首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
European waste legislation has been encouraging for years the incorporation of selective collection systems for the biowaste fraction. European countries are therefore incorporating it into their current municipal solid waste management (MSWM) systems. However, this incorporation involves changes in the current waste management habits of households. In this paper, the attitude of the public towards the incorporation of selective collection of biowaste into an existing MSWM system in a Spanish municipality is analysed. A semi-structured telephone interview was used to obtain information regarding aspects such as: level of participation in current waste collection systems, willingness to participate in selective collection of biowaste, reasons and barriers that affect participation, willingness to pay for the incorporation of the selective collection of biowaste and the socioeconomic characteristics of citizens who are willing to participate and pay for selective collection of biowaste. The results showed that approximately 81% of the respondents were willing to participate in selective collection of biowaste. This percentage would increase until 89% if the Town Council provided specific waste bins and bags, since the main barrier to participate in the new selective collection system is the need to use specific waste bin and bags for the separation of biowaste. A logit response model was applied to estimate the average willingness to pay, obtaining an estimated mean of 7.5% on top of the current waste management annual tax. The relationship of willingness to participate and willingness to pay for the implementation of this new selective collection with the socioeconomic variables (age, gender, size of the household, work, education and income) was analysed. Chi-square independence tests and binary logistic regression was used for willingness to participate, not being obtained any significant relationship. Chi-square independence tests, ordinal logistic regression and ordinary linear regression was applied for willingness to pay, obtaining statistically significant relationship for most of the socioeconomic variables.  相似文献   

2.
The heavy metal content of several rubbish bags used to collect the organic fraction of municipal solid waste (OFMSW) is shown in this paper. Nowadays, several public awareness campaigns carried out by municipalities have promoted rubbish bags based mainly on their appearance, without concern for their heavy metal content. A high amount of heavy metals was detected in some polyethylene bags promoted in different campaigns for OFMSW source-sorted collection, while compostable bags presented low quantities of heavy metals. Some other rubbish bags, as well as commercial bags, were also analysed for comparison. These results should be taken into account before promoting the use of one or other type of bag. Moreover, the rubbish bag manufacturers should reduce the heavy metal content in order to avoid heavy metal scattering in the environment, and also to reduce the consumption of raw materials.  相似文献   

3.
The composition of household waste in Greenland was investigated for the first time. About 2 tonnes of household waste was sampled as every 7th bag collected during 1 week along the scheduled collection routes in Sisimiut, the second largest town in Greenland with about 5400 inhabitants. The collection bags were sorted manually into 10 material fractions. The household waste composition consisted primarily of biowaste (43%) and the combustible fraction (30%), including anything combustible that did not belong to other clean fractions as paper, cardboard and plastic. Paper (8%) (dominated by magazine type paper) and glass (7%) were other important material fractions of the household waste. The remaining approximately 10% constituted of steel (1.5%), aluminum (0.5%), plastic (2.4%), wood (1.0%), non-combustible waste (1.8%) and household hazardous waste (1.2%). The high content of biowaste and the low content of paper make Greenlandic waste much different from Danish household waste. The moisture content, calorific value and chemical composition (55 elements, of which 22 were below detection limits) were determined for each material fraction. These characteristics were similar to what has been found for material fractions in Danish household waste. The chemical composition and the calorific value of the plastic fraction revealed that this fraction was not clean but contained a lot of biowaste. The established waste composition is useful in assessing alternative waste management schemes for household waste in Greenland.  相似文献   

4.
There is little experience in Portugal with the separate collection of the biodegradable fraction of municipal solid waste (MSW). Therefore, it is relevant to evaluate how this process could economically affect the actual practices of MSW collection in small municipalities. This article simulates the costs of collection by means of a fixed container system and a transfer station, using values from a municipality with a population of 28,000 inhabitants. The main goal of this exercise is to compare the economic effects of three alternative scenarios: (i) the traditional, unsorted collection; (ii) the separate collection of whole biowaste; and (iii) the separate collection of biowaste generated in the major urban communities, while setting aside the other biowaste for home composting. The input data are from 2001, and include waste quantities, travel times, work crew composition, crew time shifts, vehicles, and containers. Calculations of the proposed mathematical method were carried out using the Microsoft Excel software. This study concludes that the global cost for separate collection of biowaste (alternative ii) need not necessarily be higher than the corresponding cost of the traditional, unsorted method of collection (alternative i). Furthermore, the global cost for collection with separated biowaste and home composting (alternative iii) could also be lower than the corresponding cost of the traditional, unsorted method of collection.  相似文献   

5.
Environmental impacts and gaseous emissions associated to home and industrial composting of the source-separated organic fraction of municipal solid waste have been evaluated using the environmental tool of life cycle assessment (LCA). Experimental data of both scenarios were experimentally collected. The functional unit used was one ton of organic waste. Ammonia, methane and nitrous oxide released from home composting (HC) were more than five times higher than those of industrial composting (IC) but the latter involved within 2 and 53 times more consumption or generation of transport, energy, water, infrastructures, waste and Volatile Organic Compounds (VOCs) emissions than HC. Therefore, results indicated that IC was more impacting than HC for four of the impact categories considered (abiotic depletion, ozone layer depletion, photochemical oxidation and cumulative energy demand) and less impacting for the other three (acidification, eutrophication and global warming). Production of composting bin and gaseous emissions are the main responsible for the HC impacts, whereas for IC the main contributions come from collection and transportation of organic waste, electricity consumption, dumped waste and VOCs emission. These results suggest that HC may be an interesting alternative or complement to IC in low density areas of population.  相似文献   

6.
Biodegradable (compostable) packaging materials made from biopolymers (BP) are introduced into the market to reduce the amounts of conventional packaging materials and at the same time be recovered by the municipal organic waste collection system. The processing of this organic waste mixed with biopolymers has been tested in a commercial treatment facility. The safe use of the compost produced from these materials was demonstrated in a full-scale agricultural application test.  相似文献   

7.
Four systems for household food waste collection are compared in relation the environmental impact categories eutrophication potential, acidification potential, global warming potential as well as energy use. Also, a hotspot analysis is performed in order to suggest improvements in each of the compared collection systems. Separate collection of household food waste in paper bags (with and without drying prior to collection) with use of kitchen grinders and with use of vacuum system in kitchen sinks were compared. In all cases, food waste was used for anaerobic digestion with energy and nutrient recovery in all cases. Compared systems all resulted in net avoidance of assessed environmental impact categories; eutrophication potential (-0.1 to -2.4kg NO(3)(-)eq/ton food waste), acidification potential (-0.4 to -1.0kg SO(2)(-)eq/ton food waste), global warming potential (-790 to -960kg CO(2)(-)eq/ton food waste) and primary energy use (-1.7 to -3.6GJ/ton food waste). Collection with vacuum system results in the largest net avoidence of primary energy use, while disposal of food waste in paper bags for decentralized drying before collection result in a larger net avoidence of global warming, eutrophication and acidification. However, both these systems not have been taken into use in large scale systems yet and further investigations are needed in order to confirm the outcomes from the comparison. Ranking of scenarios differ largely if considering only emissions in the foreground system, indicating the importance of taking also downstream emissions into consideration when comparing different collection systems. The hot spot identification shows that losses of organic matter in mechanical pretreatment as well as tank connected food waste disposal systems and energy in drying and vacuum systems reply to the largest impact on the results in each system respectively.  相似文献   

8.
Investigations regarding the reduction of airborne germs in the waste gas of biowaste composting processes have been carried out at the Hamburg University of Science and Technology and the University of Leipzig. Numerous waste gas treatment plants, ranging from laboratory-scale to technical-scale, have been available at the institutes of these two project partners. All plants consisted of bioscrubber/biofilter combinations. The results showed that these biological systems designed for odour control are able to successfully reduce bioaerosol emissions, even though a reduction to background levels could not be achieved. The bioscrubber, if equipped with a droplet separator, proved to be mainly responsible for the reduction, whereas the biofilter acted as a source for microbial emissions originating from the filter material. It could be observed that the microbial population changed while passing the treatment system, indicating the ability of biological waste gas treatment systems to retain potentially pathogenic microorganisms from waste gases.  相似文献   

9.
In modern societies, disposable diapers constitute a significant percentage of municipal solid wastes. They have been traditionally landfilled or incinerated as only limited recycling processes are being implemented in some parts of Europe. With the implementation of separated collection systems for the organic fraction of municipal solid wastes (OFMSWs) and the need to preserve the environment, compostable diapers have appeared in the market to avoid the main environmental impacts associated to non-biodegradable disposable diapers. In this study, a full-scale composting of door-to-door collected OFMSW with a 3% (w/w) of compostable diapers has also been carried out. Previously, lab-scale experiments confirmed that almost 50% of carbon of compostable diapers is emitted as CO2 under aerobic controlled conditions. The results obtained at full-scale demonstrate that both the composting process and the final end product (compost) are not altered by the presence of compostable diapers in crucial aspects such as pathogenic content, stability and elemental composition (including nutrients and heavy metals). The main conclusion of this study is that the collection of the OFMSW with compostable diapers can be a new way to transform this waste into high-quality compost.  相似文献   

10.
Source-sorted municipal organic waste collected from different dwelling types in five Danish cities and pre-treated at three different plants was sampled and characterized several times during one year to investigate the origin of any differences in composition of the pre-treated waste introduced by city, pre-treatment technology, dwelling type or annual season. The investigated pre-treatment technologies were screw press, disc screen and shredder+magnet. The average quantity of pre-treated organic waste (biomass) produced from the incoming waste varied between the investigated pre-treatment technologies: 59%, 66% and 98% wet weight, respectively (41%, 34% and 2% reject, respectively). The pre-treatment technologies showed differences with respect to distribution of the chemical components in the waste between the biomass and the rejected material (reject), especially for dry matter, ash, collection bag material (plastic or paper) and easily degradable organic matter. Furthermore, the particle size of the biomass was related to the pre-treatment technology. The content of plastic in the biomass depended both on the actual collection bag material used in the system and the pre-treatment technology. The sampled reject consisted mostly of organic matter. For cities using plastic bags for the source-separated organic waste, the expected content of plastic in the reject was up to 10% wet weight (in some cases up to 20%). Batch tests for methane potential of the biomass samples showed only minor variations caused by the factors city, pre-treatment technology, dwelling type and season when based on the VS content of the waste (overall average 459STPm(3)/tVS). The amount of methane generated from 1t of collected waste was therefore mainly determined by the efficiency of the chosen pre-treatment technology described by the mass distribution of the incoming waste between biomass and reject.  相似文献   

11.
In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency.Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases.For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables.The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.  相似文献   

12.
Anaerobic digestion of organic waste generated by households, businesses, agriculture, and industry is an important approach as method of waste treatment – especially with regard to its potential as an alternative energy source and its cost-effectiveness. Separate collection of biowaste from households or vegetal waste from public green spaces is already established in some EU-27 countries. The material recovery in composting plants is common for biowaste and vegetal waste. Brewery waste fractions generated by beer production are often used for animal feeding after a suitable preparation. Waste streams from paper industry generated by pulp and paper production such as black liquor or paper sludge are often highly contaminated with toxic substances. Recovery of chemicals and the use in thermal processes like incineration, pyrolysis, and gasification are typical utilization paths. The current utilization of organic waste from households and institutions (without agricultural waste) was investigated for EU-27 countries with Germany as an in-depth example. Besides of biowaste little is known about the suitability of waste streams from brewery and paper industry for anaerobic digestion. Therefore, an evaluation of the most important biogas process parameters for different substrates was carried out, in order to calculate the biogas utilization potential of these waste quantities. Furthermore, a calculation of biogas energy potentials was carried out for defined waste fractions which are most suitable for anaerobic digestion. Up to 1% of the primary energy demand can be covered by the calculated total biogas energy potential. By using a “best-practice-scenario” for separately collected biowaste, the coverage of primary energy demand may be increased above 2% for several countries. By using sector-specific waste streams, for example the German paper industry could cover up to 4.7% and the German brewery industry up to 71.2% of its total energy demand.  相似文献   

13.
Compostable plastic materials, produced from polylactic acid (PLA), corn starch, or sugarcane, degraded in a green yard-waste compost environment. The compostable plastics claim to meet ASTM D6400 standards for biodegradation, sustainable plant growth, and eco-toxicity. Biodegradation was measured by disintegration studies over 20 weeks. The commercially available compostable products, made from PLA, sugarcane, or corn starch, biodegraded while in a commercial compost facility with other common yard waste compostable items. The PLA container, cup, and knife completely degraded in 7 weeks at a rate similar to the Avicell micro-cellulose control. The corn starch-based trash bag and sugarcane plate degraded at a similar rate as the Kraft paper control. The three materials degraded between 80% and 90% after 20 weeks.  相似文献   

14.
The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO2, CH4, N2O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.  相似文献   

15.
The degradation of four formulations of yard waste-filled collection bags was evaluated in a field-scale test of 15.5- or 31-m-long windrows at a community yard waste composting site. Variables of bag contents, bag chemical composition, and length of exposure were evaluated. Chemical compositions of the bags included (1) low-density polyethylene (LDPE) + 6% cornstarch + 2 levels of prooxidant, (2) LDPE + 9% cornstarch + prooxidants, and (3) LDPE without cornstarch but with photooxidation enhancers. Results showed that all products weakened and/or disintegrated to some extent. However, the bags with 6% starch disintegrated too slowly to allow timely processing of the compost. The bags with 9% starch and other additives to promote multiple degradation mechanisms degraded at the fastest rate of those evaluated here. The photodegradable bags with solar exposure during composting disintegrated rapidly, but when turned to expose new surfaces to light, further strength losses occurred slowly.Paper presented at the Biodegradable Materials and Packaging Conference, September 22–23, 1993, Natick, Massachusetts.  相似文献   

16.
Waste collection is one of the life cycle phases that influence the environmental sustainability of waste management. Pneumatic waste collection systems represent a new way of arranging waste collection in densely populated urban areas. However, limited information is available on the environmental impacts of this system. In this study, we compare the environmental sustainability of conventional door-to-door waste collection with its hypothetical pneumatic alternative. Furthermore, we analyse whether the size of the hypothetical pneumatic system, or the number of waste fractions included, have an impact on the results. Environmental loads are calculated for a hypothetical pneumatic waste collection system modelled on an existing dense urban area in Helsinki, Finland, and the results are compared to those of the prevailing, container-based, door-to-door waste collection system. The evaluation method used is the life-cycle inventory (LCI). In this study, we report the atmospheric emissions of greenhouse gases (GHG), SO(2) and NO(x). The results indicate that replacing the prevailing system with stationary pneumatic waste collection in an existing urban infrastructure would increase total air emissions. Locally, in the waste collection area, emissions would nonetheless diminish, as collection traffic decreases. While the electricity consumption of the hypothetical pneumatic system and the origin of electricity have a significant bearing on the results, emissions due to manufacturing the system's components prove decisive.  相似文献   

17.
This paper deals with a system of integration of Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system. RFID, GPS, GPRS and GIS along with camera technologies have been integrated and developed the bin and truck intelligent monitoring system. A new kind of integrated theoretical framework, hardware architecture and interface algorithm has been introduced between the technologies for the successful implementation of the proposed system. In this system, bin and truck database have been developed such a way that the information of bin and truck ID, date and time of waste collection, bin status, amount of waste and bin and truck GPS coordinates etc. are complied and stored for monitoring and management activities. The results showed that the real-time image processing, histogram analysis, waste estimation and other bin information have been displayed in the GUI of the monitoring system. The real-time test and experimental results showed that the performance of the developed system was stable and satisfied the monitoring system with high practicability and validity.  相似文献   

18.
The management of solid waste is changing. The traditional approach based on landfilling of mixed refuses is shifting toward a system based on the at-source sorting of waste into specific fractions. The biological treatment of the organic fraction is considered to be an appropriate form of disposal not only for the “traditional≓ feedstock such as food scraps and vegetable and garden waste, but also for biodegradable packaging, when not recyclable in other ways. Any change from a complex system to another is difficult since many factors are to be organized and optimized. Industry must develop and manufacture compostable products, municipalities must build composting plants and organize source-separated collection, and regulatory bodies must define widely acceptable criteria of compostability. In Europe, the European Union has assigned the last task to the CEN, to provide common criteria and avoid hindrance to commercial exchanges. In Italy the UNI, the national standardization organization, has produced a working document to contribute to the discussion on the European level. In this paper the UNI scheme is described. A condensed version of this paper was presented by one of the authors (F.D.I.) at the 5th annual meeting of the BEDP Society, held in Nashville, September 22–26, 1996, during a session covering International Standards for Biodegradation Testing.  相似文献   

19.
Source-sorted municipal organic waste from different dwelling types in five Danish cities was sampled during one year. The samples were from permanent, full-scale systems or temporary, experimental systems for collection of source-sorted municipal organic waste. Pre-treatment of the organic waste prior to biological treatment was used in all cities to remove foreign objects and provide size reduction. All sampling was performed after pre-treatment in order to obtain more homogeneous and representative samples. The sampling included both the pre-treated waste and the reject from the pre-treatment allowing for estimation of the composition of the original waste. A total of 40 waste samples were chemically characterised with respect to 15 parameters. The waste generally consisted of around 88% VS of which an average of 80% was easily degradable. The average content of N, P and K in the dry matter of the organic waste was 2.5%, 0.4% and 0.9%, respectively. A general analysis of variance was applied to show the influence of the collection system, dwelling type and annual season on the waste composition. The content of plastic and crude fibres in the waste differed the most among the samples, probably due to use of different bag types (plastic and paper) in the different collection systems. Variations in the ash content and the calorific value might be explained by differences in the sorting instructions (whether soil and cat litter are allowed in the organic fraction). Significant seasonal variations were seen for ash, S and Cl. Dwelling type showed no statistically significant influence on any waste components. A test for uniform distribution of the p-values from the analysis of variance (Kolmogorov-Smirnov test) showed that the overall composition of the collected waste was strongly affected by the collection system (city) and season, while dwelling type had no significant influence.  相似文献   

20.
The paper summarises a literature review into waste management practices across Africa as part of a study to assess methods to reduce carbon emissions. Research shows that the average organic content for urban Municipal Solid Waste in Africa is around 56% and its degradation is a major contributor to greenhouse gas emissions. The paper concludes that the most practical and economic way to manage waste in the majority of urban communities in Africa and therefore reduce carbon emissions is to separate waste at collection points to remove dry recyclables by door to door collection, compost the remaining biogenic carbon waste in windrows, using the maturated compost as a substitute fertilizer and dispose the remaining fossil carbon waste in controlled landfills.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号