首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A mobile pollutant measurement laboratory was designed and built at the Paul Scherrer Institute (Switzerland) for the measurement of on-road ambient concentrations of a large set of trace gases and aerosol parameters with high time resolution (<15 s for most instruments), along with geographical and meteorological information. This approach allowed for pollutant level measurements both near traffic (e.g. in urban areas or on freeways/main roads) and at rural locations far away from traffic, within short periods of time and at different times of day and year. Such measurements were performed on a regular base during the project year of gas phase and aerosol measurements (YOGAM). This paper presents data measured in the Zürich (Switzerland) area on a late autumn day (6 November) in 2001. The local urban particle background easily reached 50 000 cm−3, with additional peak particle number concentrations of up to 400 000 cm−3. The regional background of the total particle number concentration was not found to significantly correlate with the distance to traffic and anthropogenic emissions of carbon monoxide and nitrogen oxides. On the other hand, this correlation was significant for the number concentration of particles in the size range 50–150 nm, indicating that the particle number concentration in this size range is a better traffic indicator than the total number concentration. Particle number size distribution measurements showed that daytime urban ambient air is dominated by high number concentrations of ultrafine particles (nanoparticles) with diameters <50 nm, which are immediately formed by traffic exhaust and thus belong to the primary emissions. However, significant variation of the nanoparticle mode was also observed in number size distributions measured in rural areas both at daytime and nighttime, suggesting that nanoparticles are not exclusively formed by primary traffic emissions. While urban daytime total number concentrations were increased by a factor of 10 compared to the nighttime background, corresponding factors for total surface area and total volume concentrations were 2 and 1.5, respectively.  相似文献   

2.
A three-dimensional dispersion model has been implemented over the urban area of Stockholm (35×35 km) to assess the spatial distribution of number concentrations of particles in the diameter range 3–400 nm. Typical number concentrations in the urban background of Stockholm is 10 000 cm−3, while they are three times higher close to a major highway outside the city and seven times higher within a densely trafficked street canyon site in the city center. The model, which includes an aerosol module for calculating the particle number losses due to coagulation and dry deposition, has been run for a 10-day period. Model results compare well with measured data, both in levels and in temporal variability. Coagulation was found to be of little importance in terms of time averaged concentrations, contributing to losses of only a few percent as compared to inert particles, while dry deposition yield particle number losses of up to 25% in certain locations. Episodic losses of up to 10% due to coagulation and 50% due to deposition, are found some kilometers downwind of major roads, rising in connection with low wind speed and suppressed turbulent mixing. Removal due to coagulation and deposition will thus be more significant for the simulation of extreme particle number concentrations during peak episodes.The study shows that dispersion models with proper aerosol dynamics included may be used to assess particle number concentrations in Stockholm, where ultrafine particles principally originate from traffic emissions. Emission factors may be determined from roadside measurements, but ambient temperature must be considered, as it has a strong influence on particle number emissions from vehicles.  相似文献   

3.
A method for continuous on-road measurements of particle number emissions for both diesel- and petrol-fuelled vehicles is presented. The setup allows the determination of particle number emission factors on an individual vehicle basis by the simultaneous measurement of CO2 and particle concentrations. As an alternative to previous measurements on the kerbside, the sample is taken directly in the street, with the advantage of sampling in-situ within the exhaust plumes of passing vehicles, allowing the separation of the individual high-concentration plumes. The method was tested in two experiments that were conducted in the Gothenburg area. In the first study, which was performed at an urban roadside, we were able to determine particle emission factors from individual vehicles in a common car fleet passing the measurement site. The obtained emission factors were of the same order of magnitude (between 1.4 × 1012 and 1.8 × 1014 particles km?1) as values published in the recent literature for light duty vehicles. An additional on-road experiment was conducted at a rural road with four light duty reference vehicles (three of them petrol-powered and one diesel-powered) at driving speeds of 50 and 70 km h?1, realised with different engine speeds. The results of the traffic emission studies show that the method is applicable provided that instruments with an adequate dynamic range are used and that the traffic is not too dense. In addition, the variability in particle emissions for a specified driving condition was estimated.  相似文献   

4.
Atmospheric ions are produced by many natural and anthropogenic sources and their concentrations vary widely between different environments. There is very little information on their concentrations in different types of urban environments, how they compare across these environments and their dominant sources. In this study, we measured airborne concentrations of small ions, particles and net particle charge at 32 different outdoor sites in and around a major city in Australia and identified the main ion sources. Sites were classified into seven groups as follows: park, woodland, city centre, residential, freeway, power lines and power substation. Generally, parks were situated away from ion sources and represented the urban background value of about 270 ions cm?3. Median concentrations at all other groups were significantly higher than in the parks. We show that motor vehicles and power transmission systems are two major ion sources in urban areas. Power lines and substations constituted strong unipolar sources, while motor vehicle exhaust constituted strong bipolar sources. The small ion concentration in urban residential areas was about 960 cm?3. At sites where ion sources were co-located with particle sources, ion concentrations were inhibited due to the ion-particle attachment process. These results improved our understanding on air ion distribution and its interaction with particles in the urban outdoor environment.  相似文献   

5.
A new approach for the estimation of trace metal emissions in Vilnius city was implemented, using vertical concentration profiles in the urban boundary layer and road tunnel measurement data. Heavy metal concentrations were examined in fine and coarse particle fractions using a virtual impactor (cut-off size diameter 2.5 μm). Negative vertical concentration gradients were obtained for all metals (Ba, Pb, V, Sb, Zn) and both fractions. It was estimated that the vertical concentration gradient was formed due to emissions from an area of about 12 km2. Road tunnel measurements indicated that trace metal concentrations on fine particles were lower than those on coarse particles, which suggested that re-emitted road dust was highly enriched in trace metal due to historic emissions within the tunnel. Emission rates of different pollutants in the road tunnel were calculated using pollutant concentration differences at the tunnel entrance and exit and traffic flow data. Heavy metal emission rates from the area of Vilnius city were estimated using the vertical gradient of heavy metal concentrations and the coefficient of turbulent mixing, as derived from meteorological measurement data. The emission values calculated by the two different methods coincided reasonably well, which indicated that the main source of airborne trace metals in Vilnius city is traffic. The potential of the vertical concentration gradient method for the direct estimation of urban heavy metal emissions was demonstrated.  相似文献   

6.
The human health effects following exposure to ultrafine (<100 nm) particles (UFPs) produced by fuel combustion, while not completely understood, are generally regarded as detrimental. Road tunnels have emerged as locations where maximum exposure to these particles may occur for the vehicle occupants using them. This study aimed to quantify and investigate the determinants of UFP concentrations in the 4 km twin-bore (eastbound and westbound) M5 East tunnel in Sydney, Australia. Sampling was undertaken using a condensation particle counter (CPC) mounted in a vehicle traversing both tunnel bores at various times of day from May through July, 2006. Supplementary measurements were conducted in February, 2008. Over three hundred transects of the tunnel were performed, and these were distributed evenly between the bores. Additional comparative measurements were conducted on a mixed route comprising major roads and shorter tunnels, all within Sydney. Individual trip average UFP concentrations in the M5 East tunnel bores ranged from 5.53 × 104 p cm?3 to 5.95 × 106 p cm?3. Data were sorted by hour of capture, and hourly median trip average (HMA) UFP concentrations ranged from 7.81 × 104 p cm?3 to 1.73 × 106 p cm?3. Hourly median UFP concentrations measured on the mixed route were between 3.71 × 104 p cm?3 and 1.55 × 105 p cm?3. Hourly heavy diesel vehicle (HDV) traffic volume was a very good determinant of UFP concentration in the eastbound tunnel bore (R2 = 0.87), but much less so in the westbound bore (R2 = 0.26). In both bores, the volume of passenger vehicles (i.e. unleaded gasoline-powered vehicles) was a significantly poorer determinant of particle concentration. When compared with similar studies reported previously, the measurements described here were among the highest recorded concentrations, which further highlights the contribution road tunnels may make to the overall UFP exposure of vehicle occupants.  相似文献   

7.
Abstract

The associations between residential outdoor and ambient particle mass, fine particle absorbance, particle number (PN) concentrations, and residential and traffic determinants were investigated in four European urban areas (Helsinki, Athens, Amsterdam, and Birmingham). A total of 152 nonsmoking participants with respiratory diseases, not exposed to occupational pollution, were included in the study, which comprised a 7-day intensive exposure monitoring period of both indoor and home outdoor particle mass and number concentrations. The same pollutants were also continuously measured at ambient fixed sites centrally located to the studied areas (fixed ambient sites). Relationships between concentrations measured directly outside the homes (residential outdoor) and at the fixed ambient sites were pollutant-specific, with substantial variations among the urban areas. Differences were more pronounced for coarse particles due to resuspension of road dust and PN, which is strongly related to traffic emissions. Less significant outdoor-to-fixed variation for particle mass was observed for Amsterdam and Birmingham, predominantly due to regional secondary aerosol. On the contrary, a strong spatial variation was observed for Athens and to a lesser extent for Helsinki. This was attributed to the overwhelming and time-varied inputs from traffic and other local sources. The location of the residence and traffic volume and distance to street and traffic light were important determinants of residential outdoor particle concentrations. On average, particle mass levels in suburban areas were less than 30% of those measured for residences located in the city center. Residences located less than 10 m from a street experienced 133% higher PN concentrations than residences located further away. Overall, the findings of this multi-city study, indicated that (1) spatial variation was larger for PN than for fine particulate matter (PM) mass and varied between the cities, (2) vehicular emissions in the residential street and location in the center of the city were significant predictors of spatial variation, and (3) the impact of traffic and location in the city was much larger for PN than for fine particle mass.  相似文献   

8.
The associations between residential outdoor and ambient particle mass, fine particle absorbance, particle number (PN) concentrations, and residential and traffic determinants were investigated in four European urban areas (Helsinki, Athens, Amsterdam, and Birmingham). A total of 152 nonsmoking participants with respiratory diseases, not exposed to occupational pollution, were included in the study, which comprised a 7-day intensive exposure monitoring period of both indoor and home outdoor particle mass and number concentrations. The same pollutants were also continuously measured at ambient fixed sites centrally located to the studied areas (fixed ambient sites). Relationships between concentrations measured directly outside the homes (residential outdoor) and at the fixed ambient sites were pollutant-specific, with substantial variations among the urban areas. Differences were more pronounced for coarse particles due to resuspension of road dust and PN, which is strongly related to traffic emissions. Less significant outdoor-to-fixed variation for particle mass was observed for Amsterdam and Birmingham, predominantly due to regional secondary aerosol. On the contrary, a strong spatial variation was observed for Athens and to a lesser extent for Helsinki. This was attributed to the overwhelming and time-varied inputs from traffic and other local sources. The location of the residence and traffic volume and distance to street and traffic light were important determinants of residential outdoor particle concentrations. On average, particle mass levels in suburban areas were less than 30% of those measured for residences located in the city center. Residences located less than 10 m from a street experienced 133% higher PN concentrations than residences located further away. Overall, the findings of this multi-city study, indicated that (1) spatial variation was larger for PN than for fine particulate matter (PM) mass and varied between the cities, (2) vehicular emissions in the residential street and location in the center of the city were significant predictors of spatial variation, and (3) the impact of traffic and location in the city was much larger for PN than for fine particle mass.  相似文献   

9.
The influence of traffic on urban air quality is highest at low wind speeds and the presence of a temperature inversion. By relying on detailed aerosol measurements conducted simultaneously at two distances close to a major road, we studied one such episode encountered in Helsinki, Finland, during the wintertime. The observed episode was characterized by exceptionally weak dilution of traffic emissions, with particle number concentration decreasing by no more than 10–30% between 9 and 65 m distances from the road. During the nighttime with relatively minor traffic flow, dilution and particle growth by vapor condensation were found to be the dominant processes in this road-to-ambient evolution stage. The latter process shifted a significant fraction of nucleation mode particles to sizes >30 nm diameter, modifying thereby the shape of the particle number size distribution. During the rush hours in the morning, particle number concentrations were elevated by approximately an order of magnitude compared with nighttime, such that also the self-coagulation of nucleation mode particles became important. Our study demonstrates that under suitable meteorological conditions (low wind speeds coupled with temperature inversions), traffic emissions are able to affect submicron particle number concentrations over large areas around major roads and may be a dominant source of ultrafine particles in the urban atmosphere. Under conditions characterized by exceptionally slow mixing, simultaneous processing of ultrafine (nucleation and Aitken mode) particles by dilution, self- and inter-modal coagulation, as well as by condensation and evaporation seriously questions the applicability of particle number emission factors, derived from the measurements at few tens of meters from the roadside.  相似文献   

10.
The objective of this project was to characterize on-road aerosol on highways surrounding the Minneapolis area. Data were collected under varying on-road traffic conditions and in residential areas to determine the impact of highway traffic on air quality. The study was focused on determining on-road nanoparticle concentrations, and estimating fuel-specific and particle emissions km−1.On-road aerosol number concentrations ranged from 104 to 106 particles cm−3. The highest nanoparticle concentrations were associated with high-speed traffic. At high vehicular speeds engine load, exhaust temperature, and exhaust flow all increase resulting in higher emissions. Less variation was observed in particle volume, a surrogate measure of particle mass. Most of the particles added by the on-road fleet were below 50 nm in diameter. Particles in this size range may dominate particle number, but contribute little to particle volume or mass. Furthermore, particle number is strongly influenced by nucleation and coagulation, which have little or no effect on particle volume. Measurements made in heavy traffic, speeds<32 km h−1, produced lower number concentrations and larger particles.Number concentrations measured in residential areas, 10–20 m from the highway, were considerably lower than on-road concentrations, but the size distributions were similar to on-road aerosol with high concentrations of very small (<20 nm) particles. Much lower number concentrations and larger particles were observed in residential areas located 500–700 m from the highway.Estimated emissions of total particle number larger than 3 nm ranged from 1.9 to 9.9×1014 particles km−1 and 2.2–11×1015 particles (kg fuel)−1 for a gasoline-dominated vehicle fleet.  相似文献   

11.
The spatial variability of highly time resolved size distributions was investigated in a narrow valley which provides the opportunity to study the impact of different sources on ambient particle concentrations during summer and winter time. The measurements were performed with a Fast Mobility Particle Sizer (FMPS) from TSI, Inc. on a mobile laboratory in Southern Switzerland. The results indicate enhanced number concentrations (between 150 000 and 500 000 cm?3) along the busy highway A2 which is the main transit route through the Swiss Alps connecting the northern and southern part of Switzerland. Especially the nanoparticles with diameters lower than 30 nm showed strongly increased number concentrations on the highway both in summer and winter. In winter time, high aerosol volume concentrations (PM0.3) were found in villages where wood burning is often used for heating purposes. Both traffic and wood burning were found to be important sources for particulate mass which accumulates during temperature inversions in winter time. Traffic was the dominant and wood burning a minor source for the nanoparticle number concentration. This is important regarding health impacts and its attribution to different sources because wood burning might contribute most to particulate mass whereas at the same time and place traffic contributes most to particulate number. In addition, during summer time volatility measurements were performed with the FMPS showing that the nucleation mode prevalently seen on the highway was removed by more than 95% by thermal treatment.  相似文献   

12.
Airborne particle number concentrations and size distributions as well as CO and NOx concentrations monitored at a site within the central business district of Brisbane, Australia were correlated with the traffic flow rate on a nearby freeway with the aim of investigating differences between weekday and weekend pollutant characteristics. Observations over a 5-year monitoring period showed that the mean number particle concentration on weekdays was (8.8±0.1)×103 cm−3 and on weekends (5.9±0.2)×103 cm−3—a difference of 47%. The corresponding mean particle number median diameters during weekdays and weekends were 44.2±0.3 and 50.2±0.2 nm, respectively. The differences in mean particle number concentration and size between weekdays and weekends were found to be statistically significant at confidence levels of over 99%. During a 1-year period of observation, the mean traffic flow rate on the freeway was 14.2×104 and 9.6×104 vehicles per weekday and weekend day, respectively—a difference of 48%. The mean diurnal variations of the particle number and the gaseous concentrations closely followed the traffic flow rate on both weekdays and weekends (correlation coefficient of 0.86 for particles). The overall conclusion, as to the effect of traffic on concentration levels of pollutant concentration in the vicinity of a major road (about 100 m) carrying traffic of the order of 105 vehicles per day, is that about a 50% increase in traffic flow rate results in similar increases of CO and NOx concentrations and a higher increase of about 70% in particle number concentration.  相似文献   

13.
Recent studies have shown clear contributions of non-exhaust emissions to the traffic related PM10 load of the ambient air. These emissions consist of particles produced by abrasion from brakes, road wear, tire wear, as well as vehicle induced resuspension of deposited road dust. The main scope of the presented work was to identify and quantify the non-exhaust fraction of traffic related PM10 for two roadside locations in Switzerland with different traffic regimes. The two investigated locations, an urban street canyon with heavily congested traffic and an interurban freeway, are considered as being typical for Central Europe. Mass-relevant contributions from abrasion particles and resuspended road dust mainly originated from particles in the size range 1–10 μm. The results showed a major influence of vehicle induced resuspension of road dust. In the street canyon, the traffic related PM10 emissions (LDV: 24 ± 8 mg km?1 vehicle?1, HDV: 498 ± 86 mg km?1 vehicle?1) were assigned to 21% brake wear, 38% resuspended road dust and 41% exhaust emissions. Along the freeway (LDV: 50 ± 13 mg km?1 vehicle?1, HDV: 288 ± 72 mg km?1 vehicle?1), respective contributions were 3% brake wear, 56% resuspended road dust and 41% exhaust emissions. There was no indication for relevant contributions from tire wear and abrasion from undamaged pavements.  相似文献   

14.
Quantifying the emissions and concentrations of heavy metals in urban air is a prerequisite for assessing their health effects. In this paper a combination of measurements and modelling is used to assess the contribution from road traffic emissions. Concentrations of particulate heavy metals in air were measured simultaneously during 1 year at a densely trafficked street and at an urban background site in Stockholm, Sweden. Annual mean concentrations of cadmium were 50 times lower than the EU directive and for nickel and arsenic concentrations were 10 and six times lower, respectively. More than a factor of two higher concentrations was in general observed at the street in comparison to roof levels indicating the strong influence from local road traffic emissions. The only compound with a significantly decreasing trend in the urban background was Pb with 9.1 ng m?3 in 1995/96 compared to 3.4 ng m?3 2003/04. This is likely due to decreased emissions from wear of brake linings and reduced emissions due to oil and coal combustion in central Europe.Total road traffic emission factors for heavy metals were estimated using parallel measurements of NOx concentrations and knowledge of NOx emission factors. In general, the emission factors for the street were higher than reported in road tunnel measurements. This could partly be due to different driving conditions, since especially for metals which are mainly emitted from brake wear, more stop and go driving in the street compared to in road tunnels is likely to increase emissions. Total emissions were compared with exhaust emissions, obtained from the COPERT model and brake wear emissions based on an earlier study in Stockholm. For Cu, Ni and Zn the sum of brake wear and exhaust emissions agreed very well with estimated total emission factors in this study. More than 90% of the road traffic emissions of Cu were due to brake wear. For Ni more than 80% is estimated to be due to exhaust emissions and for Zn around 40% of road traffic emissions are estimated to be due to exhaust emissions. Pb is also mainly due to exhaust emissions (90%); a fuel Pb content of only 0.5 mg L?1 would give similar emission factor as that based on the concentration increment at the street. This is the first study using simultaneous measurements of heavy metals at street and roof enabling calculations of emission factors using a tracer technique.  相似文献   

15.
We have observed a wide area of air pollutant impact downwind of a freeway during pre-sunrise hours in both winter and summer seasons. In contrast, previous studies have shown much sharper air pollutant gradients downwind of freeways, with levels above background concentrations extending only 300 m downwind of roadways during the day and up to 500 m at night. In this study, real-time air pollutant concentrations were measured along a 3600 m transect normal to an elevated freeway 1–2 h before sunrise using an electric vehicle mobile platform equipped with fast-response instruments. In winter pre-sunrise hours, the peak ultrafine particle (UFP) concentration (~95 000 cm?3) occurred immediately downwind of the freeway. However, downwind UFP concentrations as high as ~40 000 cm?3 extended at least 1200 m from the freeway, and did not reach background levels (~15 000 cm?3) until a distance of about 2600 m. UFP concentrations were also elevated over background levels up to 600 m upwind of the freeway. Other pollutants, such as NO and particle-bound polycyclic aromatic hydrocarbons, exhibited similar long-distance downwind concentration gradients. In contrast, air pollutant concentrations measured on the same route after sunrise, in the morning and afternoon, exhibited the typical daytime downwind decrease to background levels within ~300 m as found in earlier studies. Although pre-sunrise traffic volumes on the freeway were much lower than daytime congestion peaks, downwind UFP concentrations were significantly higher during pre-sunrise hours than during the daytime. UFP and NO concentrations were also strongly correlated with traffic counts on the freeway. We associate these elevated pre-sunrise concentrations over a wide area with a nocturnal surface temperature inversion, low wind speeds, and high relative humidity. Observation of such wide air pollutant impact area downwind of a major roadway prior to sunrise has important exposure assessment implications since it demonstrates extensive roadway impacts on residential areas during pre-sunrise hours, when most people are at home.  相似文献   

16.
In this paper, we report the results and analysis of a recent field campaign in August 2007 investigating the impacts of emissions from transportation on air quality and community concentrations in Beijing, China. We conducted measurements in three different environments, on-road, roadside and ambient. The carbon monoxide, black carbon and ultrafine particle number emission factors for on-road light-duty vehicles are derived to be 95 g kg?1-fuel, 0.3 g kg?1-fuel and 1.8 × 1015 particles kg?1-fuel, respectively. The emission factors for on-road heavy-duty vehicles are 50 g kg?1-fuel, 1.3 g kg?1-fuel and 1.1 × 1016 particles kg?1-fuel, respectively. The carbon monoxide emission factors from this study agree with those derived from remote sensing and on-board vehicle emission testing systems in China. The on-road black carbon and particle number emission factors for Chinese vehicles are reported for the first time in the literature. Strong traffic impacts can be observed from the concentrations measured in these different environments. Most clear is a reflection of diesel truck traffic activity in black carbon concentrations. The comparison of the particle size distributions measured at the three environments suggests that the traffic is a major source of ultrafine particles. A four-day traffic control experiment conducted by the Beijing Government as a pilot to test the effectiveness of proposed controls was found to be effective in reducing extreme concentrations that occurred at both on-road and ambient environments.  相似文献   

17.
Articles have recently been published on aerosol size distributions and number concentrations in cities, however there have been no studies on transport of these particles. Eddy covariance measurements of vertical transport of aerosol in the size range 11 nm<Dp<3 μm are presented here. The analysis shows that typical average aerosol number fluxes in this size range vary between 9000 and 90,000 cm−2 s−1. With concentrations between 3000 and 20,000 cm−3 this leads to estimates of particle emission velocity between 20 and 75 mm s−1. The relationships between number flux and traffic activity, along with emission velocity and boundary layer stability are demonstrated and parameterised. These are used to derive an empirical parameterisation for aerosol concentration in terms of traffic activity and stability. The main processes determining urban aerosol fluxes and concentrations are discussed and quantified where possible. The difficulties in parameterising urban activity are discussed.  相似文献   

18.
Even though dry deposition and air–water exchange of semivolatile organic compounds (SOCs) are important for surfaces in and around the urban areas, there is still no generally accepted direct measurement technique for dry deposition. In this study, a modified water surface sampler (WSS) configuration, including a filter holder and an XAD-2 resin column, was employed to investigate the polycyclic aromatic hydrocarbon (PAH) dry deposition in an urban area. The measured total (particle+dissolved) PAH fluxes to the WSS averaged to be 34 960±16 540 ng m−2 d−1. Average particulate PAH flux, determined by analyzing the filter in the WSS, was about 8% of the total PAH flux. Temporal flux variations indicated that colder months (October–April) had the highest PAH fluxes. This increase could be attributed to the residential heating as well as meteorological effects including lower mixing height. A high volume air sampler was concurrently employed to collect ambient air concentrations. The average total (gas+particle) atmospheric PAH concentration (456±524 ng m−3) was within the range of previously measured values at different urban locations. PAH concentrations in urban areas are more than two orders of magnitude higher than those measured in pristine areas and this result may indicate that urban areas have major source sectors and greater deposition rates are expected near to these areas. The average contribution of particle phase was about 10% in total concentration. Simultaneous particulate phase dry deposition and ambient air samples were collected in this study. Then, particulate phase apparent dry deposition velocities were calculated using the fluxes and concentrations for each PAH compound and they ranged from 0.1 to 1.2 cm s−1. These values are in good agreement with previously reported values.  相似文献   

19.
Traffic is the major source of submicrometre particles in an urban environment but the spatial distribution of particles around an urban site has not been measured. The aim of this paper was to investigate the relationship of CO and particles at a busy central urban location surrounded by buildings. This study measured the concentration and size distribution of submicrometre particles at a fixed location and concentrations of submicrometre particles and CO at 10 locations around a square site in the Brisbane Central Business District (CBD). Changes in concentration were assessed as a function of traffic volume and wind direction and speed.Fixed site measurements of submicrometre particle number concentration varied between 7.9×102 (±40) and 2.6×105 (±1.3×104) cm−3 and showed a strong positive correlation with traffic flow rate, confirming that vehicles were the major source of urban submicrometre particles. The particle concentration decreased exponentially with increasing wind speed.Average particle concentrations around the site ranged between 19.7×103 (±8.2×103) and 32.5×103 (±16.6×103) cm−3. Analysis of the particle measurements around the site showed that time and location both had a statistically significant effect on mean particle concentration around the square over the period of the study.Around the site, CO concentration was relatively constant (within instrument error), ranging between 2.2 (±1.9) and 4.5 (±3.0) ppm. Again both time and location had a statistically significant effect on CO concentration during the measurement period. However, CO concentration was not significantly correlated to particle number concentration around the site and examination of between-site comparisons with the two pollutants showing different spatial and temporal trends.The significant difference in the concentration trends between the locations around the square indicates that there is considerable inhomogeneity in the particle concentration around the site. One implication of this is that careful thought must be given to locations of air intakes of air-conditioning systems in urban environments.  相似文献   

20.
Size distribution of particle number concentrations in the geometric equivalent diameter range 0.01–2.5 μm were determined in three communities, Zerbst, Bitterfeld and Hettstedt of the state of Sachsen-Anhalt in Eastern Germany, in the first half of 1993 and 1999. A Mobile Aerosol Spectrometer (MAS) consisting of a differential mobility particle spectrometer (DMPS) and a laser aerosol spectrometer (LAS-X) were used for size-selective particle number concentration measurements from which mass concentrations were derived based on an apparent mean density of the ambient aerosol of the closely situated city of Erfurt.The total number concentration was governed by ultra-fine particles (<0.1 μm) (81% in 1993 and 90% in 1999) and 0.1–0.5 μm size fraction dominates total mass concentration (approximately 80%). While the mass concentration of fine particles (PM2.5) decreased from 39 to 19 μg m−3, the geometric means of total number concentration showed constant concentration (13.3×103 cm−3 in 1993 and 13.3×103 cm−3 in 1999, p=0.975) and the geometric means of number concentration of ultra-fine particles (UP) between 10 and 30 nm increased from 5.9×103 to 8.2×103 cm−3 from 1993 to 1999 (p=0.016). The temporal changes of number and mass concentrations in the three communities are similar. The clear shift to smaller particle sizes within this six years period was caused by changes of the most prominent sources, traffic and domestic heating, since formerly dominating industries in Bitterfeld and Hettstedt had vanished grossly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号