首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Population Viability Analysis for an Endangered Plant   总被引:9,自引:0,他引:9  
Abstract: Demographic modeling is used to understand the population viability of Furbish's lousewort, Pedicularis furbishiae , a perennial plant species endemic to the St. John River Valley in northern Maine. Environment-specific summaries of demographic parameters (survivorship, growth, and fecundity) over four years, organized into stage-based projection matrices, provide predictions of future population dynamics given a deterministic extension of past conditions. Stochastic modeling, using (I) empirically observed variation in demographic parameters, and (2) estimated rates of natural catastrophes, leads to predictions of extinction probability.
P. furbishiae viability has varied widely over the study period Viable populations with finite rates of increase > 1 are found where cover is low, woody plants do not dominate, and disturbance does not occur. Rates of increase vary over time, suggesting that stochastic analyses would be realistic. Stochastic measures of population viability incorporating environmental variation suggest that early successional environments, especially wetter sites, can support viable populations in the absence of disturbance. However; observed rates of natural catastrophe dominate viability estimates of individual populations. Metapopulation dynamics feature extinction rates that are greater than recolonization rates, and may be affected by land use in the watershed Species management needs to consider a large-scale view of the riverine corridor.  相似文献   

4.
We performed a series of population and pedigree analyses to examine the viability of a small Red-cockaded Woodpecker ( Picoides borealis ) population located at the Savannah River Site, in Barnwell and Aiken counties of South Carolina. The population's existence and future survival are precarious. As few as four individuals, including just one breeding pair, comprised this population in 1985. Now, primarily because of experimental transformation of birds from other areas, the population has increased to 25. As of 1990, genealogy pedigree analysis showed that the respective contribution of 14 founders to the extant population has not been equal. Founder gender equivalents are low (5.4) but could reach 9.2 if poorly-represented founders were to produce offspring. The fraction of founder gene diversity retained in the current population is 0.91. Successful recovery strategies would ensure 95% probability of population survival while maintaining 90% heterozygosity for 200 years. Viability analyses indicated that, depending on relative effects of inbreeding depression and stochastic environmental events, the Savannah River Site population has a 68–100% chance of extinction during this period. Annual translocation into the population of at least three females and two males for a 10-year period will achieve a 96% probability of survival for 200 years. Even with translocation of numerous males and females per year (up to 50 of each), the 90% heterozygosity goal may not be achieved. We discuss recommendations for choosing individuals for translocation logistical constraints on achieving recovery objectives, and limitations of our modeling approach.  相似文献   

5.
6.
7.
Pessimistic and Optimistic Bias in Population Viability Analysis   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
10.
Abstract:  Captive breeding is a commonly used strategy for species conservation. One risk of captive breeding is domestication selection—selection for traits that are advantageous in captivity but deleterious in the wild. Domestication selection is of particular concern for species that are bred in captivity for many generations and that have a high potential to interbreed with wild populations. Domestication is understood conceptually at a broad level, but relatively little is known about how natural selection differs empirically between wild and captive environments. We used genetic parentage analysis to measure natural selection on time of migration, weight, and morphology for a coho salmon ( Oncorhynchus kisutch ) population that was subdivided into captive and natural components. Our goal was to determine whether natural selection acting on the traits we measured differed significantly between the captive and natural environments. For males, larger individuals were favored in both the captive and natural environments in all years of the study, indicating that selection on these traits in captivity was similar to that in the wild. For females, selection on weight was significantly stronger in the natural environment than in the captive environment in 1 year and similar in the 2 environments in 2 other years. In both environments, there was evidence of selection for later time of return for both males and females. Selection on measured traits other than weight and run timing was relatively weak. Our results are a concrete example of how estimates of natural selection during captivity can be used to evaluate this common risk of captive breeding programs.  相似文献   

11.
With the computer program VORTEX I ran a series of simulations of the Bearded Vulture ( Gypaetus barbatus ) population held in captivity in European zoos and of the population released in the Alps. The simulations showed that the risk of extinction of the captive population with the extraction rates currently in use is low. It seems possible to maintain the current release rate of two fledglings per year at each of the four release sites in the Alps, but it does not seem possible to increase the release rate by expanding the project to other European mountains without dangerously depleting the captive population. The models showed that the most effective way to increase the release rate without increasing the captive population size is by improving hatching success in captivity. The information on the demographic parameters of the Bearded Vulture population released in the Alps was not good enough to predict the ultimate fate of the present population or to allow for recommendations on how long the population should continue to be supplemented. Although it will be necessary to wait some years to see if Bearded Vultures are able to breed in the wild in the Alps and to estimate fecundity rates, it should be possible to improve the monitoring of the individuals released to obtain more-precise survival estimates. The models of the captive and released population also showed that it should at least be possible to have an artificially supplemented Bearded Vulture population in the Alps, but because this is not the goal of the present reintroduction project, the organizations involved should decide whether this is a politically or economically desirable goal.  相似文献   

12.
13.
I examine whether or not it is appropriate to use extinction probabilities generated by population viability analyses, based on best estimates for model parameters, as criteria for listing species in Red Data Book categories as recently proposed by the World Conservation Union. Such extinction probabilities are influenced by how accurately model parameters are estimated and by how accurately the models depict actual population dynamics. I evaluate the effect of uncertainty in parameter estimation through simulations. Simulations based on Steller sea lions were used to evaluate bias and precision in estimates of probability of extinction and to consider the performance of two proposed classification schemes. Extinction time estimates were biased (because of violation of the assumption of stable age distribution) and underestimated the variability of probability of extinction for a given time (primarily because of uncertainty in parameter estimation). Bias and precision in extinction probabilities are important when these probabilities are used to compare the risk of extinction between species. Suggestions are given for population viability analysis techniques that incorporate parameter uncertainty. I conclude that testing classification schemes with simulations using quantitative performance objectives should precede adoption of quantitative listing criteria.  相似文献   

14.
15.
Abstract:   In addition to human-caused changes in the environment, natural stochasticity may threaten species persistence, and its impact must be taken into account when priorities are established and management plans are designed. Borderea chouardii is a Tertiary relict at risk of extinction that occurs in only one location in the world, where the probability of human disturbance is low. Its persistence, therefore, is mainly linked to its response to natural threats such as stochasticity. Over 8 years I monitored up to 25% of this rupicolous small geophyte. The population had an unbalanced size structure and 90% failure in seed arrival at appropriate microhabitats, which suggests a problem with recruitment. I used matrix models to describe its population dynamics, conducted hand sowings, and performed stochastic simulations to investigate the effect of environmental stochasticity on population trend and viability. I modeled several scenarios to represent a variety of ecological situations, such as population reduction, episodic or persistent disease, and enhancement or decrease of recruitment. Population growth rate (λ) was never significantly different from unity over the study period. The risk of extinction was null over the next five centuries under current conditions. Increase of mortality and decrease of recruitment reduced stochastic population growth rate, but no factor except a persistent increase of 10% mortality resulted in extinction. These results are the consequence of the plant's extremely long life span (over 300 years) and low temporal variability of key vital rates. Even though hand sowing significantly increased the stochastic population growth rate, other approaches may be more important for the persistence of this species. The extremely slow capacity for recovery following disturbances renders habitat preservation essential. In addition, the founding of new populations would reduce the risk associated with habitat destruction.  相似文献   

16.
Population trends from the Breeding Bird Survey are widely used to focus conservation efforts on species thought to be in decline and to test preliminary hypotheses regarding the causes of these declines. A number of statistical methods have been used to estimate population trends, but there is no consensus as to which is the most reliable. We quantified differences in trend estimates or different analysis methods applied to the same subset of Breeding Bird Survey data. We estimated trends for 115 species in British Columbia using three analysis methods: U.S. National Biological Service route regression, Canadian Wildlife Service route regression, and nonparametric rank-trends analysis. Overall, the number of species estimated to be declining was similar among the three methods, but the number of statistically significant declines was not similar (15, 8, and 29 respectively). In addition, many differences existed among methods in the trend estimates assigned to individual species. Comparing the two route regression methods, Canadian Wildlife Service estimates had a greater absolute magnitude on average than those of the U.S. National Biological Service method. U.S. National Biological Service estimates were on average more positive than the Canadian Wildlife Service estimates when the respective agency's data selection criteria were applied separately. These results imply that our ability to detect population declines and to prioritize species of conservation concern depend strongly upon the analysis method used. This highlights the need for further research to determine how best to accurately estimate trends from the data. We suggest a method for evaluating the performance of the analysis methods by using simulated Breeding Bird Survey data.  相似文献   

17.
18.
19.
Abstract:  Population viability analysis (PVA) is an effective framework for modeling species- and habitat-recovery efforts, but uncertainty in parameter estimates and model structure can lead to unreliable predictions. Integrating complex and often uncertain information into spatial PVA models requires that comprehensive sensitivity analyses be applied to explore the influence of spatial and nonspatial parameters on model predictions. We reviewed 87 analyses of spatial demographic PVA models of plants and animals to identify common approaches to sensitivity analysis in recent publications. In contrast to best practices recommended in the broader modeling community, sensitivity analyses of spatial PVAs were typically ad hoc, inconsistent, and difficult to compare. Most studies applied local approaches to sensitivity analyses, but few varied multiple parameters simultaneously. A lack of standards for sensitivity analysis and reporting in spatial PVAs has the potential to compromise the ability to learn collectively from PVA results, accurately interpret results in cases where model relationships include nonlinearities and interactions, prioritize monitoring and management actions, and ensure conservation-planning decisions are robust to uncertainties in spatial and nonspatial parameters. Our review underscores the need to develop tools for global sensitivity analysis and apply these to spatial PVA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号