首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The heterogeneous reactivity of nitrogen dioxide with pyrene and 1-nitropyrene (1NP) adsorbed on silica particles has been investigated using a fast-flow-tube in the absence of light. Reactants and products were extracted from particles using pressurised fluid extraction (PFE) and concentration measurements were performed using gas chromatography/mass spectrometry (GC/MS). The pseudo-first order rate constants were obtained from the fit of the experimental decay of particulate polycyclic compound concentrations versus reaction time. Experiments were performed at three different NO2 concentrations and second order rate constants were calculated considering the oxidant concentration. The following rate constant values were obtained at room temperature: k(NO2 + pyrene) = (9.3 ± 2.3) × 10?17 cm3 molecule?1 s?1 and k(NO2 + 1NP) = (6.2 ± 1.5) × 10?18 cm3 molecule?1 s?1, showing that the reactivity of 1NP was slower by a factor of 15 than that of pyrene. 1NP was identified as the only NO2-initiated oxidation product of pyrene and all the three dinitropyrenes were identified in the case of the 1NP reaction. The product quantification allowed showing that the kinetics of oxidation product formation was equal to that measured for parent compounds degradation, within uncertainties, confirming the validity of the reaction kinetics measurements.  相似文献   

2.
Seawater, atmospheric dimethylsulfide (DMS) and aerosol compounds, potentially linked with DMS oxidation, such as methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO42?) were determined in the North Yellow Sea, China during July–August, 2006. The concentrations of seawater and atmospheric DMS ranged from 2.01 to 11.79 nmol l?1 and from 1.68 to 8.26 nmol m?3, with average values of 6.20 nmol l?1 and 5.01 nmol m?3, respectively. Owing to the appreciable concentration gradient, DMS accumulated in the surface water was transferred into the atmosphere, leading to a net sea-to-air flux of 6.87 μmol m?2 d?1 during summer. In the surface seawater, high DMS values corresponded well with the concurrent increases in chlorophyll a levels and a significant correlation was observed between integrated DMS and chlorophyll a concentrations. In addition, the concentrations of MSA and nss-SO42? measured in the aerosol samples ranged from 0.012 to 0.079 μg m?3 and from 3.82 to 11.72 μg m?3, with average values of 0.039 and 7.40 μg m?3, respectively. Based on the observed MSA, nss-SO42? and their ratio, the relative biogenic sulfur contribution was estimated to range from 1.2% to 11.5%, implying the major contribution of anthropogenic source to sulfur budget in the study area.  相似文献   

3.
Size-fractionated particles were collected at two sites from July 2004 to April 2006 in Shanghai. The mercury in particles was extracted and divided operationally into four species: exchangeable particulate mercury (EXPM), HCl-soluble particulate mercury (HPM), elemental particulate mercury (EPM) and residual particulate mercury. The total particulate Hg concentration during the study period ranged from 0.07 ng m?3 to 1.45 ng m?3 with the average 0.56 ± 0.22 ng m?3 at site 1, while 0.20 ng m?3–0.47 ng m?3 with the average 0.33 ± 0.09 ng m?3 at site 2, which is far higher than some foreign cities and comparable to some cities with heavy air pollution in China. The Hg mass content also displayed evident size distribution, with higher value in PM1.6–3.7, somewhat higher or lower than the source profile. EXAM was only found in the summer, HPM have higher percentage in summer and fall rather than in winter and spring. The different mercury species showed different correlation to temperature, relative humidity, wind speed. HPM positively depends on temperature at both sites which implies the importance of mercury transformation on particles. In foggy days TPM increased greatly, but HPM didn't vary greatly as anticipated. Instead, RPM gained a distinguished increase. It demonstrated that aqueous reaction and complex heterogenic reactions in droplet might happen in acidic environment. The correlation of mercury with other pollutants including SO2, NO2, CO and PM10 varies with the different mercury forms. Hybrid single-particle lagrangian integrated trajectories (HYSPLIT) model was used to back trace air mass at different representative days and results indicated that transportation from Huabei Plain will increase mercury concentration in winter and fall to some extent. The possible existing compounds and their atmospheric behavior of HPM, EPM and RPM were calculated and the compared to analyze its implication on atmospheric mercury cycle.  相似文献   

4.
A budget for the methane (CH4) cycle in the Xilin River basin of Inner Mongolia is presented. The annual CH4 budget in this region depends primarily on the sum of atmospheric CH4 uptake by upland soils, emission from small wetlands, and emission from grazing ruminants (sheep, goats, and cattle). Flux rates for these processes were averaged over multiple years with differing summer rainfall. Although uplands constitute the vast majority of land area, they consume much less CH4 per unit area than is emitted by wetlands and ruminants. Atmospheric CH4 uptake by upland soils was ?3.3 and ?4.8 kg CH4 ha?1 y?1 in grazed and ungrazed areas, respectively. Average CH4 emission was 791.0 kg CH4 ha?1 y?1 from wetlands and 8.6 kg CH4 ha?1 y?1 from ruminants. The basin area-weighted average of all three processes was 6.8 kg CH4 ha?1 y?1, indicating that ruminant production has converted this basin to a net source of atmospheric CH4. The total CH4 emission from the Xilin River basin was 7.29 Gg CH4 y?1. The current grazing intensity is about eightfold higher than that which would result in a net zero CH4 flux. Since grazing intensity has increased throughout western China, it is likely that ruminant production has converted China's grazed temperate grasslands to a net source of atmospheric CH4 overall.  相似文献   

5.
Measurements for particles 10 nm to 10 μm were taken using a Wide-range Particle Spectrometer during the Chinese New Year (CNY) celebrations in 2009 in Shanghai, China. These celebrations provided an opportunity to study the number concentration and size distribution of particles in an especial atmospheric pollution situation due to firework displays. The firework activities had a clear contribution to the number concentration of small accumulation mode particles (100–500 nm) and PM1 mass concentration, with a maximum total number concentration of 3.8 × 104 cm?3. A clear shift of particles from nucleation and Aitken mode to small accumulation mode was observed at the peak of the CNY firework event, which can be explained by reduced atmospheric lifetimes of smaller particles via the concept of the coagulation sink. High particle density (2.7 g cm?3) was identified as being particularly characteristic of the firework aerosols. Recalculated fine particles PM1 exhibited on average above 150 μg m?3 for more than 12 hours, which was a health risk to susceptible individuals. Integral physical parameters of firework aerosols were calculated for understanding their physical properties and further model simulation.  相似文献   

6.
The gas-phase ozonolysis of (E)-β-farnesene was investigated in a 3.91 m3 atmospheric simulation chamber at 296 ± 2 K and relative humidity of around 0.1%. The relative rate method was used to determine the reaction rate coefficient of (4.01 ± 0.17) × 10?16 cm3 molecule?1 s?1, where the indicated errors are two least-squares standard deviations and do not include uncertainties in the rate coefficients for the reference compounds (γ-terpinene, cis-cyclooctene and 1,5-cyclooctadiene). Gas phase carbonyl products were collected using a denuder sampling technique and analyzed with GC/MS following derivatization with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA). The reaction products detected were acetone, 4-oxopentanal, methylglyoxal, 4-methylenehex-5-enal, 6-methylhept-5-en-2-one, and (E)-4-methyl-8-methylenedeca-4,9-dienal. A detailed mechanism for the gas-phase ozonolysis of (E)-β-farnesene is proposed, which accounts for all of the products observed in this study. The results of this work indicate that the atmospheric reaction of (E)-β-farnesene with ozone has a lifetime of around 1 h and is another possible source of the ubiquitous carbonyls, acetone, 4-oxopentanal and 6-methylhept-5-en-2-one in the atmosphere.  相似文献   

7.
An investigation of water-soluble organic carbon (WSOC) in atmospheric particles was conducted as an index of the formation of secondary organic aerosol (SOA) from April 2005 to March 2006 at Maebashi and Akagi located in the inland Kanto plain in Japan. Fine (<2.1 μm) and coarse (2.1–11 μm) particles were collected by using an Andersen low-volume air sampler, and WSOC, organic carbon (OC), elemental carbon (EC), and ionic components were measured. The mean mass concentrations of the fine particles were 22.2 and 10.5 μg m?3 at Maebashi and Akagi, respectively. The WSOC in fine particles accounted for a large proportion (83%) of total WSOC. The concentration of fine WSOC ranged from 1.2 to 3.5 μg-C m?3 at Maebashi, rising from summer to fall. At Akagi, it rose from spring to summer, associated with the southerly wind from urban areas. The WSOC/OC ratio increased in summer at both sites, but the ratio at Akagi was higher, which we attributed to differences in primary emissions and secondary formation between the sites. The fine WSOC concentration was significantly positively correlated with concentrations of SO42?, EC, and K+, and we inferred that WSOC was produced by photochemical reaction and caused by the combustion of both fuel and biomass. We estimated that SOA accounted for 11–30% of the fine particle mass concentration in this study, suggesting that SOA is a significant year-round component in fine particles.  相似文献   

8.
Aluminium (Al) is one of the trace inorganic metals present in atmospheric particles. Al speciation study is essential to better evaluate the mobility, availability, and persistence of trace Al and Al species in the atmosphere. This paper reports Al distribution and speciation in atmospheric particles with aerodynamic diameters >10.0, 10.0–2.5 and <2.5 μm in the urban area of Nanjing, China. Urban particles were collected with a high-volume sampling system equipped with a cascade impactor, which effectively separates the particulate matter into three size ranges. Particulate Al was fractionated into five different forms (insoluble, oxide, organic, carbonate, and exchangeable species) by the modified five-step Tessier's sequential extraction procedure. The main points are as follows: (1) The average levels of Al in PM2.5, PM2.5–10 and PM>10 are 2.02±0.35, 3.04±0.43 and 6.32±0.76 μg m−3, respectively, with PM2.5, PM2.5–10 and PM>10 constituting respectively, 17.8±3.1%, 26.7±3.8% and 55.5±6.7% of suspended particulate matter (SPM) mass (11.38 μg m−3). (2) The vertical profile of airborne Al in the above three size fractions has been estimated. A significant increase in airborne Al concentrations was found for PM2.5, PM2.5–10 and PM>10 as the sampling height above the ground increased from 2.5 to 17.5 m; however, there was an obvious decrease in airborne Al concentrations between 17.5 and 40.0 m. The maximum mean of total Al in PM2.5, PM2.5–10 and PM>10 occurred between 12.5 and 20.0 m above the ground. (3) The distribution of Al speciation was studied. It was found that the size distribution of airborne Al species followed the order: insoluble species>oxide species>organic species>carbonate species>exchangeable species.  相似文献   

9.
A new setup has been developed and built to measure number size distributions of exhaust particles and thermodynamic parameters under real traffic conditions. Measurements have been performed using a diesel and a gasoline passenger car driving with different speeds and engine conditions. Significant number of nucleation mode particles was found only during high load conditions, i.e. high car and engine speeds behind the diesel car. The number concentration of soot mode particles varied within a factor of two for different engine conditions while the concentration of nucleation mode particles varied up to two orders of magnitude. The results show that roadside measurements are still quite different from those behind the tailpipe. Beside dilution transformation processes within the first meter behind the tailpipe also play an important role, such as nucleation and growth. Emission factors were calculated and compared with those obtained by other studies. Emission factors for particles larger than 25 nm (primary emissions) varied within 1.1 × 1014 km?1 and 2.7 × 1014 km?1 for the diesel car and between 0.6 × 1012 km?1 and 3.5 × 1012 km?1 for the gasoline car. The advantage of these measurements is the exhaust dilution under atmospheric conditions and the size-resolved measurement technique to divide into primary emitted and secondary formed particles.  相似文献   

10.
To better understand the current physical and chemical properties of East Asian aerosols, an intensive observation of atmospheric particles was conducted at Gosan site, Jeju Island, South Korea during 2005 spring. Total suspended particle (TSP) samples were collected using pre-combusted quartz filters and a high-volume air sampler with the time intervals ranging from 3 h to 48 h. The kinds and amount of various organic compounds were measured in the samples using gas chromatography–mass spectrometry. Among the 99 target compounds detected, saccharides (average, 130 ± 14 ng m?3), fatty acids (73 ± 7 ng m?3), alcohols (41 ± 4 ng m?3), n-alkanes (32 ± 3 ng m?3), and phthalates (21 ± 2 ng m?3) were found to be major compound classes with polyols/polyacids, lignin and resin products, PAHs, sterols and aromatic acids being minor. Compared to the previous results reported for 2001 late spring samples, no significant changes were found in the levels of their concentrations and compositions for 4 years, although the economy in East Asia, especially in China, has sharply expanded from 2001 to 2005. During the campaign at Gosan site, we encountered two distinct dust storm episodes with high TSP concentrations. The first dust event occurred on March 28, which was characterized by a predominance of secondary organic aerosols. The second event that occurred on the next day (March 29) was found to be characterized by primary organic aerosols associated with forest fires in Siberia/northeastern China. A significant variation in the molecular compositions, which was found within a day, suggests that the compositions of East Asian aerosols are heterogeneous due to multi-contributions from different source regions together with different pathways of long-range atmospheric transport of particles.  相似文献   

11.
Atmospheric deposition of Hg and selected trace elements was reconstructed over the past 150 years using sediment cores collected from nine remote, high-elevation lakes in Rocky Mountain National Park in Colorado and Glacier National Park in Montana. Cores were age dated by 210Pb, and sedimentation rates were determined using the constant rate of supply model. Hg concentrations in most of the cores began to increase around 1900, reaching a peak sometime after 1980. Other trace elements, particularly Pb and Cd, showed similar post-industrial increases in lake sediments, confirming that anthropogenic contaminants are reaching remote areas of the Rocky Mountains via atmospheric transport and deposition. Preindustrial (pre-1875) Hg fluxes in the sediment ranged from 5.7 to 42 μg m?2 yr?1 and modern (post-1985) fluxes ranged from 17.7 to 141 μg m?2 yr?1. The average ratio of modern to preindustrial fluxes was 3.2, which is similar to remote lakes elsewhere in North America. Estimates of net atmospheric deposition based on the cores were 3.1 μg m?2 yr?1 for preindustrial and 11.7 μg m?2 yr?1 for modern times. Current-day measurements of wet deposition range from 5.0 to 8.6 μg m?2 yr?1, which are lower than the modern sediment-based estimate of 11.7 μg m?2 yr?1, perhaps owing to inputs of dry-deposited Hg to the lakes.  相似文献   

12.
Recent research interest has been focused on road dust resuspension as one of the major sources of atmospheric particulate matter in an urban environment. Given the dearth of studies on the variability of the PM10 fraction of road deposited sediments, our understanding of the main factors controlling this pollutant is incomplete. In the present study a new sampling methodology was devised and applied to collect PM10 deposited mass from 1 m2 of road pavement. PM10 road dust fraction was sampled directly from active traffic lanes at 23 sampling sites during a campaign in Barcelona (Spain) in June 2007. The aim of the study was to gain more insight into the variability of mass and chemistry of road dust in different urban environments, such as the city centre, ring roads, and locations nearby demolition/construction sites. The city centre showed values of PM10 road dust within a range of 3–23 mg m?2, whereas levels reached 24–80 mg m?2 in locations affected by transport of uncovered heavy trucks. The largest dust loads were measured in the proximity of demolition/construction sites and the harbor entry with values up to 328 mg m?2.The city centre road dust profiles (%) were enriched in OC, EC, Fe, S, Cu, Zn, Mn, Cr, Sb, Sn, Mo, Zr, Hf, Ge, Ba, Pb, Bi, SO42?, NO3?, Cl? and NH4+, but several crustal components such as Ca, Ti, Na, and Mg were also considerably concentrated. Locations affected by construction and demolition activities had high levels of crustal components such as Ca, Li, Sc, Sr, Rb and also As whereas ring roads, characterized by a higher load of uncovered heavy trucks showed an intermediate composition.Levels of PM10 components per area were also evaluated to quantify the resuspendable amount of each element from 1 m2. In the inner city environment mean values of 1363 μg Ca m?2, 816 μg OC m?2, 239 μg EC m?2, 13 μg Cu m?2, 12 μg Zn m?2, 1.9 μg Sb m?2 and 2.0 μg Pb m?2, in PM10 in all cases, were registered.Moreover the deposited PM load at demolition/construction sites acts as a reservoir or trap for traffic-related particles, which gives rise to large amounts of hazardous pollutants, available for resuspension.  相似文献   

13.
The measured physical size distributions of sub-micron particles during cold season at Pune, India are analyzed to explore the characteristics of nucleation and growth properties. Preliminary analysis of aerosol size distribution in time-series shows large increase in number concentration due to nucleation events between 0800 h and 1030 h at this location. The observable quantities such as condensable vapor concentration (C), its source rate (Q), growth rate (GR) and condensable sink (CS) are estimated from the time-series evolutions of aerosol size distributions. The concentration of vapor and its source rate were about 19.8 ± 2.15 × 107 molecules cm?3 and 1.28 ± 0.084 × 107 cm?3 s?1 respectively. The average condensation sink and growth rate were 7.1 ± 0.4 × 10?2 s?1 and 16.95 ± 1.86 nm h?1 respectively during the growth period. The values are high enough to trigger the nucleation bursts and enhance subsequent growth rates of nucleation mode particles at this location. The magnitudes are in the range of those observed at New Delhi, India and much higher than those of European cities. The ratio of apparent to real nucleation rate is found to be a measure of number concentration of freshly produced particles by photo-chemical nucleation. The predicted number concentrations corresponding to measured distributions of mid-point diameter increases with the size for both 1 nm nucleated clusters and 3 nm particles. The database of all the possible event days and the event characteristics forms the basis for future works into the causes and implications of atmospheric particle formation at this location.  相似文献   

14.
To investigate the characteristics of mercury exchange between soil and air in the heavily air-polluted area, total gaseous mercury (TGM) concentration in air and Hg exchange flux were measured in Wanshan Hg mining area (WMMA) in November, 2002 and July–August, 2004. The results showed that the average TGM concentrations in the ambient air (17.8–1101.8 ng m−3), average Hg emission flux (162–27827 ng m−2 h−1) and average Hg dry deposition flux (0–9434 ng m−2 h−1) in WMMA were 1–4 orders of magnitude higher than those in the background area. It is said that mercury-enriched soil is a significant Hg source of the atmosphere in WMMA. It was also found that widely distributed roasted cinnabar banks are net Hg sources of the atmosphere in WMMA. Relationships between mercury exchange flux and environmental parameters were investigated. The results indicated that the rate of mercury emission from soil could be accelerated by high total soil mercury concentration and solar irradiation. Whereas, highly elevated TGM concentrations in the ambient air can restrain Hg emission from soil and even lead to strongly atmospheric Hg deposition to soil surface. A great amount of gaseous mercury in the heavily polluted atmosphere may cycle between soil and air quickly and locally. Vegetation can inhibit mercury emission from soil and are important sinks of atmospheric mercury in heavily air-polluted area.  相似文献   

15.
The object of this study was to develop an accurate estimation method to evaluate the contribution of the various compartments of swine husbandry to dust and GHG (greenhouse gases, CO2, CH4 and N2O) emission into the atmosphere during one year of observation.A weaning, a gestation, a farrowing and a fattening room in an intensive pig house were observed in three different periods (Autumn–Winter, Springtime and Summer, monitoring at least 60% of each period (20% at the beginning, in the middle and at the end) of each cycle).During monitoring, live weight, average live weight gain, number of animals and its variation, type of feed and feeding time were taken into account to evaluate their influence on PM10, or the fraction of suspended particulate matter with an aerodynamic diameter less than or equal to 10 μm [Emission Inventory Guidebook, 2007. B1100 Particle Emissions from Animal Husbandry Activities. Available from: <http://reports.eea.europa.eu/EMEPCORINAIR5/en/B1100vs1.pdf> (accessed October 2008)] and to define GHG emission.The selected piggery had a ventilation control system using a free running impeller to monitor continuously real-time environmental and management parameters with an accuracy of 5%.PM10 concentration was monitored by a sampler (Haz Dust EPAM 5000), either continuously or through traditional gravimetric technique, and the mean value of dust amount collected on the membranes was utilized as a correction factor to be applied to continuously collected data.PM10 concentration amount incoming from inlets was removed from PM10 emission calculation, to estimate the real contribution of pig house dust pollution into atmosphere.Mean yearly emission factor of PM10 was measured in 2 g d?1 LU?1 for the weaning room, 0.09 g d?1 LU?1 for the farrowing room, 2.59 g d?1 LU?1 for the fattening room and 1.23 g d?1 LU?1 for the gestation room. The highest PM10 concentration and emission per LU was recorded in the fattening compartment while the lowest value was recorded in the farrowing room.CO2, CH4 and N2O concentrations were continuously measured in the exhaust ducts using an infrared photoacoustic detector IPD (Brüel & Kjaer, Multi-gas Monitor Type 1302, Multipoint Sampler and Doser Type 1303) sampling data every 15 min, for the 60% of the cycles.Yearly emission factor for CO2 was measured in 5997 g d?1 LU?1 for the weaning room, 1278 g d?1 LU?1 for the farrowing room, 13,636 g d?1 LU?1 for the fattening room and 8851 g d?1 LU?1 for the gestation room.Yearly emission factor for CH4 was measured in 24.57 g d?1 LU?1 for the weaning room, 4.68 g d?1 LU?1 for the farrowing room, 189.82 g d?1 LU?1 for the fattening room and 132.12 g d?1 LU?1 for the gestation room.Yearly emission factor for N2O was measured in 3.62 g d?1 LU?1 for the weaning room, 0.66 g d?1 LU?1 for the farrowing room, 3.26 g d?1 LU?1 for the fattening room and 2.72 g d?1 LU?1 for the gestation room.  相似文献   

16.
The global atmospheric emissions of the 16 polycyclic aromatic hydrocarbons (PAHs) listed as the US EPA priority pollutants were estimated using reported emission activity and emission factor data for the reference year 2004. A database for emission factors was compiled, and their geometric means and frequency distributions applied for emission calculation and uncertainty analysis, respectively. The results for 37 countries were compared with other PAH emission inventories. It was estimated that the total global atmospheric emission of these 16 PAHs in 2004 was 520 giga grams per year (Gg y?1) with biofuel (56.7%), wildfire (17.0%) and consumer product usage (6.9%) as the major sources, and China (114 Gg y?1), India (90 Gg y?1) and United States (32 Gg y?1) were the top three countries with the highest PAH emissions. The PAH sources in the individual countries varied remarkably. For example, biofuel burning was the dominant PAH source in India, wildfire emissions were the dominant PAH source in Brazil, while consumer products were the major PAH emission source in the United States. In China, in addition to biomass combustion, coke ovens were a significant source of PAHs. Globally, benzo(a)pyrene accounted for 0.05% to 2.08% of the total PAH emission, with developing countries accounting for the higher percentages. The PAH emission density varied dramatically from 0.0013 kg km?2 y in the Falkland Islands to 360 kg km?2 y in Singapore with a global mean value of 3.98 kg km?2 y. The atmospheric emission of PAHs was positively correlated to the country's gross domestic product and negatively correlated with average income. Finally, a linear bivariate regression model was developed to explain the global PAH emission data.  相似文献   

17.
Intensive aircraft- and ground-based measurements of ultrafine to supermicron particles in the Osaka metropolitan area, Japan, were carried out on 17–19 March 2003, in order to investigate vertical profiles of size-resolved particles in the urban atmosphere. Differently sized particles were observed at different altitudes on 19 March. Relatively higher concentrations of ultrafine particles (31 nm) and submicron particles (0.3–0.5 μm) were measured (100–200 cm−3) at altitudes of 300 and 600 m, whereas supermicron particles (2–5 μm) were present (300–600 cm−3) at higher altitudes (1300 m in the morning and 2200 m in the afternoon). The chemical composition analysis showed that supermicron particles evidently comprised mainly soil particles mixed internally with anthropogenic species such as carbonaceous components and sulfate. Numerical simulation using the Chemical weather FORecasting System (CFORS) suggested the long-range transport of soil dust and black carbon from the Asian continent. Total number concentrations of particles sized 10–875 nm ranged from 4.8×103 to 3.0×104 cm−3 at an altitude of 300 m and from 7.3×102 to 4.8×103 cm−3 at an altitude of 1300 m. Total number concentrations of particles sized 10–875 nm correlated very well with NOX concentrations, and, therefore, ultrafine and submicron particles were likely emitted from urban activities such as car traffic and vertically transported. Number size distributions at lower altitudes obtained by aircraft measurements were similar to those obtained by ground measurements, with modal diameters of 20–30 nm on 18 March and about 50 nm on 19 March.  相似文献   

18.
The relative rate method has been used to determine the rate constants for the gas-phase reactions of NO3 radicals with a series of acrylate esters: ethyl acrylate (k1), n-butyl acrylate (k2), methyl methacrylate (k3) and ethyl methacrylate (k4) at 298 ± 1 K and 760 Torr. The obtained rate constants are k1 = (1.8 ± 0.25) × 10?16 cm3 molecule?1 s?1, k2 = (2.1 ± 0.33) × 10?16 cm3 molecule?1 s?1, k3 = (3.6 ± 1.2) × 10?15 cm3 molecule?1 s?1, k4 = (4.9 ± 1.7) × 10?15 cm3 molecule?1 s?1. The experimental rate constants are in good agreement with theoretical rate constants calculated by an algorithm of the correlation between the rate constants and the orbital energies for the reactions of unsaturated VOCs with NO3 radicals. In addition, the atmospheric lifetimes of the compound against NO3 attack are estimated and the results show that NO3 reactions contribute little to the atmospheric losses of acrylate esters except in polluted regions.  相似文献   

19.
The influence of two intensive low-altitude atmospheric-dust intrusions on the activity levels of 137Cs and 40K as well as atmospheric particle matter (PM10) concentrations in the lower atmosphere of the Canary Islands are analysed here. These two events took place at the beginning of January 2002 and March 2004, respectively. 3D atmospheric back-trajectories indicated that the main source of dust material involved in the considered atmospheric intrusions came from NW Africa. A consequence of these dust intrusions was the major increase of PM10 concentrations in the lower atmosphere. Both episodes were characterised by having weekly averages of PM10 concentration surpassing 150 μg m−3, higher than the daily PM10 limit value established by the EC/1999/30 directive for PM10 from 2005. Similarly, during these two events, both 137Cs and 40K activities increased by a factor of 6 and 13 as well as 13 and 14, respectively, over the basal values calculated for each radionuclide and time period (0.59±0.02 and 0.88±0.07 μBq m−3 as well as 12±6 and 24±8 μBq m−3).  相似文献   

20.
Soil eco-toxicity testing was conducted in support of Canada’s Chemical Management Plan (CMP) to fill data gaps for organic chemicals known to primarily partition to soil, and of which the persistence and inherent toxicity are uncertain. Two compounds representative of specific classes of chemicals: non-chlorinated bisphenols containing an –OH group (4,4′-methylenebis(2,6-di-tert-butylphenol (Binox)) and xanthene dyes (2′,4′,5′,7′-tetrabromo-4,5,6,7-tetrachloro-3′,6′-dihydroxy-, disodium salt (Phloxine B), 2′,4′,5’,7′-tetrabromofluorescein (TBF), 4′,5′-dibromofluorescein (DBF), and 4,5,6,7-tetrachlorofluorescein (TCF)) were evaluated. The effect of these substances on plant growth (Elymus lanceolatus and Trifolium pratense) and soil invertebrate survival and reproduction (Folsomia candida and Eisenia andrei) were assessed using a field-collected sandy soil. Binox was persistent throughout testing (up to 63 d) with an average recovery of 77 ± 2.9% at test end. Binox was not toxic to plants (IC50s > 1076 mg kg?1) or E. andrei (IC50s > 2651 mg kg?1); however, a significant reduction in F. candida adult survival and reproduction (IC50 = 89 (44–149) mg kg?1) was evident. Phloxine B was also persistent throughout testing, with an average recovery of 82 ± 3.0% at test end. Phloxine B was significantly more toxic than Binox, with significant reductions in plant root growth (IC50s ? 11 mg kg?1) and invertebrate reproduction (IC50s ? 22 mg kg?1). DBF toxicity was not significantly different from that of Phloxine B for plant root growth (IC50s ? 30 mg kg?1), but was significantly less toxic for shoot growth (IC50s ? 1758 mg kg?1), and invertebrate adult survival (IC50s ? 2291 mg kg?1) and reproduction (IC50s ? 451 mg kg?1). A comparison between all four xanthene dyes was completed using F. candida, with the degree of toxicity in the order of Phloxine B ? TBF  DBF > TCF. The results from these studies will contribute to data gaps for poorly understood chemicals (and chemical groupings) under review for environmental risk assessments, and will aid in the validation of model predictions used to characterize the fate and effects of these substances in soil environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号