首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The absolute accuracy and long-term precision of atmospheric measurements hinge on the quality of the instrumentation and calibration standards. To assess the consistency of the ozone (O3) and nitrogen oxides (NO(x)) standards maintained at the National Institute of Standards and Technology (NIST), these standards were compared through the gas-phase titration of O3 with nitric oxide (NO). NO and O3 were monitored using chemiluminescence and UV absorption, respectively. Nitrogen dioxide (NO2) was monitored directly by laser-induced fluorescence and indirectly by catalytic conversion to NO, followed by chemiluminescence. The observed equivalent loss of both NO and O3 and the formation of NO2 in these experiments was within 1% on average over the range of 40-200 nmol mol(-1) of NO in excess O3, indicating that these instruments, when calibrated with the NIST O3 and NO standards and the NO2 permeation calibration system, are consistent to within 1% at tropospherically relevant mixing ratios of O3. Experiments conducted at higher initial NO mixing ratios or in excess NO are not in as good agreement. The largest discrepancies are associated with the chemiluminescence measurements. These results indicate the presence of systematic biases under these specific conditions. Prospects for improving these experiments are discussed.  相似文献   

2.
Ambient halocarbon mixing ratios in 45 Chinese cities   总被引:4,自引:0,他引:4  
During this study 158 whole air samples were collected in 45 Chinese cities in January and February 2001. The spatial distribution of different classes of halocarbons in the Chinese urban atmosphere, including chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), Halon-1211, and other chlorinated compounds is presented and discussed. Most of these compounds were enhanced compared to background levels. However, the mean enhancement of CFCs was relatively small, with CFC-12 and CFC-11 increases of 6% (range 1–31%) and 10% (range 2–89%), respectively, with respect to the global background. On the contrary, strongly enhanced levels of CFC replacement compounds and halogenated compounds used as solvents were measured. The average Halon-1211 concentration exceeded the background of 4.3 pptv by 75% and was higher than 10 pptv in several cities. Methyl chloride mixing ratios were also strongly elevated (78% higher than background levels), which is likely related to the widespread use of coal and biofuel in China.  相似文献   

3.
Increasing risk for negative ozone impacts on vegetation in northern Sweden   总被引:1,自引:0,他引:1  
Trends were found for increasing surface ozone concentrations during April-September in northern Sweden over the period 1990-2006 as well as for an earlier onset of vegetation growing season. The highest ozone concentrations in northern Sweden occurred in April and the ozone concentrations in April showed a strong increasing trend. A model simulation of ozone flux for Norway spruce indicated that the provisional ozone flux based critical level for forests in Europe is exceeded in northern Sweden. Future climate change would have counteracting effects on the stomatal conductance and needle ozone uptake, mediated on the one hand by direct effect of increasing air temperatures and on the other through increasing water vapour pressure difference between the needles and air. Thus, there is a substantial and increasing risk for negative impacts of ozone on vegetation in northern Sweden, related mainly to increasing ozone concentrations and an earlier onset of the growing season.  相似文献   

4.
Oxidation of benzene, toluene, ethylbenzene, and xylenes (BTEX) in air, of significance due to, for example, the potential for O3 formation, is believed to be initiated by OH attack on the ring (addition) or on the alkyl side chain (H abstraction). A series of ring-breaking reactions follows, with major products predicted to be alpha-dicarbonyls, simple aldehydes, and organic acids. To test this prediction, ambient air mixing ratios of aldehydes (formaldehyde, acetaldehyde, benzaldehyde, glyoxal, and pyruvaldehyde), along with some supporting BTEX data, were measured at an urban site in Las Vegas, NV. Samples were collected on sorbents and determined by chromatographic methods; mixing ratios were compared to ambient levels of CO, O3, and NOx. A meteorological analysis (temperature, wind speed, and wind direction) was also included. Statistically significant relationships were noted among the BTEX hydrocarbons (HCs) and among the photochemically derived species (e.g., O3, NO2, and some of the aldehydes), although there was seasonal variation. The observations are consistent with a common primary source (i.e., vehicular exhaust or fuel evaporation) for the BTEX compounds and a common secondary source (e.g., OH attack) for glyoxal and pyruvaldehyde.  相似文献   

5.
We have estimated the mixing height (MH) and investigated the relationship between vertical mixing and ground-level ozone concentrations in Seoul, Korea, by using three ground-based active remote sensing instruments operating side by side: micro-pulse lidar (MPL), differential absorption lidar (DIAL), and differential optical absorption spectroscopy (DOAS). The MH is estimated from MPL measurements of aerosol extinction profiles by the gradient method under convective conditions. Comparisons of the MHs estimated from MPL and radiosonde measurements show a good agreement (r2=0.99). Continuous MPL measurements with high temporal and vertical resolution reveal the diurnal variations of the MH under convective conditions and the presence of a residual layer during the nighttime. Comprehensive measurements of ozone and aerosol by MPL, DIAL and DOAS during an high ozone episode (24–26 May 2000) in Seoul, Korea, reveal that (1) photochemical ozone production and advection from upwind regions (the western part of Seoul) contribute two peaks of ozone concentrations at the ground around 14:00 and 18:00 local time on 25 May 2000, respectively, and (2) the entrainment and the fumigation processes of ozone aloft in the nighttime residual layer into the ground is a major contributor of high concentrations of ground-level ozone observed on the following day (26 May 2000).  相似文献   

6.
Increasing carbon monoxide and ozone concentrations have been observed in the lower troposphere of the Brazilian Amazon region in recent years (1989–1995). Carbon monoxide and ozone have been measured in the region continuously; from observations at a single site and many sporadic field missions, there is a clear indication that the chemical activity in the troposphere is growing, with increasing concentrations especially during the dry season. On the other hand, the most recent deforestation assessment by the Brazilian Government, performed by the Instituto Nacional de Pesquisas Espaciais (INPE) using Landsat data, shows yearly rates rising from the 11,130 km2 year?1 minimum of the 1990/91 survey, to 13,786 km2 year?1 for the 1991/92 period, and 14,896 km2 year?1 for the period 1992/94. It is argued that the increase in deforestation/biomass burning activities in “Amazonia” have produced larger carbon monoxide and ozone concentrations in the lower atmosphere.  相似文献   

7.
A statistical analysis of ozone (O3) concentrations and meteorological parameters was performed to determine the relationship between meteorological changes and ambient O3 concentrations in the Southeast United States. The correlation between average daily maximum O3 concentration and various meteorological variables was analysed on a monthly basis from April through October during 1980-1994. The correlations were strongest during the summer months, particularly June, July, and August. Analysis of long term O3 concentration trends indicates increasing trends during the 1980s and decreasing trends during the early 1990s.  相似文献   

8.
The tropospheric column of ozone is analyzed from the measurements of the vertical profile of ozone by balloon-born ozonesondes. The data base includes ∼16,000 ozone profiles collected above six European stations—three of them have begun the ozonesoundings since 1970. We present a trend analysis (with data up to 2005) focusing on detection of the long-term tropospheric ozone variability over the European network. The ozone time series have been examined separately for each station and season (DJF, MAM, JJA, SON) using a flexible trend model. A trend component of the model is taken as a smooth curve without a priori defined shape. A large increase in the European tropospheric ozone since the beginning of the 1970s (net change of ∼10% in summers and ∼30% in winters) and a kind of stabilization in the early 1990s have been corroborated by the study. This pattern comes from the most extensive data set of ozonesoundings over Hohenpeissenberg and Payern. The decadal differences in the trend pattern between these and other European stations are disclosed. The results of a stepwise regression model using various characteristics of the ozone and temperature profiles as explanatory variables for the tropospheric column ozone (TCO3) variations show that the ozone changes may be reconstructed using the ozone mixing ratio at 500 hPa, the thermal tropopause (TT) height, and the difference between ozonepause and TT heights. It appears that the last two factors induce 20–30% of the net TCO3 change over Hohenpeissenberg in the 1970–2004 period.  相似文献   

9.
10.
11.
Plans to increase the amount of irrigated land in Mediterranean countries should consider how changes in climate and land-use affect water resources. In this study, both precipitation and temperature were used to analyze regional trends in discharge in the basins of the Central Spanish Pyrenees since the mid-20th century. Annual variations in the relationship between precipitation and discharge suggested that discharge was relatively lower in the second half of the study period, coinciding with major changes in land use. On a monthly scale, precipitation increased significantly in October, April, and July, and decreased in March, and temperature increased in January and February and decreased in April. Nevertheless, discharge has decreased significantly in most months in the past 50 years. Land-use and plant-cover changes are the only nonclimatic factor that can explain the loss of around 30% of the average annual discharge.  相似文献   

12.
This work analyzes the variations in daily maximum 1-hr ozone (O3) concentrations and the long-term trends in annual means of hourly ambient concentrations of O3, nitrogen oxides (nitrous oxide + nitrogen dioxide), and nonmethane hydrocarbons in the three administrative regions of Kao-Ping airshed in southern Taiwan over a recent 8-yr period. The annual or monthly means of all maxima, most 95th percentiles, and some 90th percentiles of the daily maximum 1-hr O3 concentrations exceed the daily limit of 120 parts per billion by volume in all three regions, namely, Kao-hsiung City, Kso-hsiung County, and P'ing-tung County. The monthly means of daily maximum 1-hr O3 concentrations exhibit distinct seasonal variations, with a bimodal form with the maxima in autumn and late winter to the middle of spring and a minimum in summer. The long-term variations in the annual means of hourly O3 concentrations in the three regions exhibit increasing trends. These increases in O3 are associated with the decline in ambient concentrations of nitrogen oxides and nonmethane hydrocarbons. High O3 episodes occur most often in autumn and most rarely in summer. The seasonal mean mixing heights in descending order follow the order of spring, summer, autumn, and winter. Meteorological parameters in autumn and winter indicate that the ground-level O3 tends to accumulate and trigger a high O3 episode on a warm day with sufficient sunlight and low wind in a high-pressure system, consistent with the low mixing heights in these two seasons.  相似文献   

13.
A number of statistical techniques have been used to develop models to predict high-elevation ozone (O3) concentrations for each discrete hour of day as a function of elevation based on ground-level O3 observations. The analyses evaluated the effect of exclusion/inclusion of cloud cover as a variable. It was found that a simple model, using the current maximum ground-level O3 concentration and no effect of cloud cover provided a reasonable prediction of the vertical profile of O3, based on data analyzed from O3 sites located in North Carolina and Tennessee. The simple model provided an approach that estimates the concentration of O3 as a function of elevation (up to 1800 m) based on the statistical results with a +/- 13.5 ppb prediction error, an R2 of 0.56, and an index of agreement, d1, of 0.66. The inclusion of cloud cover resulted in a slight improvement in the model over the simple regression model. The developed models, which consist of two matrices of 24 equations (one for each hour of day for clear to partly cloudy conditions and one for cloudy conditions), can be used to estimate the vertical O3 profile based on the inputs of the current day's 1-hr maximum ground-level O3 concentration and the level of cloud cover.  相似文献   

14.
Environmental Science and Pollution Research - This study provides an analysis of the spatial distribution and trends of NO, NO2 and O3 concentrations in Portugal between 1995 and 2010....  相似文献   

15.
The United States Environmental Protection Agency issues periodic reports that describe air quality trends in the US. For some pollutants, such as ozone, both observed and meteorologically adjusted trends are displayed. This paper describes an improved statistical methodology for meteorologically adjusting ozone trends as well as characterizes the relationships between individual meteorological parameters and ozone. A generalized linear model that accommodates the nonlinear effects of the meteorological variables was fit to data collected for 39 major eastern US urban areas. Overall, the model performs very well, yielding R2 statistics as high as 0.80. The analysis confirms that ozone is generally increasing with increasing temperature and decreasing with increasing relative humidity. Examination of the spatial gradients of these responses show that the effect of temperature on ozone is most pronounced in the north while the opposite is true of relative humidity. By including HYSPLIT-derived transport wind direction and distance in the model, it is shown that the largest incremental impact of wind direction on ozone occurs along the periphery of the study domain, which encompasses major NOx emission sources.  相似文献   

16.
The decomposition of 2-nitrophenol in aqueous solutions by ozone and UV/ozone processes was found to be technically feasible under adequate experimental conditions. Formation of nitrate ions was observed following the decomposition of 2-nitrophenol by ozone and UV/ ozone processes. Increasing ozone dosage and UV light intensity accelerated the decomposition rate of 2-nitrophenol in an aqueous solution. The species distribution of 2-nitrophenol under various solution conditions plays a significant role in determining decomposition behavior. In most experiments conducted in this study, the decomposition of 2-nitrophenol by ozone and UV/ozone processes was favored to occur in alkaline conditions. The addition of 2-butanol accelerated the rate of gaseous ozone transfer to an aqueous phase by reducing the surface tension of aqueous solution and therefore enhancing the decomposition rate of 2-nitrophenol by ozone and UV/ozone processes.  相似文献   

17.
Continuous measurements of ozone vertical profiles, OVP, in the low troposphere (around 500–2400 m) using an unattended commercial ozone profiler DIAL, were conducted during June–July 2004 in Segovia, SG, a small city in the upper plateau located close to the foothills of the Guadarrama mountain range, Guadarrama, in the Central Massif. The data obtained over almost 37 complete days have enabled us to characterise the ozone vertical exchange, describe the phenomenology of the main ozone peaks, OP, recorded in the city and their relationship with ozone transport/formation from the gas precursor emissions of the greater Madrid area across Guadarrama. To achieve the last objective concurrent measurements of ground-level ozone in SG and a representative monitoring station upwind from Guadarrama, Buitrago de Lozoya, BL, have been used. 72.2% of the concurrent maximum diurnal ozone peaks exceeding the 95 percentile hourly value in SG (OPSG) and BL (OPBL) were linked to ozone transport and formation from the greater Madrid area towards Guadarrama. An estimate of the contribution of the greater Madrid area on OPSG yielded 28 μg m−3.The most prominent ozone vertical stratification was linked to the mixing height, MH, and a frequent nocturnal stable layer formed, NSL. Three small ozone enriched-layers were identified at mean heights of 500, 700 and 1000 m, respectively. Ozone tended to decline versus altitude. The hourly patterns of the three layers showed two peak occurrences of similar amplitude in the early morning, 7–8 h, and mid-afternoon, 14–16 h. A minimum was also observed during daytime, 10–11 h, its origin being attributed to a dilution process induced by the “chimney effect” caused by the slopes heating during this period.The comparison between OPSG, and the maximum diurnal ozone peaks in the first layer, OL1P, showed a satisfactory relationship, correlation coefficient, r, of the linear fit 0.77, and comparable mean values, 127 and 130 μg m−3, respectively, revealing the presence of an uniform ozone vertical distribution in the 500 m atmospheric layer above ground level during mid-afternoon.  相似文献   

18.
Ambient ozone (O(3)) concentrations in the forested areas of the Central and Eastern European (CEE) mountains measured on passive sampler networks and in several locations equipped with active monitors are reviewed. Some areas of the Carpathian Mountains, especially in Romania and parts of Poland, as well as the Sumava and Brdy Mountains in the Czech Republic are characterized by low European background concentrations of the pollutant (summer season means approximately 30 ppb). Other parts of the Carpathians, especially the western part of the range (Slovakia, the Czech Republic and Poland), some of the Eastern (Ukraine) and Southern (Romania) Carpathians and the Jizerske Mountains have high O(3) levels with peak values >100 ppb and seasonal means approximately 50 ppb. Large portions of the CEE mountain forests experience O(3) exposures that are above levels recommended for protection of forest and natural vegetation. Continuation of monitoring efforts with a combination of active monitors and passive samplers is needed for developing risk assessment scenarios for forests and other natural areas of the CEE Region.  相似文献   

19.
Among eight commercial Greek varieties of tobacco (Nicotiana tabacum L.) tested for their ozone-sensitivity levels, the Zichnomirodata (KK6/5) variety was found to be the most sensitive, although less sensitive than the well-known super-sensitive Bel-W3. Besides qualitative differences in the appearance of macroscopic symptoms these two varieties can be used simultaneously as a reliable pair of ozone bioindicators. The occurrence of ozone in the Greek countryside was surveyed by biomonitoring in 14 rural regions over the country and by a simultaneous biomonitoring and instrumental recording of ozone concentrations at a single remote side (Pournaria, Arcadia). Phytotoxic symptoms were observed mainly on the leaves of Bel-W3 and occasionally on those of Zichnomirodata varieties, suggesting that ozone levels were high enough to affect at least sensitive species. The instrumental monitoring (during a total period of 912 h) revealed maximum hourly O3 concentration 62 ppb, while the thresholds of 30, 40 and 50 ppb were exceeded for 40%, 20% and 6% of the recording period, respectively. The accumulated exposure over 40 ppb (AOT40) for the daylight hours over the 38 monitored days was 680 ppb h.  相似文献   

20.
In the present field study the role of ascorbate in scavenging the harmful atmospheric trace gases O3 and NO2 was examined. For this purpose ascorbate contents were determined in needles of adult Scots pine trees (Pinus sylvestris L.) during three consecutive years. Ascorbate contents were correlated with ambient tropospheric O3 and NO2 concentrations and with meteorological parameters. The results showed a strong correlation of atmospheric O3 but not of atmospheric NO2 concentrations with the apoplastic content of ascorbate during the seasonal course. Ascorbate contents in needle extracts did not correlate with ambient trace gas concentrations. In the apoplastic space, but not in needle extracts ascorbate contents correlate highly significantly with global radiation. From these results it is assumed that apoplastic ascorbate in Scots pine needles is adapted to the actual atmospheric O3 concentration to mediate immediate detoxification of O3, while the atmospheric O3 concentration itself is largely dependent on light intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号