首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
During the production of thermonuclear fusion weapons at the Y‐12 National Security Complex (Y‐12 NSC) in Oak Ridge, Tennessee, between 1950 and 1963, the regional environment was extensively contaminated by volatile organic compounds (VOCs). Old Salvage Yard (OSY) on the western side of the site has been characterized as the major source of VOCs. In order to analyze the long‐term fate and transport of chlorinated VOC sources, an integrated surface and subsurface flow and transport model was developed for the Y‐12 NSC using the hydrodynamic and transport numerical package MIKE‐SHE. The model was developed considering the recent hydrogeological investigations on preferential flow and transport pathways at the site. The model was calibrated using the recorded groundwater flow and water‐quality data. The modeling simulated migration of the VOC plume for the next 100 years. Considering a range of hydrogeological and transport parameters, uncertainty of the results is discussed. The modeling predicted that tetrachloroethene, trichloroethene, and 1,2‐dichloroethene may exceed human health–related risk levels for the next 10 to 20 years. However, the contamination is unlikely to migrate to surface water under the current hydrogeological conditions and will decay below acceptable risk levels within approximately 20 years. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Active sediment caps are being considered for addressing contaminated sediment areas in surface‐water bodies. A demonstration of an active cap designed to reduce advective transport of contaminants using AquaBlok® (active cap material) was initiated in a small study area of the Anacostia River in Washington, D.C. The cap remained physically stable, demonstrated the ability to divert groundwater flow, and was recolonized with native organisms after 30 months of monitoring following cap placement. However, the long‐term performance of active caps associated with harsh environmental conditions, hydrogeological settings, and subsurface gas production needs to be further evaluated. © 2008 Wiley Periodicals, Inc.  相似文献   

3.
The Gowanus Canal Superfund Site in Brooklyn, New York, is an approximately 1.5‐mile (1.61‐km) long estuary that was historically converted into a canal for industrial and commercial purposes. Three manufactured gas plants (MGPs) were formerly located on the Gowanus Canal and discharged waste into it. Surface sediments remain highly contaminated with polycyclic aromatic hydrocarbons (PAHs) long after the MGPs were razed. A hydrogeologic assessment indicates that groundwater passes through the deeper coal tar–contaminated sediment prior to discharging to the canal. This study was undertaken to investigate if groundwater passing through coal tar–contaminated sediment could be responsible for the ongoing contamination of both surface sediments and surface water in the canal. PAH compound distributions in surface water samples collected from the tidal canal at low tide were compared with PAH compounds found in adjacent groundwater‐monitoring wells, point sources (combined sewer overflows [CSOs]), and surface sediments. The results indicate a strong correlation between PAH contaminant distributions in groundwater, sediment, and surface water, indicating that contaminated groundwater passing through the deeper coal tar–contaminated sediments is the primary mechanism contributing to the contamination of both surface sediment and surface water in the canal. Therefore, any sediment remediation efforts in the Gowanus Canal that fail to evaluate and control the upward transport processes have a high chance of failure due to recontamination from below.  ©2016 Wiley Periodicals, Inc.  相似文献   

4.
Arctic Foundations, Inc. (AFI), of Anchorage, Alaska, has developed a freeze barrier system designed to hydraulically isolate a contaminant source area. The system can be used for long‐term or temporary containment of groundwater until appropriate remediation techniques can be applied. The technology was evaluated under the United States Environmental Protection Agency's (EPA's) Superfund Innovative Technology Evaluation (SITE) program at the United States Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL) facility in Oak Ridge, Tennessee. For the demonstration, an array of freeze pipes called “thermoprobes” was installed to a depth of 30 feet below ground surface around a former waste collection pond and keyed into bedrock. The system was used to establish an impermeable frozen soil barrier to hydraulically isolate the pond. Demonstration personnel collected independent data to evaluate the technology's performance. A variety of evaluation tools were used—including a groundwater dye tracing investigation, groundwater elevation measurements, and subsurface soil temperature data—to determine the effectiveness of the freeze barrier system in preventing horizontal groundwater flow beyond the limits of the frozen soil barrier. Data collected during the demonstration provided evidence that the frozen soil barrier was effective in hydraulically isolating the pond.  相似文献   

5.
Treatment of perchlorate‐contaminated groundwater using highly selective, regenerable ion‐exchange technology has been recently demonstrated at Edwards Air Force Base, California. At an influent concentration of about 450 μg/l ClO4?, the bifunctional anion‐exchange resin bed treated approximately 40,000 empty bed volumes of groundwater before a significant breakthrough of ClO4? occurred. The presence of relatively high concentrations of chloride and sulfate in site groundwater did not appear to affect the ability of the bifunctional resin to remove ClO4?. The spent resin bed was successfully regenerated using the FeCl3?HCl regeneration technique recently developed at the Oak Ridge National Laboratory, and nearly 100 percent of sorbed ClO4? was displaced or recovered after elution with as little as about two bed volumes of the regenerant solution. In addition, a new methodology was developed to completely destroy ClO4? in the FeCl3?HCl solution so that the disposal of perchlorate‐containing hazardous wastes could be eliminated. It is therefore anticipated that these treatment and regeneration technologies may offer an efficient and cost‐effective means to remove ClO4? from contaminated groundwater with significantly reduced generation of waste requiring disposal. © 2002 Wiley Periodicals, Inc.  相似文献   

6.
We examined site‐specific advisory board (SSAB) minutes and local newspaper coverage of the Fernald, Hanford, Idaho, Oak Ridge, Rocky Flats, and Savannah River sites of the U.S. Department of Energy (US DOE) in order to determine the importance of risk‐related issues related to remediation and other forms of environmental management. About one‐third of SSAB issues were risk‐related, and these were disproportionately major issues at meetings. The media focused on risks associated with remediation and other forms of waste management. The analysis implies that contractors and government officials need to establish and maintain communications with advisory panels and accentuate these contacts well in advance of contemplated new actions. © 2008 Wiley Periodicals, Inc.  相似文献   

7.
Closure often of the eleven waste management units covering almost seventy-five acres at the U.S. Department of Energy's Oak Ridge Y-12 Plant has been completed. Costing about $47 million, DOE's accelerated Closure and Post Closure Program (CAPCA) has involved structural waste stabilization and installation of a multimedia cap to contain ferrous metals, salts, uranium, solvents, ethylenediamine tetraacetic acid (EDTA), oils and coolants, asbestos, and material contaminated with radioisotopes. Designs for closure of the remaining waste unit—used for disposing depleted uranium chips, metals, oxides, organic and caustic chemicals, aged ethers, and more—are being prepared now; they will address the potentially explosive and pyrophoric nature of these wastes. This article describes CAPCA's innovative design and construction methods, as well as how its management coordinated the tight schedules mandated by agreements with federal and state regulatory agencies.  相似文献   

8.
Stormwater runoff from the University of California, Davis/U.S. Department of Energy Laboratory for Energy‐Related Health Research (UCD/US DOE LEHR) Superfund site located on the University of California campus in Davis, California, has been found to contain over 500 ng/L of total recoverable mercury, which is about ten times the California Toxics Rule criterion. This stormwater runoff is discharged to Putah Creek, which is Clean Water Act Section 303(d) listed as impaired for excessive mercury bioaccumulation in edible fish. A discussion is presented on the potential impact of the mercury in stormwater runoff from LEHR leading to excessive bioaccumulation of mercury in Putah Creek fish. The mercury in the stormwater runoff is derived from former flooding of the soils near the creek, which contains mercury derived from abandoned upstream mercury mines located in the Coast Range Vaca Hills to the west of LEHR. The implications of this situation for implementing a Total Maximum Daily Load (TMDL) to control mercury in stormwater runoff to Putah Creek are presented. © 2009 Wiley Periodicals, Inc.  相似文献   

9.
A sulfuric acid leak in 1988 at a chloroethene‐contaminated groundwater site at the Naval Air Station Pensacola has resulted in a long‐term record of the behavior of chloroethene contaminants at low pH and a unique opportunity to assess the potential impact of source area treatment technologies, which involve acidification of the groundwater environment (e.g., Fenton's‐based in situ chemical oxidation), on downgradient natural attenuation processes. The greater than 75 percent decrease in trichloroethene (TCE) concentrations and the shift in contaminant composition toward predominantly reduced daughter products (dichloroethene [DCE] and vinyl chloride [VC]) that were observed along a 30‐m groundwater flow path characterized by highly acidic conditions (pH = 3.5 ± 0.4) demonstrated that chloroethene reductive dechlorination can continue to be efficient under persistent acidic conditions. The detection of Dehalococcoides‐type bacteria within the sulfuric acid/chloroethene co‐contaminant plume was consistent with biotic chloroethene reductive dechlorination. Microcosm studies conducted with 14C‐TCE and 14C‐VC confirmed biotic reductive dechlorination in sediment collected from within the sulfuric acid/chloroethene co‐contaminant plume. Microcosms prepared with sediment from two other locations within the acid plume, however, demonstrated only a limited mineralization to 14CO2 and 14CO, which was attributed to abiotic degradation because no significant differences were observed between experimental and autoclaved control treatments. These results indicated that biotic and abiotic mechanisms contributed to chloroethene attenuation in the acid plume at NAS Pensacola and that remediation techniques involving acidification of the groundwater environment (e.g., Fenton's‐based source area treatment) do not necessarily preclude efficient chloroethene degradation. © 2007 Wiley Periodicals, Inc.  相似文献   

10.
In-situ sparging has been accepted as a method to rapidly remediate groundwater at considerably lower costs compared to remedies based on groundwater recovery alone. The success of in-situ sparging depends on effective mass transfer between air and contaminated media in the subsurface. Factors affecting mass transfer include advective airflow, diffusive transport, interphase chemical partitioning, and chemical and biological reaction rates between sparged gases and subsurface contaminants, minerals, and naturally occurring organic compounds. Understanding these factors can increase the design efficiency of in-situ sparging and assist in developing sparging systems that use gases other than air (i.e., oxygen, ozone, and methane).  相似文献   

11.
Making remediation and risk management decisions for widely‐distributed chemicals is a challenging aspect of contaminated site management. The objective of this study is to present an initial evaluation of the ubiquitous, ambient environmental distribution of poly‐ and perfluoroalkyl substances (PFAS) within the context of environmental decision‐making at contaminated sites. PFAS are anthropogenic contaminants of emerging concern with a wide variety of consumer and industrial sources and uses that result in multiple exposure routes for humans. The combination of widespread prevalence and low screening levels introduces considerable uncertainty and potential costs in the environmental management of PFAS. PFAS are not naturally‐occurring, but are frequently detected in environmental media independent of site‐specific (i.e., point source) contamination. Information was collected on background and ambient levels of two predominant PFAS, perfluorooctane sulfonate and perfluorooctanoate, in North America in both abiotic media (soil, sediment, surface water, and public drinking water supplies) and selected biotic media (human tissues, fish, and shellfish). The background or ambient information was compiled from multiple published sources, organized by medium and concentration ranges, and evaluated for geographical trends and, when available, also compared to health‐based screening levels. Data coverage and quality varied from wide‐ranging and well‐documented for soil, surface water, and serum data to more localized and less well‐documented for sediment and fish and shellfish tissues and some uncertainties in the data were noted. Widespread ambient soil and sediment concentrations were noted but were well below human health‐protective thresholds for direct contact exposures. Surface water, drinking water supply waters (representing a combination of groundwater and surface water), fish and shellfish tissue, and human serum levels ranged from less than to greater than available health‐based threshold values. This evaluation highlights the need for incorporating literature‐based or site‐specific background into PFAS site evaluation and decision‐making, so that source identification, risk management, and remediation goals are properly focused and to also inform general policy development for PFAS management.  相似文献   

12.
An active capping demonstration project in Washington, D.C., is testing the ability to place sequestering agents on contaminated sediments using conventional equipment and evaluating their subsequent effectiveness relative to conventional passive sand sediment caps. Selected active capping materials include: (1) AquaBlokTM, a clay material for permeability control; (2) apatite, a phosphate mineral for metals control; (3) coke, an organic sequestration agent; and (4) sand material for a control cap. All of the materials, except coke, were placed in 8,000‐ft test plots by a conventional clamshell method during March and April 2004. Coke was placed as a 1.25‐cm layer in a laminated mat due to concerns related to settling of the material. Postcap sampling and analysis were conducted during the first, sixth, and eighteenth months after placement. Although postcap sampling is expected to continue for at least an additional 24 months, this article summarizes the results of the demonstration project and postcap sampling efforts up to 18 months. Conventional clamshell placement was found to be effective for placing relatively thin (six‐inch) layers of active material. The viability of placing high‐value or difficult‐to‐place material in a controlled manner was successfully demonstrated with the laminated mat. Postcap monitoring indicates that all cap materials effectively isolated contaminants, but it is not yet possible to differentiate between conventional sand and active cap layer performance. Monitoring of the permeability control layer indicated effective reductions in groundwater seepage rates through the cap, but also showed the potential for gas accumulation and irregular release. All of the cap materials show deposition of new contaminated sediment onto the surface of the caps, illustrating the importance of source control in maintaining sediment quality. © 2006 Wiley Periodicals, Inc.  相似文献   

13.
Mercury occurs naturally in the environment and can be found in elemental (metallic), inorganic, and organic forms. Modern uses for mercury include chemical manufacturing, thermometers, and lighting (mercury vapor and fluorescent lamps). The chemical and allied products industry group is responsible for the largest quantity of mercury used in the United States. Mercury, particularly the organic methylmercury form, is a potent neurotoxin capable of impairing neurological development in fetuses and young children and of damaging the central nervous system of adults. Mercury regulations span multiple federal and state environmental statutes, as well as multiple agency jurisdictions. In August 2007, the U.S. Environmental Protection Agency's (US EPA's) Office of Superfund Remediation and Technology Innovation (OSRTI) published a report titled “Treatment Technologies for Mercury in Soil, Waste, and Water.“ The report identifies eight treatment technologies and 57 projects, 50 of which provide performance data. This information can help managers at sites with mercury‐contaminated media and generators of mercury‐contaminated waste and wastewater to identify proven and effective mercury treatment technologies; screen technologies based on application‐specific goals, characteristics, and costs; and apply experiences from sites with similar treatment challenges. This article provides a synopsis of the US EPA report, which is available at http://clu‐in.org/542R07003 . © 2007 Wiley Periodicals, Inc. *
  • 1 This article is a U.S. Government work and, as such, is in the public domain of the United States of America.
  •   相似文献   

    14.
    The North Fork of Clear Creek (NFCC), Colorado, is an acid‐mine‐drainage‐impacted stream typical of many mountain surface waters affected by historic metal mining in the western United States. The stream is devoid of fish primarily because of high metal concentrations in the water (e.g., copper and zinc) and has large amounts of settled iron oxyhydroxide solids that coat the streambed. The NFCC is part of the Central City/Clear Creek Superfund site, and remediation plans are being implemented that include treatment of three of the main point‐source inputs and cleanup of some tailings and waste rock piles. This article examines dissolved (0.45‐μm filterable) concentrations of cadmium, copper, and zinc following several potential remediation scenarios, simulated using a reactive transport model (WASP4/META4). Results from modeling indicate that for cadmium, remediation of the primary point‐source adit discharges should be sufficient to achieve acute and chronic water‐quality standards under both high‐ and low‐flow conditions. To achieve standards for copper and zinc, however, the modeling scenarios suggest that it may be necessary to treat or remove contaminated streambed sediments in downstream reaches, as well as identify and treat nonpoint sources of metals. Recommendations for improvements to the model for metal transport in acid‐mine drainage impacted streams are made. These recommendations are being implemented by the U.S. Environmental Protection Agency. © 2009 Wiley Periodicals, Inc.  相似文献   

    15.
    Mercury speciation in fluorescent lamps by thermal release analysis   总被引:4,自引:0,他引:4  
    In this work, mercury speciation in phosphorus powder matrices and soda lime glass waste from new and spent fluorescent lamp wastes has been studied by thermo-desorption/atomic absorption spectrometry (TDAAS), X-ray diffraction (XRD), cold vapor-atomic absorption (CV-AAS) and atomic emission spectrometry/inductively coupled plasma (ICP/AES). TDAAS results show the presence of oxidized forms of mercury, i.e., Hg(1+) and Hg(2+), especially in wastes with high mercury concentration. Such forms are mobile, and therefore represent a potential hazard waste material. Glass TD profiles of spent fluorescent lamps suggested the presence of mercury strongly linked to the matrix, which desorbs only at high temperatures.  相似文献   

    16.
    In the past decade or so, management of historically contaminated land has largely been based on prevention of unacceptable risks to human health and the environment, to ensure a site is “fit for use” (i.e., achieves suitability for beneficial uses). More recently, interest has been shown in including sustainability as a decision‐making criterion. Sustainability concerns include the environmental, social, and economic consequences of risk‐management activities themselves, and also the opportunities for wider benefit beyond achieving risk‐reduction goals alone. This article provides a global roundup of progress by these initiatives and their key documentation. It reviews common themes and points of divergence. The information is based on a literature review and surveying the various networks involved, with a particular focus on recent developments in the United Kingdom. The global roundup updates a previous global roundup presented in Europe in 2013 at Aquaconsoil 2013 (Bardos et al., 2013a, 2013b). © 2014 Paul Bardos  相似文献   

    17.
    Nonaqueous‐phase liquid (NAPL) migration from sediments to the surface of water bodies has been reported frequently at sites with sediments contaminated with NAPLs, such as coal tar and creosote. Commonly, transport of NAPL from sediment is facilitated by gas ebullition caused by anaerobic biodegradation of organic matter in the sediment. A remedy often specified for these sites is a sand cap, and sand caps amended with sorbent materials (such as organoclays) are being pilot‐tested. This article discusses a laboratory study to assess the effectiveness of a sand layer for controlling NAPL migration. The study used a test column composed of a Plexiglas tube containing a tar source that was buried beneath a 30‐cm‐thick layer of fine sand. Water was added to the column until 5 cm of standing water covered the sand layer. To simulate ebullition, air was injected into the base of the sand column at approximately 200 mL/min. It was observed that the gas and NAPL migrated primarily through channels and fractures in the sand, and was not filtered through a network of stable pores. Tar migrated through the sand layer in 12 hours and accumulated on the water surface for several hours before losing its buoyancy and settling back down to the sand surface. After ending the tar migration experiment, the test column was frozen to preserve structures in the sand. The study showed that the tar migrated through the simulated sand cap in small (2‐mm) channels only a few sand grains thick. The results of this laboratory work call into question the effectiveness of sand caps for controlling NAPL migration from sediment in the presence of ebullition. © 2009 Wiley Periodicals, Inc.  相似文献   

    18.
    A new in situ remediation concept termed a Horizontal Reactive Media Treatment Well (HRX Well®) is presented that utilizes a horizontal well filled with reactive media to passively treat contaminated groundwater in situ. The approach involves the use of a large‐diameter directionally drilled horizontal well filled with solid reactive media installed parallel to the direction of groundwater flow. The engineered contrast in hydraulic conductivity between the high in‐well reactive media and the ambient aquifer hydraulic conductivity results in the passive capture, treatment, and discharge back to the aquifer of proportionally large volumes of groundwater. Capture and treatment widths of up to tens of feet can be achieved for many aquifer settings, and reductions in downgradient concentrations and contaminant mass flux are nearly immediate. Many different types of solid‐phase reactive treatment media are already available (zero valent iron, granular activated carbon, biodegradable particulate organic matter, slow‐release oxidants, ion exchange resins, zeolite, apatite, etc.). Therefore, this concept could be used to address a wide range of contaminants. Laboratory and pilot‐scale test results and numerical flow and transport model simulations are presented that validate the concept. The HRX Well can access contaminants not accessible by conventional vertical drilling and requires no aboveground treatment or footprint and requires limited ongoing maintenance. A focused feasibility evaluation and alternatives analysis highlights the potential cost and sustainability advantages of the HRX Well compared to groundwater extraction and treatment systems or funnel and gate permeable reactive barrier technologies for long‐term plume treatment. This paper also presents considerations for design and implementation for a planned upcoming field installation.  相似文献   

    19.
    The presence of an organic mat in a hydrocarbon‐impacted creek in Whitehorse, Yukon Territory, Canada was examined for contributions to in situ remediation of petroleum‐contaminated water. This article investigates the role of algae, found in the organic mat, in the remediation of light extractable petroleum hydrocarbons (LEPHs) at the site and in the laboratory. During the study, LEPH concentrations were reduced by 16.8 percent in the presence of algae alone (algal solution) and 30.4 percent in the combined organic mat solution containing microbial consortia. The study results indicate that algal species at the site did not directly phytoremediate hydrocarbons. Rather, they were part of the total biological degradation taking place. © 2009 Wiley Periodicals, Inc.  相似文献   

    20.
    In this study, contaminant leaching from three different secondary materials (demolition waste, municipal solid waste incineration ash, and blast furnace slag) to groundwater is assessed by numerical modeling. Reactive transport simulations for a noise protection dam and a road dam (a typical German autobahn), in which secondary materials are reused as base layers, were performed to predict the breakthrough of a conservative tracer (i.e., a salt) and sorbing contaminants (e.g., PAHs like naphthalene and phenanthrene or heavy metals) at the groundwater table. The dam constructions have a composite architecture with soil covers in inclined layers and distinct contrasts in the unsaturated hydraulic properties of the used materials. Capillary barrier effects result in strong spatial variabilities of flow and transport velocities. Contaminant breakthrough curves at the groundwater table show significant tailing due to slow sorption kinetics and a wide distribution of travel times. While conservative tracer breakthrough depends primarily on subsoil hydraulic properties, equilibrium distribution coefficients and sorption kinetics represent additional controlling factors for contaminant spreading. Hence, the three secondary materials show pronounced differences in the temporal development of leached contaminant concentrations with consequences for breakthrough times and peak concentrations at the groundwater table. Significant concentration reductions due to dispersion occur only if the source concentrations decrease significantly prior to the arrival of the contaminant at the groundwater table. Biodegradation causes significant reduction of breakthrough concentrations only if flow velocities are low.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号