共查询到20条相似文献,搜索用时 0 毫秒
1.
Simone Manfredi Davide Tonini Thomas H. Christensen 《Waste management (New York, N.Y.)》2010,30(3):433-440
A number of LCA-based studies have reported on the environmental performance of landfilling of mixed waste, but little is known about the relative contributions of individual waste fractions to the overall impact potentials estimated for the mixed waste. In this paper, an empirical model has been used to estimate the emissions to the environment from landfilling of individual waste fractions. By means of the LCA-model EASEWASTE, the emissions estimated have been used to quantify how much of the overall impact potential for each impact category is to be attributed to the individual waste fractions. Impact potentials are estimated for 1 tonne of mixed waste disposed off in a conventional landfill with bottom liner, leachate collection and treatment and gas collection and utilization for electricity generation. All the environmental aspects are accounted for 100 years after disposal and several impact categories have been considered, including standard categories, toxicity-related categories and groundwater contamination.Amongst the standard and toxicity-related categories, the highest potential impact is estimated for human toxicity via soil (HTs; 12 mPE/tonne). This is mostly caused by leaching of heavy metals from ashes (e.g. residues from roads cleaning and vacuum cleaning bags), batteries, paper and metals. On the other hand, substantial net environmental savings are estimated for the categories Global Warming (GW; ?31 mPE/tonne) and Eco-Toxicity in water chronic (ETwc; ?53 mPE/tonne). These savings are mostly determined by the waste fractions characterized by a high content of biogenic carbon (paper, organics, other combustible waste). These savings are due to emissions from energy generation avoided by landfill gas utilization, and by the storage of biogenic carbon in the landfill due to incomplete waste degradation. 相似文献
2.
Satoshi Mizutani Shin-ichi Sakai Hiroshi Takatsuki 《Journal of Material Cycles and Waste Management》2000,2(1):16-23
Hydrogen generation from municipal solid waste incineration fly ash was investigated to understand the influences of contacting
method, kinds of contact solution, liquid to solid ratio, and particle size distribution of materials. Redox properties of
materials and hydrogen generation were also studied. The largest quantity of gas generated in contact with water was 29.1 ml/g-ash,
most of which was hydrogen. Fluidized bed fly ash generated more gas than stoker fly ash. In order to calculate the hydrogen
generation potential (the maximum quantity of gas generated in contact with water), a novel system using a Y-shaped test tube
and NaOH was utilized. This method gives values which are related to the quantity of generated gas in contact with water.
A relationship between the aluminum content and hydrogen generation potential was observed, especially for fluidized bed fly
ash. The reducing potential of fluidized bed fly ash was higher than that of stoker fly ash. Only fluidized bed fly ash showed
a positive correlation between aluminum content and reducing potential, and between reducing potential and hydrogen generation
potential. These results suggest that fluidized bed fly ash contains more Al0 than stoker fly ash.
Received: September 11, 1998 / Accepted: March 19, 1999 相似文献
3.
4.
Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO2 and NH3, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested. 相似文献
5.
Inara Amoroso da Silva Stella Thomaz de Lima Marcos Rechi Siqueira Márcia Andreia Mesquita Silva da Veiga Valeria Reginatto 《Journal of Material Cycles and Waste Management》2018,20(2):777-786
Fermentation can use renewable raw materials as substrate, which makes it a sustainable method to obtain H2. This study evaluates H2 production by a mixed culture from substrates such as glucose and derivatives from sugarcane processing (sucrose, molasses, and vinasse) combined with landfill leachate. The leachate alone was not a suitable substrate for biohydrogen production. However, leachate blended with glucose, sucrose, molasses, or vinasse increased the H2 production rate by 2.0-, 2.8-, 4.6-, and 0.5-fold, respectively, as compared with the substrates without the leachate. Determination of metals (Cu, Cd, Pb, Hg, Ni, and Fe) at the beginning and at the end of the fermentative assays showed how they were consumed during the fermentation and demonstrated improved H2 production. During fermentation, Cu, Fe, and Cd were the most consumed leachate metals. The best substrate combination to produce H2 was molasses and leachate, which gave high volumetric productivity—469 ml H2/l h. However, addition of the leachate to the substrates stimulated lactic acid formation pathways, which lowered the H2 yield. The use of leachate combined with sugarcane processing derivatives as substrates could add value to the leachate and reduce its polluting power, generating a clean energy source from renewable raw materials. 相似文献
6.
Silver nanoparticles (AgNPs, nanosilver) released from industrial activities and consumer products may be disposed directly or indirectly in sanitary landfills. To determine the impact of AgNPs on anaerobic digestion of landfill waste, municipal solid waste (MSW) was loaded in identical landfill bioreactors (9L volume each) and exposed to AgNPs (average particle size=21nm) at the final concentrations of 0, 1, and 10mgAg/kg solids. The landfill anaerobic digestion was carried out for more than 250 days, during which time the cumulative biogas production was recorded automatically and the chemical property changes of leachates were analyzed. There were no significant differences in the cumulative biogas volume or gas production rate between the groups of control and 1mgAg/kg. However, landfill solids exposed to AgNPs at 10mg/kg resulted in the reduced biogas production, the accumulation of volatile fatty acids (including acetic acid), and the prolonged period of low leachate pH (between 5 and 6). Quantitative PCR results after day 100 indicated that the total copy numbers of 16S rRNA gene of methanogens in the groups of control and 1mgAgNPs/kg were 1.97±0.21×10(7) and 0.90±0.03×10(7), respectively. These numbers were significantly reduced to 5.79±2.83×10(5)(copies/mL) in the bioreactor treated with 10mgAgNPs/kg. The results suggest that AgNPs at the concentration of 1mg/kg solids have minimal impact on landfill anaerobic digestion, but a concentration at 10mg/kg or higher inhibit methanogenesis and biogas production from MSW. 相似文献
7.
Christopher A. Bareither Georgia L. Wolfe Katherine D. McMahon Craig H. Benson 《Waste management (New York, N.Y.)》2013,33(10):1982-1992
The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield. 相似文献
8.
Journal of Material Cycles and Waste Management - This case study aims to identify the sources of natural and anthropogenic As and heavy metals (HMs) in biodegradable wastes to develop controls on... 相似文献
9.
Emilia den Boer Andrzej Jędrczak Zygmunt Kowalski Joanna Kulczycka Ryszard Szpadt 《Waste management (New York, N.Y.)》2010,30(3):369-377
A review of results of the research involving the quantitative and composition analyses of household waste conducted in Poland in recent years is presented in this paper. For these analyses various methodologies have been employed, as there is not one obligatory methodology how to characterise municipal solid waste. The results of the research in large Polish cities indicate great variability, which is difficult to be reasonably explained. This situation is affected by a number of factors, such as various methods and places for sample collection, various methods for tests, fractional character of most of the studies (studies carried out only in some periods during a year). Consequently, it is neither possible to measurably compare their results, nor to generalise them. Hence, within this article only individual data for large cities is provided. It is therefore necessary to standardise methodology for such analyses in Europe, taking into account local variability (such as different housing patterns, climate and waste collection schemes) to allow comparison of results.Reported yearly household waste generation in Polish cities varies from 238 to 309 kg per inhabitant. Biodegradable waste is a strongly dominated fraction in household waste from Polish cities, followed by paper/cardboard and plastics. Historical data shows that waste composition has undergone profound changes, the most significant being an increase of the share of plastics and decrease of fine fraction. The presented data indicates that waste composition strongly depends on the type of housing and its heating system. In the new multi-family buildings with central heating the share of paper and plastics is higher than in old houses with individual heating. In the latter ones the share of fine fraction is higher. 相似文献
10.
Burnley SJ 《Waste management (New York, N.Y.)》2007,27(10):1274-1285
The move from landfill-based to resource-based waste management systems requires a greater knowledge of the composition of municipal solid waste. This paper draws together the findings of municipal solid waste (MSW) compositional surveys undertaken in the United Kingdom. The results from recent surveys show a good agreement over the composition of household-collected waste, but less agreement over civic amenity site waste composition. There is insufficient data to allow comparisons of the commercial waste element of municipal waste or of the other components, and further work is necessary to produce more reliable estimates of the composition of these streams. The use of questionnaire surveys and analysis of the results suggests that the size and age profile of a household influence the generation of household-collected waste. Some research suggests that the waste container provided by the local authority and the socio-economic classification of a household also influence household-collected waste generation, but other studies failed to find this link. Further research is required to investigate this by surveying all of the waste disposal routes available to specific households. 相似文献
11.
Modelling municipal solid waste generation: a review 总被引:1,自引:0,他引:1
The objective of this paper is to review previously published models of municipal solid waste generation and to propose an implementation guideline which will provide a compromise between information gain and cost-efficient model development. The 45 modelling approaches identified in a systematic literature review aim at explaining or estimating the present or future waste generation using economic, socio-demographic or management-orientated data. A classification was developed in order to categorise these highly heterogeneous models according to the following criteria--the regional scale, the modelled waste streams, the hypothesised independent variables and the modelling method. A procedural practice guideline was derived from a discussion of the underlying models in order to propose beneficial design options concerning regional sampling (i.e., number and size of observed areas), waste stream definition and investigation, selection of independent variables and model validation procedures. The practical application of the findings was demonstrated with two case studies performed on different regional scales, i.e., on a household and on a city level. The findings of this review are finally summarised in the form of a relevance tree for methodology selection. 相似文献
12.
G. Cappai G. De Gioannis M. Friargiu E. Massi A. Muntoni A. Polettini R. Pomi D. Spiga 《Waste management (New York, N.Y.)》2014,34(8):1510-1519
Batch dark fermentation experiments were performed on food waste and mixtures of food waste and wastewater activated sludge to evaluate the influence of pH on biological H2 production and compare the process performance with and without inoculum addition. The effect of a preliminary thermal shock treatment of the inoculum was also investigated as a means to harvest the hydrogenogenic biomass. The best performance in terms of both H2 generation potential and process kinetics was observed at pH = 6.5 under all experimental conditions (no inoculum, and untreated or thermally treated inoculum added). H2 production from food waste was found to be feasible even without inoculum addition, although thermal pre-treatment of the inoculum notably increased the maximum production and reduced the lag phase duration. The analysis of the fermentation products indicated that the biological hydrogen production could be mainly ascribed to a mixed acetate/butyrate-type fermentation. However, the presence of additional metabolites in the digestate, including propionate and ethanol, also indicated that other metabolic pathways were active during the process, reducing substrate conversion into hydrogen. The plateau in H2 generation was found to mirror the condition at which soluble carbohydrates were depleted. Beyond this condition, homoacetogenesis probably started to play a role in the degradation process. 相似文献
13.
Arena U 《Waste management (New York, N.Y.)》2012,32(4):625-639
The paper proposes a critical assessment of municipal solid waste gasification today, starting from basic aspects of the process (process types and steps, operating and performance parameters) and arriving to a comparative analysis of the reactors (fixed bed, fluidized bed, entrained bed, vertical shaft, moving grate furnace, rotary kiln, plasma reactor) as well as of the possible plant configurations (heat gasifier and power gasifier) and the environmental performances of the main commercially available gasifiers for municipal solid wastes. The analysis indicates that gasification is a technically viable option for the solid waste conversion, including residual waste from separate collection of municipal solid waste. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option. 相似文献
14.
Maturity assessment of compost from municipal solid waste through the study of enzyme activities and water-soluble fractions 总被引:2,自引:0,他引:2
In this work the dynamics of biochemical (enzymatic activities) and chemical (water-soluble fraction) parameters during 100 days of municipal solid wastes composting were studied to evaluate their suitability as tools for compost characterization. The hydrolase (protease, urease, cellulase, beta-glucosidase) and dehydrogenase activities were characterized by significant changes during the first 2 weeks of composting, because of the increase of easily decomposable organic compounds. After the 4th week a "maturation phase" was identified in which the enzymatic activities tended to gently decrease, suggesting the stabilisation of organic matter. Also the water-soluble fractions (water-soluble carbon, nitrogen, carbohydrates and phenols), which are involved in many degradation processes, showed major fluctuations during the first month of composting. The results obtained showed that the hydrolytic activities and the water-soluble fractions did not vary statistically during the last month of composting. Significant correlations between the enzymatic activities, as well as between enzyme activities and water-soluble fractions, were also highlighted. These results highlight the suitability of both enzymatic activities and water soluble fractions as suitable indicators of the state and evolution of the organic matter during composting. However, since in the literature the amount of each activity or fraction at the end of composting depends on the raw material used for composting, single point determinations appear inadequate for compost characterization. This emphasizes the importance of the characterization of the dynamics of enzymatic activities and water-soluble fractions during the process. 相似文献
15.
Quantitative and qualitative changes in organic matter were studied at different stages of treatment in a bioreactor designed to process leachates from a municipal solid waste landfill. The particulate matter (PM) and macromolecular fractions of the dissolved organic matter with solubility properties comparable to humic (acid-insoluble) and fulvic (acid-soluble) acid fractions (AI, AS, respectively) from the incoming black liquid, the bioreactor content, and the final processed effluent were isolated, quantified, and characterized by visible and infrared (IR) spectroscopies. The macromolecular signature either aliphatic (glycopeptides, carbohydrates) or aromatic (coinciding with infrared patterns of lignin, tannins etc.) enabled us to characterize the different organic fractions during the course of microbial transformation. The results reveal significant changes in the nitrogen speciation patterns within the different organic fractions isolated from the wastewater. The final increase in the relative proportions of nitrogen in the least aromatic AS fraction during microbial transformation could be related to protein formation inside the bioreactor. After biological treatment and ultrafiltration, the amount of organic matter was reduced by approximately 70%, whereas aromaticity increased in all fractions, indicating preferential elimination of aliphatic wastewater compounds. Most of the remaining fractions at the end of the process consisted of a yellow residue rich in low molecular weight AS fractions. 相似文献
16.
The world’s waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite before the reutilization of the cathode ray tube (CRT) funnel glass, and the recycling of liquid crystal display (LCD) glass is economically viable for the containing of precious metals (indium and tin). However, the environmental assessment of the recycling process is essential and important before the industrialized production stage. For example, noise and dust should be evaluated during the glass cutting process. This study could contribute significantly to understanding the recycling methods of NMFs from WEEE and serve as guidance for the future technology research and development. 相似文献
17.
After closure, municipal solid waste (MSW) landfills must be managed and controlled to avoid adverse effects on human health and the environment (HHE). Aftercare (or post-closure care) can be brought to an end when the authorities consider the landfill to no longer pose a threat to HHE. Different approaches have been suggested for long-term landfill management and evaluation of aftercare completion. In this paper, research on aftercare and its completion is analyzed and regulatory approaches for the completion of landfill aftercare are reviewed. Approaches to aftercare could be categorized as (i) target values, (ii) impact/risk assessment, and (iii) performance based. Comparison of these approaches illustrates that each has limitations and strengths. While target values are typically used as screening indicators to be complemented with site-specific assessments, impact/risk assessment approaches address the core issue about aftercare completion, but face large uncertainties and require a high level of expertise. A performance-based approach allows for the combination of target values and impact/risk assessments in a consistent evaluation framework with the aim of sequentially reducing aftercare intensity and, ultimately, leading to the completion of aftercare. At a regulatory level, simple qualitative criteria are typically used as the primary basis for defining completion of aftercare, most likely due to the complexity of developing rigorous evaluation methodologies. This paper argues that development of transparent and consistent regulatory procedures represents the basis for defining the desired state of a landfill at the end of aftercare and for reducing uncertainty about the intensity and duration of aftercare. In this context, recently presented technical guidelines and the ongoing debate with respect to their regulatory acceptance are a valuable step towards developing strategies for the cost-effective protection of HHE at closed MSW landfills. To assess the practicality of evaluation methodologies for aftercare, well-documented case studies including regulatory review and acceptance are needed. 相似文献
18.
Antoni Sánchez 《Waste management (New York, N.Y.)》2009,29(8):2306-2307
This discussion explores one crucial point about the use of biodegradability indicators to monitor biological processes in organic solid waste treatment plants. Today, some different measures are being used for the determination of biodegradable organic matter and most of them are based on respiration indices (oxygen consumption or carbon dioxide production under aerobic conditions) or biogas production tests (under strict anaerobic conditions). However, it is not evident from scientific literature that both tests may be equivalent or comparable. This discussion includes the results obtained when trying to correlate both anaerobic and aerobic tests to complement the recent work published by Wagland et al. [Wagland, S.T., Tyrrel, S.F., Godley, A.R., Smith, R., 2009. Test methods to aid in the evaluation of the diversion of biodegradable municipal waste (BMW) from landfill. Waste Management 29, 1218–1226]. 相似文献
19.
Test methods to aid in the evaluation of the diversion of biodegradable municipal waste (BMW) from landfill 总被引:1,自引:0,他引:1
A wide range of waste characterization methods are available, each developed for a specific purpose such as determining compost stability, or for landfill acceptance criteria. Here test methods have been evaluated for the purpose of assessing waste treatment process performance and monitoring the diversion of biodegradable municipal waste (BMW) from landfill. The suitability factors include the timescale of the method, applicability to a wide range of materials and ability to indicate the long-term biodegradability of organic waste samples. The anaerobic test methods, whilst producing reliable results, take at least several weeks to complete, therefore, not allowing for regular routine analysis often required for diversion assessments. Short-term tests are required which can correlate with, and, therefore, estimate, values obtained from long-term anaerobic methods. Aerobic test methods were found to offer a significantly improved timescale compared with anaerobic test methods; however, they have limitations due to not measuring the full extent of sample biodegradability. No single test method was found to be completely sufficient for routine biodegradability analysis suitable for monitoring the BMW diversion from landfill. Potential areas for further research include spectrographic FT-IR or enzyme-based approaches such as the ECD or EHT methods. 相似文献
20.
This response follows on from a recent discussion by Sánchez (2009) on test methods to aid in the evaluation of the diversion of biodegradable municipal waste (BMW) from landfill. Test methods to assess the biodegradability/biodegradable content of organic waste are of great interest across Europe for different purposes, such as landfill acceptance criteria, monitoring treatment facility performance and for monitoring the diversion of biodegradable municipal waste (BMW) from landfill. Many studies have recently attempted to correlate short-term test methods with long-term anaerobic test methods. This response discusses recent findings and conclusions made by Sánchez (2009) and describes recent work undertaken at Cranfield University to develop the enzymatic hydrolysis test (EHT) method. The EHT has previously shown potential as a short-term, non-biological, biodegradability assessment tool, however there is a requirement to further develop this test method. We conclude that aerobic and anaerobic biological test methods are not the only suitable methods of assessing waste treatment process performance; and that alternative methods such as EHT are feasible and potentially suitable. 相似文献