首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
Coagulation has been proposed as a best available technology for controlling natural organic matter (NOM) during drinking water treatment. The presence of heavy metals such as copper(II) in source water, which may form copper-NOM complexes and/or interact with a coagulant, may pose a potential challenge on the coagulation of NOM. In this work, the effect of copper(II) on NOM removal by coagulation using alum or PAX-18 (a commercial polymerized aluminum chloride from Kemiron Inc., Bartow, Florida) was examined. The results show that the presence of 1 to 10 mg/L of copper(H) in the simulated waters improved the total organic carbon (TOC) removal by up to 25% for alum coagulation and by up to 22% for PAX-18 coagulation. The increased NOM removal with the presence of copper(II) in the waters can most likely be ascribed to the formation copper-NOM complexes that may be more adsorbable on aluminum precipitates and to the formation of copper(II) co-precipitates that may also adsorb NOM. The presence of 1 to 5 mg/L of copper(I) in the waters containing 3 mg/L NOM as carbon was reduced below the maximum contaminant level goal (1.3 mg/L as copper) using either coagulant. The results suggest that the presence of copper(H) in source water may not adversely affect the NOM removal by coagulation. A good linear correlation was observed between the TOC removal efficiency and the log-total moles of the precipitated metals, which include the metal ion from a coagulant and the divalent metal ion(s) in source water.  相似文献   

2.
Natural pumice particles were used as granular support media and coated with iron oxides to investigate their adsorptive natural organic matter (NOM) removal from waters. The impacts of natural pumice source, particle size fraction, pumice dose, pumice surface chemistry and specific surface area, and NOM source on the ultimate extent and rate of NOM removal were studied. All adsorption isotherm experiments were conducted employing the variable-dose completely mixed batch reactor bottle-point method. Iron oxide coating overwhelmed the surface electrical properties of the underlying pumice particles. Surface areas as high as 20.6m(2)g(-1) were achieved after iron coating of pumice samples, which are above than those of iron coated sand samples reported in the literature. For all particle size fractions, iron coating of natural pumices significantly increased their NOM uptakes both on an adsorbent mass- and surface area-basis. The smallest size fractions (<63 microm) of coated pumices generally exhibited the highest NOM uptakes. A strong linear correlation between the iron contents of coated pumices and their Freundlich affinity parameters (K(F)) indicated that the enhanced NOM uptake is due to iron oxides bound on pumice surfaces. Iron oxide coated pumice surfaces preferentially removed high UV-absorbing fractions of NOM, with UV absorbance reductions up to 90%. Control experiments indicated that iron oxide species bound on pumice surfaces are stable, and potential iron release to the solution is not a concern at pH values of typical natural waters. Based on high NOM adsorption capacities, iron oxide coated pumice may be a promising novel adsorbent in removing NOM from waters. Furthermore, due to preferential removal of high UV-absorbing NOM fractions, iron oxide coated pumice may also be effective in controlling the formation of disinfection by-products in drinking water treatment.  相似文献   

3.
Kristiana I  Joll C  Heitz A 《Chemosphere》2011,83(5):661-667
The removal of organic precursors of disinfection by-products (DBPs), i.e. natural organic matter (NOM), prior to disinfection and distribution is considered as the most effective approach to minimise the formation of DBPs. This study investigated the impact of the addition of powdered activated carbon (PAC) to an enhanced coagulation treatment process at an existing water treatment plant on the efficiency of NOM removal, the disinfection behaviour of the treated water, and the water quality in the distribution system. This is the first comprehensive assessment of the efficacy of plant-scale application of PAC combined with enhanced coagulation on an Australian source water. As a result of the PAC addition, the removal of NOM improved by 70%, which led to a significant reduction (80-95%) in the formation of DBPs. The water quality in the distribution system also improved, indicated by lower concentrations of DBPs in the distribution system and better maintenance of disinfectant residual at the extremities of the distribution system. The efficacy of the PAC treatment for NOM removal was shown to be a function of the characteristics of the NOM and the quality of the source water, as well as the PAC dose. PAC treatment did not have the capacity to remove bromide ion, resulting in the formation of more brominated DBPs. Since brominated DBPs have been found to be more toxic than their chlorinated analogues, their preferential formation upon PAC addition must be considered, especially in source waters containing high concentrations of bromide.  相似文献   

4.
Removal processes for arsenic in constructed wetlands   总被引:2,自引:0,他引:2  
Lizama A K  Fletcher TD  Sun G 《Chemosphere》2011,84(8):1032-1043
Arsenic pollution in aquatic environments is a worldwide concern due to its toxicity and chronic effects on human health. This concern has generated increasing interest in the use of different treatment technologies to remove arsenic from contaminated water. Constructed wetlands are a cost-effective natural system successfully used for removing various pollutants, and they have shown capability for removing arsenic. This paper reviews current understanding of the removal processes for arsenic, discusses implications for treatment wetlands, and identifies critical knowledge gaps and areas worthy of future research. The reactivity of arsenic means that different arsenic species may be found in wetlands, influenced by vegetation, supporting medium and microorganisms. Despite the fact that sorption, precipitation and coprecipitation are the principal processes responsible for the removal of arsenic, bacteria can mediate these processes and can play a significant role under favourable environmental conditions. The most important factors affecting the speciation of arsenic are pH, alkalinity, temperature, dissolved oxygen, the presence of other chemical species - iron, sulphur, phosphate -, a source of carbon, and the wetland substrate. Studies of the microbial communities and the speciation of arsenic in the solid phase using advanced techniques could provide further insights on the removal of arsenic. Limited data and understanding of the interaction of the different processes involved in the removal of arsenic explain the rudimentary guidelines available for the design of wetlands systems.  相似文献   

5.
针对高碱度水库水源的某水厂残留铝超标问题,选取碱化度(B)与Alb含量不同的3种铝盐絮凝剂,研究不同投量与pH值下混凝效果与残留铝浓度水平。结果表明,碱化度和Alb含量显著影响混凝效果。DOC和浊度的去除率随着3种絮凝剂AlCl3(B=0)、PACl-1(B=1.2)、PACl-2(B=2.2)投量增大而升高。3种絮凝剂投量在1.5~2.0 mg/L(以铝计)范围内,总铝和溶解铝含量最低。对于该水厂自制的絮凝剂PACl-2,可通过降低絮凝剂碱化度,或将水的pH值降低至7~7.5之间,以此可以提高PACl-2混凝效果,而且可以降低出厂水残留铝浓度。考虑工程应用可行性,可优先考虑调整絮凝剂生产工艺。  相似文献   

6.
The present work investigates the impacts and mechanisms associated with natural organic matter (NOM) in the Fe0 treatment system of Cu2+ and Zn2+ under roof runoff conditions. The NOM in runoff waters was characterized using XAD-4/8 adsorption resins, copper complexation, acidic capacity and liquid chromatography with online carbon detection. Batch kinetic experiments and flow-through configurations were performed and the results of metal removal were elucidated taking into account the characteristics of NOM. Based on the findings, it is shown that NOM influences the removal of metals through several complex pathways. At an un-favored condition for adsorption of metals, i.e., on iron corrosion products, at pH相似文献   

7.
Goslan EH  Gurses F  Banks J  Parsons SA 《Chemosphere》2006,65(7):1113-1119
A comparison of four treatment technologies for reduction of natural organic matter (NOM) in a reservoir water was made. The work presented here is a laboratory based evaluation of NOM treatment by UV-C photolysis, UV/H(2)O(2), Fenton's reagent (FR) and photo-Fenton's reagent (PFR). The work investigated ways of reducing the organic load on water treatment works (WTWs) with a view to treating 'in-reservoir' or 'in-pipe' before the water reaches the WTW. The efficiency of each process in terms of NOM removal was determined by measuring UV absorbance at 254 nm (UV(254)) and dissolved organic carbon (DOC). In terms of DOC reduction PFR was the most effective (88% removal after 1 min) however there were interferences when measuring UV(254) which was reduced to a lesser extent (31% after 1 min). In the literature, pH 3 is reported to be the optimal pH for oxidation with FR but here the reduction of UV(254) and DOC was found to be insensitive to pH in the range 3-7. The treatment that was identified as the most effective in terms of NOM reduction and cost effectiveness was PFR.  相似文献   

8.
Yan M  Wang D  Shi B  Wang M  Yan Y 《Chemosphere》2007,69(11):1695-1702
Although ozone is widely used as a pre-oxidant before coagulation in water treatment, the effect of pre-ozonation on optimized coagulation for removal of particle and natural organic matter (NOM) is still not fully understood. In this paper, pilot-scale investigation was conducted to examine the impact of pre-ozonation on coagulation for particle and NOM removal. Changes in the particle and NOM distributions were characterized by various methods, including laser light granularity system, particle counter, ultrafiltration, and resin absorbent fractionation. A novel composite flocculant–HPAC was compared with the traditional ferric chloride coagulant in terms of coagulation efficiency under the influence of pre-ozonation. Typical micro-polluted North China surface water was used for pilot coagulation tests. The results show that the effect of pre-ozonation on coagulation is associated with the dosage of ozone, coagulant type, and water contamination characteristics. For FeCl3, pre-ozonation acts as a coagulation aid at low dosage (1.0 mg L−1 O3) for turbidity and UV254 removal; while at higher dosage (2.0 mg L−1 O3), pre-ozonation is detrimental to UV254 removal although it is still beneficial for turbidity removal. In the case of composite flocculant–HPAC, pre-ozonation demonstrates negligible influence on both turbidity and UV254 removal. Ozone can simultaneously aggregate fine particles and break down large ones, making them more mineralized and easier to remove. NOM with intermediate molecular weight and hydrophobic neutral property increases at lower ozone dosage, favoring removal by coagulation. At higher ozone dosages, NOM becomes more hydrophilic and its molecular weight becomes smaller, decreasing NOM removal.  相似文献   

9.
This study investigated the effects of pH (6-10) and ozone dose [0.4-3.0?mg O(3)/mg dissolved organic carbon (DOC)] on the content and structure of haloacetic acid (HAA) precursors in groundwater rich in natural organic matter (NOM; DOC 9.85?±?0.18?mg/L) during drinking water treatment. The raw water was ozonated in a 2 L glass column. NOM fractionation was carried out using XAD resins. HAA formation potential (HAAFP) was determined according to standard EPA Method 552. NOM characterization revealed it is mostly hydrophobic (65?% fulvic and 14?% humic acids). Hydrophobic NOM significantly influences HAA formation, as confirmed by the high HAAFP (309?±?15?μg/L). Ozonation at pH?6-10 led to changes in NOM structure, i.e. complete humic acid oxidation, and increased the hydrophilic NOM fraction content (65-90?% achieved using 3.0?mg O(3)/mg DOC). The highest degree of NOM oxidation and HAA precursor removal was achieved at pH?10 (up to 68?% HAAFP). Ozonation pH influenced the distribution of HAA precursor content, as increasing the pH from 6 to 10 increased the reactivity of the hydrophilic fraction, with the HAAFP increasing from 19.1?±?6.0?μg/mg DOC in raw water to 152?±?8?μg/mg DOC in ozonated water. The degree of HAA precursor removal depends on the dominant oxidation mechanism, which is related to the applied ozone dose and the pH of the oxidation process. Ozonation at pH?10 favours the mechanism of radical NOM oxidation and was the most effective for HAAFP reduction, with the efficacy of the process improving with increasing ozone dose.  相似文献   

10.
Kitis M  Kaplan SS 《Chemosphere》2007,68(10):1846-1853
The oxidative removal of natural organic matter (NOM) from waters using hydrogen peroxide and iron-coated pumice particles as heterogeneous catalysts was investigated. Two NOM sources were tested: humic acid solution and a natural source water. Iron coated pumice removed about half of the dissolved organic carbon (DOC) concentration at a dose of 3000 mg l(-1) in 24 h by adsorption only. Original pumice and peroxide dosed together provided UV absorbance reductions as high as 49%, mainly due to the presence of metal oxides including Al(2)O(3), Fe(2)O(3) and TiO(2) in the natural pumice, which are known to catalyze the decomposition of peroxide forming strong oxidants. Coating the original pumice particles with iron oxides significantly enhanced the removal of NOM with peroxide. A strong linear correlation was found between iron contents of coated pumices and UV absorbance reductions. Peroxide consumption also correlated with UV absorbance reduction. Control experiments proved the effective coating and the stability of iron oxide species bound on pumice surfaces. Results overall indicated that in addition to adsorptive removal of NOM by metal oxides on pumice surfaces, surface reactions between iron oxides and peroxide result in the formation of strong oxidants, probably like hydroxyl radicals, which further oxidize both adsorbed NOM and remaining NOM in solution, similar to those in Fenton-like reactions.  相似文献   

11.
《Chemosphere》2008,70(11):1695-1702
Although ozone is widely used as a pre-oxidant before coagulation in water treatment, the effect of pre-ozonation on optimized coagulation for removal of particle and natural organic matter (NOM) is still not fully understood. In this paper, pilot-scale investigation was conducted to examine the impact of pre-ozonation on coagulation for particle and NOM removal. Changes in the particle and NOM distributions were characterized by various methods, including laser light granularity system, particle counter, ultrafiltration, and resin absorbent fractionation. A novel composite flocculant–HPAC was compared with the traditional ferric chloride coagulant in terms of coagulation efficiency under the influence of pre-ozonation. Typical micro-polluted North China surface water was used for pilot coagulation tests. The results show that the effect of pre-ozonation on coagulation is associated with the dosage of ozone, coagulant type, and water contamination characteristics. For FeCl3, pre-ozonation acts as a coagulation aid at low dosage (1.0 mg L−1 O3) for turbidity and UV254 removal; while at higher dosage (2.0 mg L−1 O3), pre-ozonation is detrimental to UV254 removal although it is still beneficial for turbidity removal. In the case of composite flocculant–HPAC, pre-ozonation demonstrates negligible influence on both turbidity and UV254 removal. Ozone can simultaneously aggregate fine particles and break down large ones, making them more mineralized and easier to remove. NOM with intermediate molecular weight and hydrophobic neutral property increases at lower ozone dosage, favoring removal by coagulation. At higher ozone dosages, NOM becomes more hydrophilic and its molecular weight becomes smaller, decreasing NOM removal.  相似文献   

12.
Atrazine (6-chloro-N-ethyl-N'-isopropyl-1,3,5-triazinedyl-2,4-diamine) was treated with ozone alone and in combination with hydrogen peroxide or UV radiation in three surface waters. Experiments were carried out in two bubble reactors operated continuously. Variables investigated were the ozone partial pressure, temperature, pH, mass flow ratio of oxidants fed: hydrogen peroxide and ozone and the type of oxidation including UV radiation alone. Residence time for the aqueous phase was kept at 10 min. Concentrations of some intermediates, including deethylatrazine, deisopropylatrazine and deethyldeisopropylatrazine, were also followed. The nature of water, specifically the alkalinity and pH were found to be important variables that affected atrazine (ATZ) removal. Surface waters with low alkalinity and high pH allowed the highest removal of ATZ to be reached. There was an optimum hydrogen peroxide to ozone mass flow ratio that resulted in the highest ATZ removal in each surface water treated. This optimum was above the theoretical stoichiometry of the process. Therefore, to reach the maximum removal of ATZ in a O3/H2O2 process, more hydrogen peroxide was needed in the surface waters treated than in ultrapure water under similar experimental conditions. In some cases, UV radiation alone resulted in the removal of ATZ higher than ozonation alone. This was likely due to the alkalinity of the surface water. Ozonation and UV radiation processes yield different amounts of hydrogen peroxide. Combined ozonations (O3/H2O2 and O3/UV) lead to ATZ removals higher than single ozonation or UV radiation but the formation of intermediates was higher.  相似文献   

13.
Effect of Al(III) speciation on coagulation of highly turbid water   总被引:2,自引:0,他引:2  
Lin JL  Huang C  Pan JR  Wang D 《Chemosphere》2008,72(2):189-196
In Taiwan, the turbidity of raw water for fresh water treatments can sometimes reach as high as 40 000 NTU due to intensive rainfall, especially in typhoon seasons. In response, water works often apply large quantities of coagulants such as polyaluminium chloride (PACl). In this study, simulated and natural highly turbid water was coagulated with two PACls, a commercial product (PACl-1) and a laboratory product (PACl-E). The Al species distributions of PACl-1 and PACl-E under various pH conditions were determined, and the corresponding coagulation efficiency was evaluated. The PACl-E has a wider range of operational pH, while the efficiency of PACl-1 peaks at around neutral pH. For simulated water up to 5000 NTU, the PACl-E was superior to PACl-1 at low dosage and in the pH range studied. Similar results were discovered with natural water, except that when the turbidity was extremely high, the coagulation efficiency of PACl-E decreased significantly due to the presence of large amounts of organic matter. The coagulation of PACl-E was closely related to the content of polycationic aluminium (Al13) while that of PACl-1 was dictated by the amount of Alc. The sludge from PACl-E coagulation had better dewaterability when the optimum dosage was applied. The experimental results suggest that for natural water up to 5000 NTU, PACl containing high Al13 species is recommended for coagulation. In cases when the water contains high organic matter, efficient coagulation depends upon enmeshment by amorphous aluminium hydroxide.  相似文献   

14.
Natural organic matter (NOM) is found in all surface, ground and soil waters. During recent decades, reports worldwide show a continuing increase in the color and NOM of the surface water, which has an adverse affect on drinking water purification. For several practical and hygienic reasons, the presence of NOM is undesirable in drinking water. Various technologies have been proposed for NOM removal with varying degrees of success. The properties and amount of NOM, however, can significantly affect the process efficiency. In order to improve and optimise these processes, the characterisation and quantification of NOM at different purification and treatment processes stages is important. It is also important to be able to understand and predict the reactivity of NOM or its fractions in different steps of the treatment. Methods used in the characterisation of NOM include resin adsorption, size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) spectroscopy, and fluorescence spectroscopy. The amount of NOM in water has been predicted with parameters including UV-Vis, total organic carbon (TOC), and specific UV-absorbance (SUVA). Recently, methods by which NOM structures can be more precisely determined have been developed; pyrolysis gas chromatography-mass spectrometry (Py-GC-MS), multidimensional NMR techniques, and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The present review focuses on the methods used for characterisation and quantification of NOM in relation to drinking water treatment.  相似文献   

15.
Removal of NOM from drinking water: Fenton's and photo-Fenton's processes   总被引:4,自引:0,他引:4  
Murray CA  Parsons SA 《Chemosphere》2004,54(7):1017-1023
The control of disinfection by-products during water treatment is primarily undertaken by reducing the levels of precursor species prior to chlorination. As many waters contain natural organic matter at levels of up to 15 mgl(-1) there is a need for a range of control methods to support conventional coagulation. Two such processes are the Fenton and photo-Fenton's processes and in this paper they are assessed for their potential to remove NOM from organic rich waters. The performance of both processes is shown to be depentent on pH, Fe: H2O2 ratio as well as Fe2+ dose. Under optimum conditions both processes achieved greater than 90% removal of DOC and UV254 absorbance. This removal lead to the trihalomethane formation potential of the water being reduced from 140 to below 10 microgl(-1), well below UK and US standards.  相似文献   

16.
Abstract

Atrazine (6‐chloro‐N‐ethyl‐N'‐isopropyl‐1,3,5‐triazinedyl‐2,4‐diamine) was treated with ozone alone and in combination with hydrogen peroxide or UV radiation in three surface waters. Experiments were carried out in two bubble reactors operated continously. Variables investigated were the ozone partial pressure, temperature, pH, mass flow ratio of oxidants fed: hydrogen peroxide and ozone and the type of oxidation including UV radiation alone. Residence time for the aqueous phase was kept at 10 min. Concentrations of some intermediates, including deethylatrazine, deisopropylatrazine and deethyldeisopropylatrazine, were also followed. The nature of water, specifically the alkalinity and pH were found to be important variables that affected atrazine (ATZ) removal. Surface waters with low alkalinity and high pH allowed the highest removal of ATZ to be reached. There was an optimum hydrogen peroxide to ozone mass flow ratio that resulted in the highest ATZ removal in each surface water treated. This optimum was above the theoretical stoichiometry of the process. Therefore, to reach the maximum removal of ATZ in a O3/H2O2 process, more hydrogen peroxide was needed in the surface waters treated than in ultrapure water under similar experimental conditions. In some cases, UV radiation alone resulted in the removal of ATZ higher than ozonation alone. This was likely due to the alkalinity of the surface water. Ozonation and UV radiation processes yield different amounts of hydrogen peroxide. Combined ozonations (O3/H2O2 and O3/UV) lead to ATZ removals higher than single ozonation or UV radiation but the formation of intermediates was higher.  相似文献   

17.

Introduction

The removal of natural organic matter (NOM) from water is becoming increasingly important in order to prevent the formation of carcinogenic disinfection by-products. The inadequate removal of NOM has a bearing on the capacity of the other treatment processes to remove organic micro-pollutants or inorganic species that may be present in the water. New methods are therefore currently being sought to effectively characterise NOM and also to ensure that it is sufficiently removed from drinking water sources.

Methodology

Nitrogen- and palladium-co-doped TiO2 was synthesised by a modified sol?Cgel method and evaluated for its photocatalytic degradation activity on NOM fractions under simulated solar radiation. The photocatalyst was characterised by FT-IR, Raman, XRD, DRUV?Cvis, SEM, TEM, EDS, XPS and TGA. FT-IR confirmed the presence of OH groups on thermally stable, nearly spherical anatase nanoparticles with an average diameter of 20?nm. PdO species appeared on the surface of the TiO2 as small uniformly dispersed particles (2 to 3?nm). A red shift in the absorption edge compared to commercial anatase TiO2 was confirmed by DRUV?Cvis. In order to gain a better insight into the response of NOM to photodegradation, the NOM was divided into three different fractions based on its chemical nature.

Results and discussion

Photodegradation efficiencies of 96, 38 and 15?% were realised for the hydrophobic, hydrophilic and transphilic NOM fractions, respectively. A reasonable mechanism was proposed to explain the photocatalytic degradation of the NOM fractions. The high photocatalytic activity could be attributed to the larger surface area, smaller crystalline size and synergistic effects of the co-dopants N and Pd in the TiO2 crystal.  相似文献   

18.
围绕着中水回用过程中面临的若干关键问题,通过系统研究筛选高效混凝剂及优化混凝过程来提高污染物去除率,为中水回用提供经济合理的工艺途径.实验结果表明,与FeCl3相比,HPACS系列具有显著优越的除浊与除有机物性能.除磷性能则较为一致,可以达到90%以上的去除率.PFAC系列与FeCl3相比,除浊性能较差,取决于混凝剂中的有效成分的含量,但是具有较为优越的除有机物性能.HPAA系列具有显著优越的除浊和除有机物性能.HPFA与FeCl3系列相比,则具有较高的除磷效果,HPAA的除磷效果则相对较差.不同系列混凝剂具有不同的除浊、除有机物与除磷性能,需要结合分质供水的要求进行优化应用.  相似文献   

19.
This work reports a relatively rapid procedure for the forecasting of the remediation time (RT) of sandy soils contaminated with cyclohexane using vapour extraction. The RT estimated through the mathematical fitting of experimental results was compared with that of real soils. The main objectives were: (i) to predict the RT of soils with natural organic matter (NOM) and water contents different from those used in experiments; and (ii) to analyse the time and efficiency of remediation, and the distribution of contaminants into the soil matrix after the remediation process, according to the soil contents of: (ii1) NOM; and (ii2) water. For sandy soils with negligible clay contents, artificially contaminated with cyclohexane before vapour extraction, it was concluded that: (i) if the NOM and water contents belonged to the range of the prepared soils, the RT of real soils could be predicted with relative differences not higher than 12%; (ii1) the increase of NOM content from 0% to 7.5% increased the RT (1.8-13 h) and decreased the remediation efficiency (RE) (99-90%) and (ii2) the increase of soil water content from 0% to 6% increased the RT (1.8-4.9 h) and decreased the RE (99-97%). NOM increases the monolayer capacity leading to a higher sorption into the solid phase. Increasing of soil water content reduces the mass transfer coefficient between phases. Concluding, NOM and water contents influence negatively the remediation process, turning it less efficient and more time consuming, and consequently more expensive.  相似文献   

20.
聚合氯化铝铁的形态分布对微污染源水混凝效果的影响   总被引:2,自引:0,他引:2  
针对微污染源水中浊度、叶绿素a等的强化去除问题,研究了碱化度、铝铁比和加碱方式等对聚合氯化铝铁形态分布的影响,并考察了形态分布与混凝除污效率和混凝沉淀出水中残铝浓度的关系.结果表明:在铁摩尔分数一定时,混凝剂中单体、中等聚合物和无定形凝胶含量与碱化度存在线性相关性,并推导出中等聚合物含量的计算公式;在碱化度一定时,混凝剂中单体、中等聚合物和无定形凝胶含量与铁摩尔分数也存在线性相关性;增加碱化度或降低铁摩尔分数,可以增加中等聚合物含量、降低单体含量,从而影响混凝除污效率和混凝沉淀后出水中残铝浓度.混凝实验结果表明,混凝过程中叶绿素a去除率和浊度去除率均与混凝剂中中等聚合物含量存在线性相关性,但两者相关系数不同.混凝沉淀后出水中残铝浓度与混凝剂中单体含量存在线性相关性.因此,预聚合的无机高分子混凝剂对提高混凝过程中的除浊、除藻效率,降低混凝沉淀后出水中残铝浓度具有重要的意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号