首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use and performance of soil vapor extraction (SVE) as an in-situ remedial technology has been limited at numerous sites because of both geologic and chemical factors. SVE systems are not well suited to sites containing low permeability soils or sites contaminated with recalcitrant compounds. Six-phase soil heating (SPSH) has been developed by the Battelle Pacific Northwest Laboratories (Battelle) to enhance SVE systems. The technology utilizes resistive soil heating to increase the vapor pressure of subsurface contaminants and to generate an in-situ source of steam. The steam strips contaminants sorbed onto soil surfaces and acts as a carrier gas, providing an enhanced mechanism by which the contaminants can reach an extraction well. Full-scale applications of SPSH have been performed at the U.S. Department of Energy's Savannah River Site in Aiken, South Carolina; at a former fire training site in Niagara Falls, New York; and at Fort Richardson near Anchorage, Alaska. At each site, chlorinated solvents were present in low permeability soils and SPSH was applied in conjunction with SVE. The results of the three applications showed that SPSH is a cost-effective technology that can reduce the time required to remediate a site using only conventional SVE.  相似文献   

2.
Air sparging is an innovative methodology for remediating organic compounds present in contaminated, saturated soil zones. In the application of the technology, sparging (injection) wells are used to inject a hydrocarbon-free gaseous medium (typically air) into the saturated zone below or within the areas of contamination. Two major mechanisms of remediation are engaged/enhanced due to the sparging process. First, volatile organic compounds are dissolved in the groundwater and sorbed on the soil partition into the advective air phase, effectively simulating an in-situ air stripping system. The stripped contaminants are transported in the air phase to the vadose zone, generally within the radius of influence of a standard vapor extraction and vapor treatment system. Second, with optimal environmental conditions, volatile and semivolatile organic compounds may be biodegraded by utilizing the sparging process to oxygenate the groundwater, thereby enhancing the growth and activity of the indigenous bacterial community. Air sparging is a complex multifluid phase process which has been applied successfully in Europe since the mid-1980s. Major design considerations include site geology, contaminant type, gas injection pressures and flow rates, injection interval (areal and vertical), and site-specific biofeasibility parameters. Site-specific geology and biofeasibility are the dominant design parameters. Pilot testing and full-scale design considerations should also be addressed. Mathematical models have been developed to simulate the air flow field during the sparging process and to examine the limitations imposed by site geology. Correct design and operation of this technology have been demonstrated to achieve groundwater cleanup to low part-per-billion contaminant levels. Incorrect design and operation can introduce significant pollution liability through undesirable contaminant migration in both the dissolved and vapor phases.  相似文献   

3.
Soil vapor extraction (SVE) systems are typically designed based on the results of a vadose‐zone pumping test (transient or steady‐state) using a pressure criterion to establish the zone of influence (ZOI). A common problem associated with pressure‐based SVE design is overestimating the ZOI of the extraction well. As a result, design strategies based upon critical pore‐ gas velocity (CPGV) have become more common. Field tests were conducted at the Savannah River Site (SRS) to determine the influence of a vapor extraction well based upon both a pressure and pore‐ gas velocity design criterion. The results from these tests show that an SVE system designed based upon a CPGV is more robust and will have shorter cleanup times due to increased flow throughout the treatment zone. Pressure‐based SVE design may be appropriate in applications where soil gas containment is the primary objective; however, in cases where the capture and removal of contaminated soil gas is the primary objective, CPGV is a better design criterion. © 2006 Wiley Periodicals, Inc.  相似文献   

4.
An analysis of the cost effectiveness of passive soil vapor extraction (PSVE) is presented. PSVE, or “barometric pumping,” is an approach to the remediation of volatile organic compounds (VOCs) that seeks to harness and enhance the naturally occurring processes of wind and atmospheric pressure changes to facilitate the release of gas-phase contaminants from the subsurface. The technology background and current status are discussed, niches for the potential applicability of PSVE are identified, and a cost comparison with the conventional treatment method of active soil vapor extraction (ASVE) is examined.  相似文献   

5.
Investigations at former dry cleaning sites in Denmark show that sewer systems often are a major vapor intrusion pathway for chlorinated solvents to indoor air. In more than 20 percent of the contaminated drycleaner sites in Central Denmark Region, sewer systems were determined to be a major vapor intrusion pathway. Sewer systems can be a major intrusion pathway if contaminated groundwater intrudes into the sewer and contamination is transported within the sewer pipe by water flow in either free phase or dissolved states. Additionally, the contamination can volatilize from the water phase or soil gas can intrude the sewer system directly. In the sewer, the gas phase can migrate in any direction by convective transport or diffusion. Indications of the sewer as a major intrusion pathway are:
  • higher concentrations in the upper floors in buildings,
  • higher concentrations in indoor air than expected from soil gas measurements,
  • higher concentrations in bathrooms/kitchen than in living rooms,
  • chlorinated solvents in the sewer system, and
  • a pressure gradient from the sewer system to indoor air.
Measurements to detect whether or not the sewer system is an intrusion pathway are simple. In Central Denmark Region, the concentrations of contaminants are routinely measured in the indoor air at all floors, the outdoor air, behind the water traps in the building, and in the manholes close to the building. The indoor and outdoor air concentration, as well as concentrations in manholes, are measured by passive sampling on sorbent samplers over a 14‐day period, and the measurements inside the sewer system are carried out by active sampling using carbon tubes (sorbent samplers). Furthermore, the pressure gradient over the building slab and between the indoor air and the sewer system are also measured. A simple test is depressurization of the sewer system. Using this technique, the pressure gradient between the sewer system and the indoor air is altered toward the sewer system—the contamination cannot enter the indoor air through the sewer system. If the sewer system is a major intrusion pathway, the effect of the test can be observed immediately in the indoor air. Remediation of a sewer transported contamination can be:
  • prevention of the contaminants from intruding into the sewer system or
  • prevention of the contaminated gas in the sewer system from intruding into the indoor air.
Remediation techniques include the following:
  • lining of the sewer piping to prevent the contamination from intruding into the sewer;
  • sealing the sewer system in the building to prevent the contamination from the sewer system to intrude the indoor air;
  • venting of manholes; and
  • depressurizing the sewer system.
  相似文献   

6.
Since the early 1970s, technologies for remediating organic contamination in soils and groundwater have evolved through three stages with primary emphasis on (1) gross removal processes, (2) active in situ treatment, and (3) risk-based closure and natural attentuation. Technologies for treating metals contamination are evolving through similar stages. In the late 1990s, metals remediation has arrived at the second stage in which a wide range of in situ technologies are available either to extract metals directly from the subsurface or to render them immobile and harmless. In situ geochemical fixation is an example of a commercial technology capable of addressing a wide range of metals contamination sites. Four case histories demonstrate the versatility of this approach. Other promising technologies for treating metals contamination are also emerging. These include geokinetics, biocatalytic precipitation processes, phytoremediation, and artificial wetlands. As our knowledge continues to grow, the most elegant solutions to metals contamination will rely more and more heavily on the soil's natural capacity to stabilize and immobilize metals over time.  相似文献   

7.
The data mining/groundwater modeling methodology developed in McDade et al. (2013) was performed to determine if matrix diffusion is a plausible explanation for the lower‐concentration but persistent chlorinated solvent plumes in the groundwater‐bearing units at three different pump‐and‐treat systems. Capture‐zone maps were evaluated, and eight wells were identified that did not draw water from any of the historical source areas but captured water from the sides of the plume. Two groundwater models were applied to study the persistence of the plumes in the absence of contributions from the historical source zones. In the wells modeled, the observed mass discharge generally decreased by about one order of magnitude or less over 4 to 10 years of pumping, and 1.8 to 17 pore volumes were extracted. In five of the eight wells, the matrix diffusion model fit the data much better than the advection dispersion retardation model, indicating that matrix diffusion better explains the persistent plume. In the three other wells, confounding factors, such as a changing capture zone over time (caused by changes in pumping rates in adjacent extraction wells); potential interference from a high‐concentration unremediated source zone; and limited number of pore volumes removed made it difficult to confirm that matrix diffusion processes were active in these areas. Overall, the results from the five wells indicate that mass discharge rates from the pumping wells will continue to show a characteristic “long tail'' of mass removal from zones affected by active matrix diffusion processes. Future site management activities should include matrix diffusion processes in the conceptual site models for these three sites. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Traditional bioremediation approaches have been used to treat petroleum source contamination in readily accessible soils and sludges. Contamination under existing structures is a greater challenge. Options to deal with this problem have usually been in the extreme (i.e., to dismantle the facility and excavate to an acceptable regulated residual, or to pump and treat for an inordinately long period of time). The excavated material must be further remediated and cleanfill must be added to close the excavation. If site assessments were too conservative or incomplete, new contamination adulterating fill soils may result in additional excavation at some later date. Innovative, cost-efficient technologies must be developed to remove preexisting wastes under structures and to reduce future remediation episodes. An innovative soil bioremediation treatment method was developed and evaluated in petroleum hydrocarbon contaminated (PHC) soils at compressor stations of a natural gas pipeline running through Louisiana. The in-situ protocol was developed for remediating significant acreage subjected to contamination by petroleum-based lubricants and other PHC products resulting from a chronic leakage of lubricating oil used to maintain the pipeline itself. Initial total petroleum hydrocarbon (TPH) measurements revealed values of up to 12,000 mg/kg soil dry weight. The aim of the remediation project was to reduce TPH concentration in the contaminated soils to a level of <200 mg/kg soil dry weight, a level negotiated to be acceptable to state and federal regulators. After monitoring the system for 122 days, all sites showed greater than 99-percent reduction in TPH concentration.  相似文献   

9.
A common remedial technology for properties with subsurface soil and groundwater contamination is multiphase extraction (MPE). MPE involves the extraction of contaminated groundwater, free‐floating product, and contaminated soil vapor from the subsurface. A network of recovery wells conveys fluids to a vacuum pump and to the treatment system for the contaminated groundwater and soil vapor. This article describes a study of MPE operational data from nine similar remediation projects to determine the most important design parameters. Design equations from guidance manuals were used to estimate the expected radius of influence (ROI) based on measured field data. ROIs were calculated for the vapor flow rate through the subsurface and for the groundwater drawdown caused by the MPE remediation activities. The calculated ROIs were compared to the measured ROIs to corroborate the assumptions made in the calculations. Once it was established that the calculated and field‐measured ROIs were comparable, a sensitivity analysis determined ranges of different design and operational parameters that most affected the ROIs. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Mechanical blending of contaminated soil with amendments has recently reemerged as an important treatment technology. From its original application using large‐diameter augers in the early 1990s to the current use of rotary drum blenders, soil blending is being used as an alternative to other remediation technologies like amendment injection and soil vapor and groundwater extraction. Shallow (approximately 10 m below ground surface [bgs] or less) soil blending also offers an alternative to excavation and disposal. Soil blending has been used to remediate a site with various contaminants including, but not limited to, chlorinated solvents, petroleum, and metals. The types of soils susceptible to soil blending vary from sands and gravels to silts and clays to fractured rock and combinations of all of these. The types of amendments blended include oxidants, reducing agents, biological enhancements, and stabilizing amendments. Soil blending systems deliver the power to the mixing head to adequately mix the soil and amendment to enhance remediation effectiveness. Since long‐term contamination is often a result of heterogeneously distributed residual contaminant in localized source zones that are difficult to access, the typical aim of soil blending is to homogenize the soil while effectively distributing amendment to these zones made accessible by blending. By effectively homogenizing the soil, however, soil blending will increase the void ratio and disrupt the shear strength and bearing capacity of the soil so an important component of a soil blending technology is proper recovery of these geotechnical parameters. This can be achieved by using well‐known soil improvement techniques such as amending all or a portion of the blended area with Portland cement or lime. Several case studies of soil blending treatments of different contaminants and amendments in various soil types are provided.  相似文献   

11.
This article focuses on the results of a delineation of radioactive contaminants using expedited field characterization equipment at the Department of Energy's Savannah River Site in South Carolina. The objective of the study was to delineate a potential contamination area in the TNX Inner Swamp using cost‐effective field sampling equipment that would give results in a timely manner. The expedited field characterization equipment used was the In Situ Object Counting System (ISOCS) and the Model 935 Surveillance and Measurement System (SAM 935). The study involved an area of approximately 200 acres with 89 surveyed locations. Originally, the contaminant of concern was thorium‐232 because of the health risk to future on‐site workers. As the fieldwork progressed, there were no exceedances in thorium‐232 activities; however, there was one slight exceedance of uranium‐238. The delineation was established from using the ISOCS and SAM 935 sampling equipment in addition to soil sampling from the 0‐ to 1‐foot interval. There was a strong correlation in the analytical data from both the ISOCS and SAM 935 measurements. Thus, this type of sampling characterization is beneficial for determining the extent of contamination at hazardous waste sites. © 2006 Wiley Periodicals, Inc.  相似文献   

12.
Although standard methods of monitoring the progress of in-situ remediation may provide general results for the most permeable zones affected by soil vapor extraction or bioventing, they are essentially unsuccessful at providing information on the degree of heterogeneity within the remediation zone and on the existence of “hot spots.” Data are presented that suggest that monitoring the concentrations of fixed and biogenic gases and measuring soil permeability on a small-scale basis may circumvent the common problems associated with assessing the progress of in-situ remediation. The costs of these monitoring techniques are minor compared to those of designing and operating an in-situ remediation system, and may save additional time and costs by identifying problem areas early in the cleanup process.  相似文献   

13.
Soil gas vapor intrusion (VI) emerged in the 1990s as one of the most important problems in the investigation and cleanup of thousands of sites across the United States. A common practice for sites where VI has been determined to be a significant pathway is to implement interim building engineering controls to mitigate exposure of building occupants to VI while the source of contamination in underlying soil and groundwater is assessed and remediated. Engineering controls may include passive barriers, passive or active venting, subslab depressurization, building pressurization, and sealing the building envelope. Another recent trend is the emphasis on “green” building practices, which coincidentally incorporate some of these same engineering controls, as well as other measures such as increased ventilation and building commissioning for energy conservation and indoor air quality. These green building practices can also be used as components of VI solutions. This article evaluates the sustainability of engineering controls in solving VI problems, both in terms of long‐term effectiveness and “green” attributes. Long‐term effectiveness is inferred from extensive experience using similar engineering controls to mitigate intrusion of radon, moisture, mold, and methane into structures. Studies are needed to confirm that engineering controls to prevent VI can have similar long‐term effectiveness. This article demonstrates that using engineering controls to prevent VI is “green” in accelerating redevelopment of contaminated sites, improving indoor air quality, and minimizing material use, energy consumption, greenhouse gas emissions, and waste generation. It is anticipated that engineering controls can be used successfully as sustainable solutions to VI problems at some sites, such as those deemed technically impracticable to clean up, where remediation of underlying soil or groundwater contamination will not be completed in the foreseeable future. Furthermore, green buildings to be developed in areas of potential soil or groundwater contamination may be designed to incorporate engineering controls to prevent VI. © 2009 Wiley Periodicals, Inc.  相似文献   

14.
A study was conducted in the region of the Lena River, in northeast Russia, where oil‐contaminated soil remediation is compromised due to the reduced natural attenuation mechanisms in northern eco‐systems. The goal of the study was to analyze the effectiveness of different biological methods for remediating the permafrost soil cover contaminated with high concentrations of oil. For the remediation of the areas with approximately similar levels of contamination (in the range of 10 to 14 grams per kilogram [g/kg] of soil) different biological remediation schemes were applied: site 1: sowing plant seeds of meadow clover grass; site 2: introducing a consortium of hydrocarbon oxidizing microorganisms (HOM); and, site 3: introducing the same consortium of HOM with simultaneously sowing grass mixture. The third scheme, applied for the first time, led to the most favorable results, which might be explained by the synergistic effect based on the principle of positive inverse development.  相似文献   

15.
The Resource Conservation and Recovery Act (RCRA) was enacted in 1976. The Hazardous and Solid Waste Amendments (HSWA) of 1984 specify “corrective action” requirements for protecting human health and the environment from environmental contamination at active hazardous waste treatment, storage, and disposal facilities. RCRA and its corrective action requirements are designed to prevent the creation of new Superfund sites by regulating and remediating active facilities. The RCRA corrective action process has four basic components: the facility assessment, facility investigation, corrective measures study, and corrective measures implementation. This article presents an overview of the RCRA corrective action process and presents four case studies from three U.S. EPA regions.  相似文献   

16.
A new method was developed to assess the effect of matrix diffusion on contaminant transport and remediation of groundwater in fractured rock. This method utilizes monitoring wells constructed of open boreholes in the fractured rock to conduct backward diffusion experiments on chlorinated volatile organic compounds (CVOCs) in groundwater. The experiments are performed on relatively unfractured zones (called test zones) of the open boreholes over short intervals (approximately 1 meter) by physical isolation using straddle packers. The test zones were identified with a combination of borehole geophysical logging and chemical profiling of CVOCs with passive samplers in the open boreholes. To confirm the test zones are within inactive flow zones, they are subjected to a series of hydraulic tests. Afterward, the test zones are air sparged with argon to volatilize the CVOCs from aqueous to air phase. Backward diffusion is then measured by periodic passive‐sampling of water in the test zone to identify rebound. The passive (nonhydraulically stressed) sampling negates the need to extract water and potentially dewater the test zone. The authors also monitor active flowing zones of the borehole to assess trends in concentrations in other parts of the fractured rock by purge and passive sampling methods. The testing was performed at the former Pease Air Force Base (PAFB) in Portsmouth, New Hampshire. Bedrock at the former PAFB consists of fractured metasedimentary rocks where the authors investigated back diffusion of cis‐1,2‐dichloroethylene (cis‐1,2‐DCE), a CVOC. Postsparging concentrations of cis‐1,2‐DCE showed initial rebounding followed by declines, excluding an episodic spike in concentrations from a groundwater recharge event. The authors theorize that there are three processes that controlled concentration responses in the test zones postsparging. First, the limited back diffusion of CVOCs from a halo or thin zone of rock around the borehole contributes to the initial rebounding. Second, aerobic degradation of cis‐1,2‐DCE occurred causing declines in concentrations in the test zone. Third, microflow from microfractures contributed to the episodic spike in concentrations following the groundwater recharge event. In active flow zones, the latter two processes are not measurable due to equilibration from groundwater transport between the borehole and active flowing fractures.  相似文献   

17.
Subsidence is a primary factor governing marsh deterioration in Mississippi River deltaic plain coastal marshes. Marsh surface-water level relationships are maintained primarily through soil organic matter accumulation and inorganic sediment input. In this study we examined the role of soil organic matter accumulation in maintaining marsh elevation in a brackish Spartina patens marsh. Measured rates of soil organic accumulation were compared to plant biomass production and soil respiration (carbon dioxide and methane emission) at the study sites. The study demonstrated the importance of plant biomass production to soil organic carbon accumulation in maintaining viable Spartina patens marshes in sediment-deficient coastal environments. The role of Mississippi River freshwater reintroduction in maintaining conditions for organic accretion is discussed.  相似文献   

18.
A common industrial solvent additive is 1,4‐dioxane. Contamination of dissolved 1,4‐dioxane in groundwater has been found to be recalcitrant to removal by conventional, low‐cost remedial technologies. Only costly labor and energy‐intensive pump‐and‐treat remedial options have been shown to be effective remedies. However, the capital and extended operation and maintenance costs render pump‐and‐treat technologies economically unfeasible at many sites. Furthermore, pump‐and‐treat approaches at remediation sites have frequently been proven over time to merely achieve containment rather than site closure. A major manufacturer in North Carolina was faced with the challenge of cleaning up 1,4‐dioxane and volatile organic compound–impacted soil and groundwater at its site. Significant costs associated with the application of conventional approaches to treating 1,4‐dioxane in groundwater led to an alternative analysis of emerging technologies. As a result of the success of the Accelerated Remediation Technologies, LLC (ART) In‐Well Technology at other sites impacted with recalcitrant compounds such as methyl tertiarybutyl ether, and the demonstrated success of efficient mass removal, an ART pilot test was conducted. The ART Technology combines in situ air stripping, air sparging, soil vapor extraction, enhanced bioremediation/oxidation, and dynamic subsurface groundwater circulation. Monitoring results from the pilot test show that 1,4‐dioxane concentrations were reduced by up to 90 percent in monitoring wells within 90 days. The removal rate of chlorinated compounds from one ART well exceeded the removal achieved by the multipoint soil vapor extraction/air sparging system by more than 80 times. © 2005 Wiley Periodicals, Inc.  相似文献   

19.
Although the application of microbe biotechnology has been successful with petroleum-based constituents, microbial digestion has met with limited success for widespread residual organic and metal pollutants located above the potentiometric surface. Vegetation-based remediation, on the other hand, shows potential for accumulating, immobilizing, and transforming low levels of persistent contamination from the subsurface. Agricultural bioremediation, called geobotany or phytoremediation, relies on the remediating abilities of contaminant-accumulating plants to remove contamination from soil or groundwater. In natural ecosystems, plants act to filter and metabolize substances generated by nature. Phytoremediation affirmatively applies this process to help clean up contamination created by artificial means. Plants have proven effective at remediating areas contaminated with organic chemical wastes such as petroleum products, solvents, wood preservatives, pesticides, and metals. Phytoremediation is not the best technology for every site but has shown success with lead, cadmium, zinc, and radionuclides. The phytoremediation process takes much longer than conventional methods to clean a site and is dependent upon the type and degree of contamination. Concentrations must be within a narrow range of tolerable levels and the presence of the contamination must be at the appropriate depth. Nevertheless, phytoremediation offers an effective alternative to conventional, engineered remedial plans that usually involve costly activities like excavation, treatment, and disposal of soil or pump-and-treat technologies for groundwater. Phytoremediation also seems to be a promising new technology for the treatment of stormwater, industrial wastewater, and sewage. The relative low costs of capital for start-up together with negligible operations and maintenance costs provide a strong incentive for further investigation and development of phytoremediation projects.  相似文献   

20.
An innovative but simple analytical modeling tool for reconstructing contaminant concentration versus time trends (i.e., “source history”) for a site using high‐resolution contaminant profiles from low permeability (low‐k) zones was developed and tested. Migration of contaminants into low‐k zones via diffusion (and possibly slow advection) produce concentration versus depth profiles that can be used to understand temporal concentration trends at the interface with overlying transmissive zones, including evidence of attenuation over time due to source decay. A simple transport‐based spreadsheet tool for generating source history estimates fit to the profiles was developed and applied to published soil concentration versus depth data from five distinct areas of four different sites contaminated with chlorinated ethenes. Using the root mean square error as an optimization metric, strong fits between measured and model‐predicted soil data were obtained in the majority of cases using site‐specific values for input parameters. In general, significant improvements could not be obtained by varying these parameters. As a result, the source history estimates generated by the tool were similar to those that had already been generated using more intensive analytical or numerical inverse modeling approaches. This included confirmation of constant source histories at locations where dense nonaqueous‐phase liquid was present (or suspected to be present), and declining source histories for locations where source isolation and/or attenuation had occurred. The advantage of the modeling tool described here is that it provides a simpler yet more dynamic method for understanding source behavior over time than existing approaches. ©2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号