained 1% goethite and 1% hematite but no halite, 40% illite/mica, 19% kaolinite, and 3% sand. Polar phenolics and alkaloids were generally adsorbed at levels 10× higher than less polar terpenes. In terms of PSM adsorption, the montmorillonite was more effective than the kaolinite, which was more effective than the non-preferred soil, which was more effective than the preferred soil. Our findings suggest that HPLC–DAD is best practice for the assessment of PSM adsorption of earth materials due to its reproducibility and accuracy. Further, soil selection was not based on adsorption of PSMs, but on other criteria such as color, mouth feel, and taste. However, the consumption of earth containing clay minerals could be an effective strategy for protecting the GI tract from PSMs.  相似文献   

17.
Previous environmental biomonitoring studies indicated higher environmental lead (Pb) pollution levels at the districts of Aveiro and Leiria (Portugal). In evaluating the risk for human health, which is associated with contaminated soils after oral uptake, total soil concentrations have generally been held against criteria established from toxicological studies based upon the assumption that the uptake of the contaminant is similar in the toxicological studies and from the soils assessed. This assumption is not always valid, as most toxicological studies are carried out with soluble forms of the contaminants, whereas many soil contaminants are or become embedded in the soil matrix and thus exhibit limited availability. This study intends to estimate the soluble fraction of Pb in the soils from central Portugal, and to assess the bioaccessibility of Pb and, hence, infer exposure and risk for human health. Yet, as the physical–chemical properties of the soil exert some control over the solubility of Pb in the surface environment, the relation between such soil properties and the estimated soluble and/or bioaccessible fractions of Pb is also investigated. Other objective, with a more practical nature, was to give some contribution to find a suitable in vitro mimetic of the gastrointestinal tract environment. The results indicate relatively low total metal concentrations in the soils, even if differences between regions were observed. The Aveiro district has the higher total Pb concentration and the metal is in more soluble forms, that is, geoavailable. Soils with higher concentrations of soluble Pb show higher estimates of bioaccessible Pb. Soil pH seems to influence human bioaccessibility of Pb.  相似文献   

18.
土壤中铜的生物可给性及其对人体的健康风险评价   总被引:3,自引:0,他引:3  
为了研究土壤中铜的生物可给性与土壤理化性质之间的相互关系以及人体无意摄入土壤铜的风险,采集我国一些地区的15个土壤样品,利用in vitro方法研究了这些土壤中铜的生物可给性及其对人体的健康风险。结果表明,有2个土壤样品中铜的含量高过我国土壤环境质量标准的三级标准,有8个土壤样品中铜的含量高过二级标准;土壤中铜的溶解态浓度及其生物可给性变化很大,胃肠阶段铜的溶解态含量分别为5.2~308.8 mg·kg~(-1)和5.9~348.5 mg·kg~(-1),平均值分别为74.8 mg·kg~(-1)和82.0 mg·kg~(-1);而铜的生物可给性分别为183%~66.6%和213%~77.4%,平均值分别为442%和51.1%。胃阶段铜的生物可给性与土壤有机质和pH呈显著正相关,而与粘粒呈显著负相关,与铁铝氧化物有显著相关性;小肠阶段铜的生物可给性与土壤有机质和pH呈显著正相关,与土壤中总铜和锰氧化物含量呈显著负相关。如以胃阶段为判断,无意摄人土壤中铜对儿童的TDI(tolerable daily intake)贡献率除浙江富阳为2.51%外,有12个土壤样品低于1.00%,最低为0.11%。如以小肠阶段为判断,无意摄入土壤中铜对儿童的TDI贡献率除浙江富阳和浙江台州的土壤分别为2.83%和2.01%,另有12个土壤样品低于1.00%。可见,对于本研究中大多数土壤,通过口部无意摄入土壤中铜的对人体并没有很高的风险。  相似文献   

19.
Geophagia, the deliberate ingestion of soil, is a complex eating behaviour with obscure aetiology and numerous health/medical problems. It is conventionally assumed that geophagia may help supplement mineral nutrients in individuals with limited intake of trace elements such as Fe and Zn. This view, however, has largely been based on the bulk nutrient composition of geophagic materials and the assumption that these nutrients are potentially available for absorption in the body. We have tested this assumption by equilibrating five geophagic materials collected from Uganda, Tanzania, Turkey and India with mineral nutrient concentrations and conditions similar to the gastrointestinal tract. The results showed that all five geophagic materials, regardless of their composition, sorbed large amounts of Fe and Zn across a range of dietary intake scenarios, even under acidic conditions (pH 2) similar to the stomach. However, significant amounts of Ca desorption were observed from calcareous soil samples. The findings show that while calcareous geophagic materials may supplement Ca, geophagia can potentially cause Fe- and Zn-deficiency. This is consistent with mineral nutrient deficiency problems observed in clinical nutrition studies conducted amongst geophagic populations.  相似文献   

20.
污染土壤中铅、砷的生物可给性研究进展   总被引:12,自引:0,他引:12  
崔岩山  陈晓晨  付瑾 《生态环境》2010,19(2):480-486
土壤铅、砷污染已成为重要的环境问题,并可对人体健康造成严重危害。对食物链途径的有效控制使得从口部无意摄入的土壤铅、砷对人体,特别是对儿童铅、砷摄入总量的贡献率越来越大,甚至成为主要来源。土壤中铅、砷直接进入人体的消化系统并可被人体胃肠道溶解出的部分称为其生物可给性。有效、准确地判定土壤中铅、砷的生物可给性已经成为解决儿童铅、砷中毒的关键科学问题。因此,有关土壤中铅、砷的生物可给性及其在人体健康风险评价中的应用受到了越来越多的关注。文章综述了污染土壤中铅、砷生物可给性的研究方法及各方法的优缺点,并从土壤性质、模拟胃肠条件等方面分析了影响土壤中铅、砷生物可给性的主要因素和存在的问题,还进一步论述了土壤中铅、砷生物可给性在人体健康风险评价中的应用。最后,提出了今后该领域应重点加强土壤铅、砷生物可给性的标准参考物、模拟胃肠条件的优化以及土壤铅、砷生物可给性在人体健康风险评价中的应用等方面的研究。以期充分发挥铅、砷等环境污染物的生物可给性研究方法的潜力,更好地为控制土壤污染、保护人类健康服务。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号