首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本试验对棉田样品中IKI—7899的残留量测定作了改进。由对农药添加样品的测定结果表明,IKI—7899在棉籽、棉叶和土壤中的添加回收率分别为88.3%,83.9%和85.9%;最小检出浓度分别为0.005ppm、0.005ppm和0.0025ppm;对实际样品的测定表明,本法能满足IKI—7899在棉花上残留动态试验的要求。  相似文献   

2.
本文提出了用GC-ECD测定麦田土壤、植株、麦粒中残留禾草灵的方法。禾草灵残留量用外标法根据峰面积定量。土壤、干麦叶、鲜麦叶和麦粒中的最低检测浓度分别为:0.015ppm、0.029ppm、0.036ppm和0.015ppm。不同样品在0.029—0.087ppm间分别以三个不同浓度标准溶液添加后,全过程回收率试验在75.1%—97.2%之间。  相似文献   

3.
丁草胺残留量的气相色谱分析   总被引:4,自引:0,他引:4  
本文描述了用电子捕获检测器测定土壤和水中丁草胺的色谱分析方法。丁草胺残留量用外标法根据峰高定量。土壤和水中丁草胺的最低检测浓度分别为2ppb和0.1ppb。丁草胺在2ppm、0.2ppm和0.02ppm添加浓度下,土壤回收率分别为92.7±2.34%(X±SX%),96.0±7.07%和92.5±12.6%,水回收率分别为90.2±4.07%、95.7±2.50%和88.3±7.6%。  相似文献   

4.
水体和甘蓝及土壤中毒死蜱残留检测方法   总被引:2,自引:0,他引:2  
谢慧  朱鲁生  王军  王金花 《环境化学》2012,31(8):1268-1274
研究运用不同的样品前处理方式,在装配火焰光度检测器的气相色谱(GC-FPD)上检测,建立了有机磷杀虫剂毒死蜱在水样、土壤和甘蓝中的残留测定方法.研究表明,不同样品中的毒死蜱残留采用本文中介绍的前处理方法是可行的,用石油醚盐析提取和净化水样中毒死蜱,采用丙酮振荡提取甘蓝中毒死蜱,选用索氏提取法提取土壤中毒死蜱,并经液液分配净化后,采用OV-101大口径毛细管柱(30 m×0.53 mm×1.0μm),在装配火焰光度检测器(FPD和磷滤光片)的气相色谱上测定.该分析方法下,毒死蜱的保留时间为1.74 min,线性范围在1.0×10-11—1.0×10-8g之间,其线性相关系数为0.9998,最小检出量为2.0×10-12g.在设定的较低添加浓度的条件下,毒死蜱在水样、土壤与甘蓝上的添加回收率为80%—120%,变异系数均小于5%.该分析方法灵敏、准确、操作简便,适合水样、甘蓝和土壤中低浓度毒死蜱的残留检测.  相似文献   

5.
本文报道了一个测定糙米中除草醚残留量的新方法。样品采用二氯甲烷提取,经中性氧化铝和弗罗里硅土混合吸附剂净化,用填充3%OV—17/Gas chrom Q 80—100目气相色谱柱和氮磷检测器测定。试验结果,样品的添加回收率为87.33—91.47%;变异系数为3.36为6.31%;最小检测浓度为0.0212ppm。  相似文献   

6.
本文报道了用气相色谱仪测定土壤和黄瓜中速克灵的残留。样品采用丙酮振荡或组织捣碎提取,净化中应用凝结法代替柱层析方法,二氯甲烷萃取,合并有机相,经无水硫酸钠干燥后浓缩至1—2ml,使用Sigma2型带NPD的气谱仪测定,气谱仪柱长1m,内径0.2cm,填充3‰V—17Chromosob Q80—100目。经黄瓜、土壤试验,其添加回收率为85.92—95.40%,标准偏差为1.94—3.96%,变异系数在2.04—4.31%之间,最低检测浓度是0.0216—0.0290ppm。  相似文献   

7.
本文介绍了气相色谱法测定水中五种拟除虫菊酯农药的多残留分析方法。样品用正已烷萃取,直接用带ECD的气谱仪测定。色谱柱为长1.5m、内径3mm、填充5%OV-1/Chromosorb WHP(80—100目)的玻璃柱,此柱对五种拟除虫菊酯的分离效果较好。0.002—0.1ppm水平的添加回收率为90.77—104.95%,变异系数为2.23—6.88%。最低检测浓度为1.2×10~(-4)—2×10~(-3)ppm。  相似文献   

8.
本文采用气相色谱填充柱,研究测定水果、蔬菜和粮食中19种有机氮和有机磷农药的混合多残留分析方法。样品用丙酮—水振荡或组织捣碎提取,二氯甲烷萃取,凝结法净化,使用Sigma2和8500型带有NPD的气谱仪测定。气相色谱柱长1m,内径0.2cm,填充5%OV—17/Chrom Q80—100目,该柱在恒温条件下,一次能将19种有机氮和有机磷农药完全分离。通过对相对保留时间和峰值重现性的测定,以及方法回收率、添加回收率、最低检测限的试验,证实方法的准确可靠,经过应用,确认方法的可行性。其相对保留时间和峰值重现性的变异系数分别为0.00—1.19%和1.30—10.13%,添加回收率为85.16—100.30%,变异系数为0.60—8.43%;方法最小检测量为0.58×10~(-11)—6.10×10~(-10)g最低检测浓度为0.0004—0.0610ppm。  相似文献   

9.
土壤中残留对硫磷和甲基对硫磷的高效液相色谱分析   总被引:8,自引:0,他引:8  
乔雄梧  朱九生 《环境化学》1995,14(3):255-257
本文介绍一种简介、快速的前处理和反相高效液相色谱法对土壤样品中残留的对硫磷和甲基对硫磷进行定量分析,样品添加回收率分别为82%和86%,最小检测浓度为0.1mg.kg^-1。  相似文献   

10.
本文报道了用气相色谱仪测定土壤和黄瓜中速克灵的残留,样品采用丙酮振荡或组织捣碎提取,净化中应用凝结法代替柱层析方法,二氯甲烷萃取,合并有机相,经无水硫酸钠干燥后浓缩至1-2ml,使用Sigma2型带NPD的气谱仪测定,气谱仪柱长1m,内径0.2m,填充3‰V-17ChromdosorbQ80-100目。经黄瓜、土壤试验,其添加回收率为85.92-95.40%,标准偏差为1.94-3.96%,变异系数在2.04-4.31%之间,最低检测浓度是0.0216-0.0290ppm。  相似文献   

11.
本文将原子荧光光谱检测技术与吹扫捕集/气相色谱检测技术联用,结合优化的碱性法消解前处理技术,建立了碱性法消解-吹扫捕集/气相色谱-原子荧光光谱(PT-GC-AFS)联用技术测定土壤和沉积物中烷基汞含量的方法,能够在一次分析中同时获得样品中甲基汞和乙基汞的含量.本文分别用酸性法和碱性法处理了沉积物标准样品ERM-CC580、沉积物实际样品和土壤实际样品,重点比较了本方法提出的碱性法消解和使用率较高的酸性法消解两种前处理方式.采用本方法处理实际样品进行了色谱分离研究,对低浓度的实际土壤样品进行了检出限实验,用3种不同浓度的沉积物和3种不同浓度的土壤样品验证了精密度,对沉积物标准参考物质ERM-CC580进行了测定,并用两种实际土壤样品和两种实际沉积物样品进行了加标回收率试验.实验表明,碱性法消解精密度和准确度优于酸性法消解,且步骤少、耗时短,使用的试剂种类少、毒性小,方法稳定性高、可操作性强,适用于分析测试实验室大量土壤/沉积物样品的烷基汞测定.采用碱性法消解土壤/沉积物样品,目标物实现完全分离,甲基汞、乙基汞的线性相关系数分别为0.9999、1.0000,最低检出限分别为0.02μg·kg~(-1)、0.10μg·kg~(-1)(取样量为0.50 g),样品分析甲基汞、乙基汞的RSD范围分别为1.0%—4.7%、2.5%—6.0%,加标回收率范围分别为85.1%—109%、90.3%—96.3%.  相似文献   

12.
采用气相色谱(GC-ECD)法,建立了土壤和植物样品中13种多溴联苯醚(PBDEs)的分析方法,以正己烷∶二氯甲烷(1∶1)作为萃取溶剂,样品经加速溶剂萃取仪(ASE)萃取、固相萃取净化后,使用气相色谱仪分析样品中的13种PBDEs.结果表明,所选取的13种多溴联苯醚(PBDEs)得到了较好的分离,且该方法中BDE-209在土壤和植物样品中的平均添加回收率分别为68.1%—75.1%和65.1%—72.1%,其余12种BDE的回收率分别为70.3%—106.9%、67.7%—93.4%;BDE-209方法检出限分别为0.26 ng.g-1、0.64 ng.g-1,其余12种BDE的方法检出限分别为0.016—0.043 ng.g-1、0.028—0.096 ng.g-1.本实验方法测定多组分PBDEs的灵敏度和准确度较高、稳定性和回收率良好,可满足于环境样品中PBDEs的分析.  相似文献   

13.
利用酸浸提为萃取方法,建立了高效液相色谱与电感耦合等离子体质谱联用系统(HPLC-ICP-MS)作为检测手段测定土壤与底泥样品中甲基汞(MeHg)与乙基汞(EtHg)的分析方法.萃取溶剂为酸性KBr-CuSO4溶液,在优化的检测条件下,该方法对样品中甲基汞和乙基汞的检出限分别为0.9 ng·ml-1和3.5 ng·ml-1.加标回收实验和对标准参考物质(IAEA-405)的测定结果验证了该方法的精密性与准确性.运用该方法测定了4个土壤与样品中甲基汞与乙基汞的含量.  相似文献   

14.
不同生物炭添加量对土壤中氮磷淋溶损失的影响   总被引:8,自引:0,他引:8  
蔬菜生产中普遍存在过量施肥等不合理施肥现象,氮磷养分大量累积于表层土壤。在降雨或灌溉作用下,氮磷养分容易发生淋溶损失,造成地下水硝酸盐污染。因此,研究菜地土壤中氮磷养分的淋溶损失及其控制措施对保护地下水资源具有重要意义。作为一种新兴的功能材料,生物炭具有比表面积大、吸附性能好、稳定性强等特点,常被用作土壤改良剂来改善土壤性质和减少氮磷养分的淋溶损失。该研究采用室内模拟土柱淋溶试验,测定淋溶液中总氮(TN)和总磷(TP)含量,探讨不同生物炭添加量(质量分数分别为0%、2%、4%、6%和8%)对菜地土壤中氮磷养分淋溶损失的影响。结果表明,土壤中添加生物炭能够有效减少TN和TP的淋失,添加量为2%、4%、6%和8%与不添加生物炭的对照相比,TN的淋失量分别显著减少17.6%、24.7%、30.6%和37.7%(P0.05),TP的淋失量分别显著降低26.0%、12.0%、15.7%和19.7%(P0.05);该试验中对土壤TN和TP淋失抑制效果最佳的生物炭添加量分别为8%和2%;施用生物炭能够有效降低土壤中TN和TP的淋失风险,是控制菜地土壤中氮磷养分淋溶损失的有效措施。  相似文献   

15.
吡嘧磺隆在水稻、土壤和田水中的消解和残留   总被引:1,自引:0,他引:1  
建立了水稻(糙米、稻壳和植株)、土壤和田水中吡嘧磺隆的残留分析方法.待测样品通过二氯甲烷或二氯甲烷/丙酮(1∶1,V/V)提取,C18固相萃取小柱净化后,采用高效液相色谱串联质谱(HPLC-MS/MS)测定吡嘧磺隆的含量,并研究了2010—2011年北京、安徽和海南等3地水稻、土壤和田水中吡嘧磺隆的消解动态和残留行为.实验结果表明,对水稻、土壤和田水的添加回收率均在73%—103%之间,相对标准偏差(RSD)均小于10%,在糙米、稻壳、植株、土壤、田水中的吡嘧磺隆最低检测浓度(LOQ)为0.005 mg.kg-1,符合残留试验要求.消解和残留试验结果表明,吡嘧磺隆在田水和土壤中的消解符合一级动力学,半衰期分别为5.29—6.42 d和4.99—6.42 d.秧苗期施药,收获时水稻和土壤中均未检出吡嘧磺隆的残留.  相似文献   

16.
氯虫苯甲酰胺在甘蓝和土壤中的残留及消解动态   总被引:5,自引:0,他引:5  
参照《农药残留试验准则》,采用田间试验方法,研究了济南和杭州两年两地的氯虫苯甲酰胺在甘蓝和土壤中的消解动态和最终残留。结果表明,氯虫苯甲酰胺最终残留在甘蓝、土壤中的质量分数分别是〈0.297 mg.kg-1,〈0.097 mg.kg-1;在甘蓝、土壤中的降解均符合一级动力学方程,降解半衰期分别为7.2~8.9 d和6.9~10.7 d;统计分析表明,两地区甘蓝中的残留消解行为无显著性差异,土壤中的残留消解行为差异性显著,土壤性质的不同是影响消解过程的主要因素。文章为制定该农药在甘蓝上最大残留限量标准和合理使用准则以及风险评估提供了科学依据。  相似文献   

17.
甲基托布津残留的高效液相色谱法   总被引:4,自引:0,他引:4  
本方法是将甲基托布津定量地转化为其主要代谢产物多菌灵后,再进行高效液相色谱测定,选用丙酮为提取溶剂,提取后先关环氧化再净化萃取;甲基托布津的最低检出量为2ng,在土壤和小麦中的添加回收率为80.2—103.4%,最小检测浓度为0.03—0.05ppm。  相似文献   

18.
建立了LC-MS/MS法同时测定土壤样品中四溴双酚A(Tetrabromobisphenol A,TBBPA)和六溴环十二烷(Hexabromocyclododecanes,HBCDs)的分析方法.样品经索氏抽提后,采用去活化硅胶柱进行净化.TBBPA、α-HBCD、β-HBCD和γ-HBCD的方法检出限分别为0.0315 ng.g-1、0.767 ng.g-1、0.197 ng.g-1和0.163 ng.g-1,方法加标回收率为59.0%—69.4%,可用于土壤样品中痕量TBBPA和HBCDs的测定.经过严格的质量控制,采用本方法对某郊区土壤样品进行了测定,其TBBPA和HBCDs的含量均在pg.g-1量级.  相似文献   

19.
毛发、粮食、土壤中微量硒的荧光分光光度法   总被引:3,自引:0,他引:3  
本文系采取2,3-二氨基萘试剂,用荧光分光光度法测定毛发、粮食、土壤中微量硒的分析方法。对分析试验条件作了探讨,此法不受一般的干扰,灵敏度高,每毫升环己烷中硒的最低测出量为0.001ug;精密度和准确度:毛发、粮食、土壤中硒的测出值的变异系数及样品中加入标准硒的回收率分别为1.30%、1.10%、1.05%及98.5—102.9%、95.9—101.5%、96.8—102.5%。  相似文献   

20.
三环唑残留量的气相色谱分析   总被引:1,自引:0,他引:1  
本文研究了用气相色谱分析水稻、土壤和水中三环唑的残留量.土壤,稻壳和糙米样品经索氏抽提法提取,稻叶经乙酸乙酯抽提,凝结法净化;水样经二氯甲烷直接提取,用带火焰光度S-型检测器的气相色谱仪进行检测,土壤中添加浓度为0.10—5.00μg/g时,平均口收率为95.4±4.2%(X±S%);水中添加浓度为0.01—1.00μg/ml时的平均回收率为97.3—5.3%,稻叶,糙米和稻壳中添加浓度为0.10—1.00μg/g时,平均回收率分别为95.4±4.4%,96.2±9.1%和95.0±4.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号