首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecotoxicity of different commercial surfactants (six anionic, two amphoteric and one nonionic), essential constituents of cleansing hair products (shampoos), as well as ecotoxicity of eight shampoos containing different combinations of these surfactants, were tested in order to evaluate their possible toxic effects on microalgae. Specific objective of this research was to compare the sensitivity of selected freshwater and marine microalgae to these widely used surfactants and well-known pollutants in surface waters. Internationally validated methods (ISO standards) for the determination of toxic effects on the growth of planktonic freshwater green algae Pseudokirchneriella subcapitata and Scenedesmus subspicatus and marine diatoms Skeletonema costatum and Phaeodactylum tricornutum, were used. The obtained results showed that the concentrations of tested surfactants and shampoos, which resulted in 50% growth reduction of planktonic freshwater green algae, when compared to the controls without test substances (EC50), were in the range from 0.32 to 4.4 mg l(-1) for surfactants and from 2.1 to 8.5 mg l(-1) for shampoos expressed as active substance. Marine diatoms were significantly more sensitive to the tested surfactants than freshwater green algae (EC50 0.14-1.7 mg l(-1) for surfactants and 0.35-1.25 mg l(-1) for shampoos). According to the classification on the basis of environmental effects, the obtained results suggested that all tested surfactants can be classified as having toxic effects on freshwater green alga Pseudokirchneriella subcapitata. Some of them indicated that they have a very toxic effect on Scenedesmus subspicatus and marine diatoms Skeletonema costatum and Phaeodactylum tricornutum.  相似文献   

2.
A congeneric set of 58 substituted anilines and phenols was tested using the 72-h algal growth inhibition assay with Pseudokirchneriella subcapitata and 15-min Vibrio fischeri luminescence inhibition assay. The set contained molecules substituted with one, two or three groups chosen from -chloro, -methyl or -ethyl. For 48 compounds there was no REACH-compatible algal toxicity data available before. The experimentally obtained EC50 values (mg L−1) for algae ranged from 1.43 (3,4,5-trichloroaniline) to 197 (phenol) and for V. fischeri from 0.37 (2,3,5-trichlorophenol) to 491 (aniline). Only five of the tested 58 chemicals showed inhibitory effect to algae at concentrations >100 mg L−1, i.e. could be classified as “not harmful”, 32 chemicals as “harmful” (10-100 mg L−1) and 21 as “toxic” (1-10 mg L−1). The occupied para-position tended to increase toxicity whereas most of the ortho-substituted congeners were the least toxic. As a rule, the higher the number of substituents the higher the hydrophobicity and toxicity. However, in case of both assays, the compounds of similar hydrophobicity showed up to 30-fold different toxicities. There were also assay/organism dependent tendencies: phenols were more toxic than anilines in the V. fischeri assay but not in the algal test. The comparison of the experimental toxicity data to the data available from the literature as well as to QSAR predictions showed that toxicity of phenols to algae can be modeled based on hydrophobicity, whereas the toxicity of anilines to algae as well as toxicity of both anilines and phenols to V. fischeri depended on other characteristics in addition to logKow.  相似文献   

3.
This study aimed to evaluate (1) the capacity of the green alga Pseudokirchneriella subcapitata and the waterflea Daphnia magna to regulate copper when exposed to environmentally realistic copper concentrations and (2) the influence of multi-generation acclimation to these copper concentrations on copper bioaccumulation and homeostasis. Based on bioconcentration factors, active copper regulation was observed in algae up to 5 microg Cu L(-1) and in daphnids up to 35 mug Cu L(-1). Constant body copper concentrations (13+/-4 microg Cu g DW(-1)) were observed in algae exposed to 1 through 5 microg Cu L(-1) and in daphnids exposed to 1 through 12 microg Cu L(-1). At higher exposure concentrations, there was an increase in internal body copper concentration, while no increase was observed in bioconcentration factors, suggesting the presence of a storage mechanism. At copper concentrations of 100 microg Cu L(-1) (P. subcapitata) and 150 microg Cu L(-1) (D. magna), the significant increases observed in body copper concentrations and in bioconcentration factors may be related to a failure of this regulation mechanism. For both organisms, internal body copper concentrations lower than 13 microg Cu g DW(-1) may result in copper deficiency. For P. subcapitata acclimated to 0.5 and 100 microg Cu L(-1), body copper concentrations ranged (mean+/-standard deviation) between 5+/-2 microg Cu g DW(-1) and 1300+/-197 microg Cu g DW(-1), respectively. For D. magna, this value ranged between 9+/-2 microg Cu g DW(-1) and 175+/-17 microg Cu g DW(-1) for daphnids acclimated to 0.5 and 150 microg Cu L(-1). Multi-generation acclimation to copper concentrations >or =12 microg Cu L(-1) resulted in a decrease (up to 40%) in body copper concentrations for both organisms compared to the body copper concentration of the first generation. It can be concluded that there is an indication that P. subcapitata and D. magna can regulate their whole body copper concentration to maintain copper homeostasis within their optimal copper range and acclimation enhances these mechanisms.  相似文献   

4.
A method combining (1 h) algal photosynthesis inhibition tests and tangential-flow ultrafiltration (TFF) technique (cut-off 1 kDa) was used to determine the effect of humic substances (HS) on acute metal toxicity to Pseudokirchneriella subcapitata. Three "standard" HS (soil and peat humic acids and Suwannee River fulvic acids) at two concentrations (1 and 5 mg/l) and two metals (Zn at 390 microg/l and Cd at 200 microg/l) were studied. Toxicity of Cd and Zn to P. subcapitata was significantly (p<0.05) reduced in the presence of humic acids (HA) but not in the presence of Suwannee River fulvic acids (SRFA). Metal partitioning between colloidal (1 microm-1 kDa) and truly dissolved (<1 kDa) fractions was found to match a decrease of metal toxicity in the presence of HA, but not in the presence of SRFA. The results suggested that HA reduced Cd and Zn toxicity in two different ways: (1) HA decrease the amount of free metal ions. Metal-HA complexes are high molecular weight, relatively stable with regard to metal-exchange reactions and consequently the metals were less bioavailable. (2) HA adsorbed onto algal surfaces, shielded the cells from free Cd and Zn ions. Several possible explanations can be postulated to account for the observed SRFA results: (1) Cd- and Zn-SRFA complexes are thought to be labile (i.e. undergo rapid dissociation); (2) SRFA coagulated, presumably during equilibration, and that coagulation altered metal complexing behavior of SRFA; (3) FA has a lower ability to adsorb on cell membranes at pH>7.  相似文献   

5.
Although widely used for the treatment of endo- and ectoparasites in livestock and pets, very few data on chronic effects on aquatic organisms are available for the parasiticide ivermectin. In the present study, toxicity of ivermectin to two freshwater organisms, the cladoceran Daphnia magna and the green alga Pseudokirchneriella subcapitata was investigated. For D. magna, a mean LC(50) 48 h of 5.7 ngl(-1) was derived from 10 acute tests. Chronic toxicity of ivermectin to D. magna was extremely high: with 0.001 and 0.0003 ngl(-1), respectively, nominal LOEC and NOEC based on growth and reproduction were far below the analytical limit of detection for this compound. P. subcapitata was considerably less sensitive to ivermectin than D. magna. For both growth rate and yield, EC(50) was >4,000 microgl(-1), LOEC was 1,250 microgl(-1) and NOEC 391microgl(-1). In view of the high toxicity to D. magna, the use of ivermectin might pose a risk to local aquatic ecosystems. Further studies should be carried out to investigate the effects of ivermectin and its degradation products on pelagic and benthic freshwater invertebrates.  相似文献   

6.
Jonsson CM  Aoyama H 《Chemosphere》2007,69(6):849-855
Acid phosphatase plays important roles in algae metabolism such as availability and recycling of inorganic phosphate, autophagic digestive processes and fertilization. Chemicals released into the environment from agriculture activities may impair algae phosphatase activity. The aim of this work was to evaluate the in vitro effect of twenty-four organic compounds and six metals used as pesticides, or present as contaminants in sewage sludge, on the acid phosphatase activity extracted from Pseudokirchneriella subcapitata. Results demonstrated that only the linear surfactant alkyl benzenesulphonate (LAS) and the heavy metals Hg(2+), Al(3+) and Cu(2+) markedly altered (50%) the enzyme activity. Join action inhibition studies indicated that Hg(2+) was more potent inhibitor than Al(3+) or LAS, and that the Hg(2+)+Al(3+) and Hg(2+)+LAS mixtures have, respectively, additive and slight antagonism effects. Copper, which demonstrated an activator effect when preincubated with the enzyme, behaved as a slight antagonist for the inhibitor effect of Hg(2+).  相似文献   

7.
In the actual environment, temperatures fluctuate drastically through season or global warming and are thought to affects risk of pollutants for aquatic biota; however, there is no report about the effect of water temperature on toxicity of widely used herbicide diuron to fresh water microalgae. The present research investigated inhibitory effect of diuron on growth and photosynthetic activity of a green alga Pseudokirchneriella subcapitata at five different temperatures (10, 15, 20, 25, and 30 °C) for 144 h of exposure. As a result, effective diuron concentrations at which a 50 % decrease in algal growth occurred was increased with increasing water temperature ranging from 9.2 to 20.1 μg L–1 for 72 h and 9.4–28.5 μg L–1 for 144 h. The photochemical efficiency of photosystem II (F v/F m ratio) was significantly reduced at all temperatures by diuron exposure at 32 μg L–1 after 72 h. Inhibition rates was significantly increased with decreased water temperature (P?<?0.01). Intracellular H2O2 levels as an indicator of oxidative stress were also decreased with increasing temperature in both control and diuron treatment groups and were about 2.5 times higher in diuron treatment groups than that of controls (P?<?0.01). Our results suggest water temperatures may affect the toxicokinetics of diuron in freshwater and should therefore be considered in environmental risk assessment.  相似文献   

8.
Transformation of all 19 chlorophenol (CP) isomers was investigated in a laboratory anaerobic methanogenic sludge that had not been exposed to synthetic chemicals. Concentration of CP was analyzed over time to calculate disappearance rate constants using first-order reaction kinetics and all possible CP degradation pathways were estimated. The rate constants ranged between 0.46 x 10(-3) and 0.161 day(-1). CPs were transformed via dechlorination. The chlorine atom at the ortho-position was the most easily dechlorinated, whereas dechlorination rate at the para-position was lowest. The overall pathways of CP transformation were much less diverse than that we previously found for contaminated sediment. The Dolfing hypothesis of microbial selection of the most thermodynamically favorable pathways was not applicable for CP transformation in this study as well as previous study performed by our group.  相似文献   

9.
It is well established that aquatic wildlife in marine and freshwater of the European Union is exposed to natural and synthetic endocrine disruptor compounds (EDCs) which are able to interfere with the hormonal system causing adverse effects on the intact physiology of organisms. The traditional wastewater treatment processes are inefficient on the removal of EDCs in low concentration. Moreover, not only the efficiency of treatment must be considered but also toxicological aspects. Taking into account all these aspects, the main goal of the study was to investigate the photochemical decomposition of hazardous phenolic compounds under simulated as well as natural sunlight from the toxicity point of view. The studies were focused on photodegradation of 2,4-dichlorophenol as well as mixture of phenol, 2-chlorophenol and 2,4-dichlorophenol. Photosensitized oxidation process was carried out in homogeneous and heterogeneous system. V. fischeri luminescence inhibition was used to determine the changes of toxicity in mixture during simulated and natural irradiation. The photodegradation was carried out in three kinds of water matrix; moreover, the influence of presence of inorganic matter on the treatment process was investigated. The experiments with natural sunlight proved applicability of photosensitive chitosan for visible-light water pollutant degradation. The results of toxicity investigation show that using photosensitive chitosan for visible-light, the toxicity of reaction mixture towards V. fischeri has significantly decreased. The EC50 was found to increase over the irradiation time; this increase was not proportional to the transformation of the parent compounds.  相似文献   

10.
Sequential UV-biological degradation of chlorophenols   总被引:2,自引:0,他引:2  
Tamer E  Hamid Z  Aly AM  Ossama el T  Bo M  Benoit G 《Chemosphere》2006,63(2):277-284
The sequential UV-biological degradation of a mixture of 4-chlorophenol (CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol (TCP), and pentachlorophenol (PCP) was first tested with each pollutant supplied at an initial concentration of 50 mg l(-1). Under these conditions, the chlorophenols were photodegraded in the following order of removal rate: PCP>TCP>DCP>CP with only CP and DCP remaining after 40 h of irradiation. The remaining CP (41 mg l(-1)) and DCP (13 mg l(-1)) were then completely removed by biological treatment with an activated sludge mixed culture. Biodegradation did not occur in similar tests conducted with a non-irradiated mixture due to the high microbial toxicity of the solution. UV treatment lead to a significant reduction of the phytotoxicity to Lipedium sativum but no further reduction of phytotoxicity was observed after biological treatment. Evidence was found that the pollutants were partially photodegraded into toxic and non-biodegradable products. When the pollutants were tested individually (initial concentration of 50 mg l(-1)), PCP, TCP, DCP, 4-CP were photodegraded according to first order kinetic model (r2>99) with half-lives of 2.2, 3.3, 5.7, and 54 h, respectively. The photoproducts were subsequently biodegraded. This study illustrates the potential of UV as pre-treatment for biological treatment in order to remove toxicity and enhance the biodegradability of organic contaminants. However, it also shows that UV treatment must be carefully optimized to avoid the formation of toxic and/or recalcitrant photoproducts and results from studies conducted on single contaminants cannot be extrapolated to mixtures.  相似文献   

11.
苯酚及其氯代物对大型溞的毒性效应和微观机理探讨   总被引:2,自引:0,他引:2  
采用静态生物急性试验的方法,研究了5种酚类化合物对大型溞的急性毒性效应,并利用正辛醇/水分配系数(Kow)对实验测得的毒性数值进行了统计分析,得到了有效的毒性估测模型.研究结果表明,大型溞的幼溞接触不同化合物的不同浓度,活动会受到抑制,甚至死亡,苯酚、4-氯酚、2,4-二氯酚、2,3,4-三氯酚和五氯酚的48 h EC50分别为9.15、4.64、4.40、1.92、0.37 mg/L;根据化学物质对溞类的毒性评价标准,这5种化合物都属高毒物质,其中五氯酚具有极高毒性.另外,五氯酚对大型溞的致毒关键步骤不仅包括传输分配过程还有生化反应.  相似文献   

12.
13.
The chemical decomposition of aqueous solutions of various chlorophenols (4-chlorophenol (4-CP), 2,4-dichlorophenol (2-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP)), which are environmental priority pollutants, is studied by means of single oxidants (hydrogen peroxide, UV radiation, Fenton's reagent and ozone at pH 2 and 9), and by the Advanced Oxidation Processes (AOPs) constituted by combinations of these oxidants (UV/H2O2 UV/Fenton's reagent and O3/UV). For all these reactions the degradation rates are evaluated by determining their first-order rate constants and the half-life times. Ozone is more reactive with higher substituted CPs while OH* radicals react faster with those chlorophenols having lower number of chlorine atoms. The improvement in the decomposition levels reached by the combined processes, due to the generation of the very reactive hydroxyl radicals. in relation to the single oxidants is clearly demonstrated and evaluated by kinetic modeling.  相似文献   

14.
Toxicity of tributyltin to willow trees   总被引:1,自引:0,他引:1  
BACKGROUND: Tributyltin is an organotin compound, used as an antifouling agent in ship paint, with heavy impact on the marine environment. Contaminated dredged harbor sludge is now dumped on land. The toxicity of tributyltin (TBT) to trees has not yet been quantified. Eventually, a vegetation cover on the dumped sludge could be established for the purpose of non-food cash crop production and phytoremediation. METHODS: The phytotoxicity of tributyltin chloride (TBTCl) and tributyltin hydride (TBTH) was measured at pH 4 and at pH 7 using the willow tree transpiration test. Different pH levels of the nutrient solutions were achieved by adding ammonium salt (low pH) or nitrate (high pH) as nitrogen source. RESULTS AND DISCUSSION: At low pH (pH 4), all trees showed symptoms of poor health. Transpiration decreased at concentrations above or equal to 0.1 mg TBTCl/l and 1 mg TBTH/L. The TBT toxicity was more pronounced at pH 7. The trees survived even the highest dose of 10 mg/l TBTCl or TBTH, although their growth and transpiration was strongly reduced. CONCLUSION: In contrast to other organisms, TBTCl and TBTH were less toxic to higher plants. RECOMMENDATIONS AND OUTLOOK: The toxicity of TBT is no hindrance for establishing vegetation on TBT-contaminated sludge. Phytoremediation and cash crop production could be possible with suitable plants.  相似文献   

15.
Toxicity data of substances to higher plants is needed for the purpose of risk assessment, site evaluation, phytoremediation, and plant protection. However, the results from the most common phytotoxicity tests, like the OECD algae and Lemna test, are not necessarily valid for higher terrestrial plants. The willow tree toxicity test uses inhibition of transpiration (aside of growth and water use efficiency) of willow cuttings grown in spiked solutions or soils as end point to quantify toxicity. This overview presents results from 60 studies including 24 new unpublished experiments for 56 different chemicals or substrates. Highest toxicity (EC50 < 1 mg/L) was observed from exposure to heavy metals like copper and cadmium. Also, organotins and free cyanide showed very high toxicity. The toxic effect of chlorophenols on willows was comparable to that on duck weed (Lemna) and green algae, while volatile compounds like chlorinated solvents or benzene, toluene, ethylbenzene, and xylene had less effect on trees than on these aquatic plants, due to volatilization from leaves and test media. In particular low (g/L range) toxicity was observed for tested nanomaterials. Effects of pharmaceuticals (typically weak acids or bases) depended strongly of the solution pH. Like for algae, baseline toxicity was observed for willows, which is related to the water solubility of the compounds, with absolute chemical activity ranging from 0.01 to 0.1, but with several exceptions. We conclude that the willow tree toxicity test is a robust method for relating uptake, accumulation, and metabolism of substances to the toxicity to trees.  相似文献   

16.
In this study an enzyme-linked immunosorbent assay (ELISA) was developed to detect the stress protein Hsp70 in the green alga Raphidocelis subcapitata. Using this ELISA, the response to a variety of pollutants, including ZnCl2, SeO2 (heavy metals), lindane (organochlorine pesticide), pentachlorophenol (PCP, chlorinated hydrocarbon insecticide and fungicide), carbaryl (carbamate pesticide) and sodium dodecyl sulphate (SDS; surfactant) was tested. Our results show that Hsp 70 is produced in a dose-dependent way in response to most chemicals investigated (except PCP) and at concentrations below the range of classical cytotoxicity testing (i.e. growth inhibition, lethality). Still, the potential to induce Hsp70 varied among the pollutants tested, the heavy metals ZnCl2 and SeO2 being the strongest inducers of Hsp70. Combined with the existing literature, these results indicate that Hsp70 in R. subcapitata is a sensitive biomarker for a wide range of environmental pollutants.  相似文献   

17.
增强光生载流子分离和Fe(Ⅲ)/Fe(Ⅱ)循环是增强光芬顿催化剂性能的关键。本研究采用低温煅烧法制备系列新型Z型异质结Fe2O3-TiO2-x,利用X射线衍射、扫描电子显微镜和透射电子显微镜等表征方法证实Fe2O3纳米簇成功结合在TiO2表面。以2,4-二氯苯酚(2,4-DCP)为模型污染物评估系列催化剂的光芬顿性能,发现UV-Vis/H2O2/Fe2O3-TiO2-200体系最佳,可在12 min内实现完全降解。而且光照30 min后,2,4-DCP的矿化率可达91.5%、脱氯率可达100%。采用液质联用仪分析2,4-DCP的降解路径,主要经过脱氯和开环等过程,并发现其降解中间产物的毒性有效降低。深入分析新型Z型异质结增强光芬顿的机制,主要源自于内建电场驱动载流子分离、加速Fe(Ⅲ)/Fe(Ⅱ)循环。此外,UV-Vis/H2O2/Fe2O3-TiO2-200体系适用于酸性和中性、有机酸和高浓度阴离子共存的复杂水体,可高效、深度降解水中氯酚类污染物,具有良好的应用潜力。  相似文献   

18.
2,4-二氯酚、2,4,6-三氯酚、五氯酚是氯酚类污染物的典型代表,鉴于其对人类身体健康的危害和对环境所造成的污染,已被很多国家列为环境优先控制污染物。研究粉末活性炭(PAC)对该3种氯酚的吸附过程以及投炭量、pH值和水质对PAC吸附性能的影响。结果表明:粉末活性炭可以有效去除水中的80%以上的氯酚;吸附行为符合Freundlich吸附等温线和Langmuir吸附等温线;以分子状态存在的氯酚比电离状态更容易被活性炭所吸附。  相似文献   

19.
Acute toxicity tests with six chlorobenzenes were performed on several aquatic organisms at different trophic levels. Fertility impairment on Daphnia and photosynthesis inhibition on Selenastrum were also carried on. Results are discussed together with physico-chemical properties of the molecules in order to identify structure-activity relationships and to predict environmental distribution. A hazard ranking procedure is also applied.  相似文献   

20.
Toxicity of methyl-tert-butyl ether to freshwater organisms   总被引:5,自引:0,他引:5  
Increased input of the fuel oxygenate methyl-tert-butyl ether (MTBE) into aquatic systems has led to concerns about its effect(s) on aquatic life. As part of a study conducted by University of California scientists for the State of California, the Aquatic Toxicology Laboratory, UC Davis, reviewed existing literature on toxicity of MTBE to freshwater organisms, and new information was generated on chronic, developmental toxicity in fish, and potential toxicity of MTBE to California resident species. Depending on time of exposure and endpoint measured, MTBE is toxic to various aquatic organisms at concentrations of 57-> 1000 mg/l (invertebrates), and 388-2600 mg/l (vertebrates). Developmental effects in medaka (Oryzias latipes) were not observed at concentrations up to 480 mg/l, and all fish hatched and performed feeding and swimming in a normal manner. Bacterial assays proved most sensitive with toxicity to Salmonella typhimurium measured at 7.4 mg/l within 48 h. In microalgae, decreased growth was observed at 2400 and 4800 mg/l within 5 days. MTBE does not appear to bioaccumulate in fish and is rapidly excreted or metabolized. Collectively, the available data suggests that at environmental MTBE exposure levels found in surface waters (< 0.1 mg/l) this compound is likely not acutely toxic to aquatic life. However, more information is needed on chronic and sublethal effects before we can eliminate the possibility of risk to aquatic communities at currently detected concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号