共查询到20条相似文献,搜索用时 15 毫秒
1.
On the local and regional influence on ground-level ozone concentrations in Hong Kong 总被引:8,自引:0,他引:8
Hong Kong is a densely populated city situated in the fast developing Pearl River Delta of southern China. In this study, the recent data on ozone (O3) and related air pollutants obtained at three sites in Hong Kong are analyzed to show the variations of O3 in urban, sub-urban and rural areas and the possible regional influences. Highest monthly averaged O3 was found at a northeastern rural site and lowest O3 level was observed at an urban site. The levels of NOx, CO, SO2 and PM10 showed a different spatial pattern with the highest level in the urban site and lowest at the rural site. Analysis of chemical species ratios such as SO2/NOx and CO/NOx indicated that the sites were under the influences of local and regional emissions to varying extents reflecting the characteristics of emission sources surround the respective sites. Seasonal pattern of O3 is examined. Low O3 level was found in summer and elevated levels occurred in autumn and spring. The latter appears different from the previous result obtained in 1996 indicating a single maximum occurring in autumn. Principal component analysis was used to further elucidate the relationships of air pollutants at each site. As expected, the O3 variation in the northeastern rural area was largely determined by regional chemical and transport processes, while the O3 variability at the southwestern suburban and urban sites were more influenced by local emissions. Despite the large difference in O3 levels across the sites, total potential ozone (O3+NO2) showed little variability. Cases of high O3 episodes were presented and elevated O3 levels were formed under the influence of tropical cyclone bringing in conditions of intense sunlight, high temperature and light winds. Elevated O3 levels were also found to correlate with enhanced ratio of SO2 to NOx, suggesting influence of regional emissions from the adjacent Pearl River Delta region. 相似文献
2.
《Atmospheric environment (Oxford, England : 1994)》2007,41(7):1383-1394
In order to evaluate the possible effects of heatwave phenomena on background O3 concentrations, the average summer O3 concentrations at the high mountain station of Mt. Cimone (MTC—2165 m a.s.l.) have been analyzed. In particular, at this baseline station unusually high O3 concentrations were recorded during August 2003, when an intense heatwave (the “August heatwave”) affected Europe. During this heatwave, the highest O3 concentrations were recorded at MTC in connection with air masses coming from continental Europe and the Po basin boundary layer as shown by three-dimensional air mass back-trajectory and mixing height analyzes. However, high O3 concentrations were also recorded in air masses coming from the middle troposphere (above 3000 m a.s.l.), thus suggesting the presence of O3-rich atmospheric layers over Europe. This could be due to the large extension of the mixing layer which favoured the transport of high concentrations of O3 and its precursors to altitudes that would usually be in the free troposphere. Other than from traffic and industrial activities, a contribution to the high O3 concentrations recorded at MTC during the August heatwave could derive from fires in the North of Italy, as suggested by a well-documented episode and supported by in situ CO2 measurements used as non-conventional tracer for fire emissions. 相似文献
3.
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are ubiquitous contaminants, mainly released into the environment during combustion processes (point sources), but also from other sources (traffic, uncontrolled combustion).This study aims at investigating the contribution of a steel plant in NW Italy (700 000 tons of steel year−1) to the air concentrations of PCDDs/PCDFs at local level, through the analysis of measured, modelled and literature data. The study was carried out in an area of 600 km2, using air quality data measured by the institutional monitoring network, data obtained from AERMOD simulations and literature data.The measured air concentrations were consistent with literature values for similar areas, and both the homologue profiles and PCA analyses showed a clear distinction between the monitoring stations and the source profiles.All the previous results were confirmed by the air dispersion model (AERMOD), that predicted PCDD/F air concentrations due to the steel plant from four to two orders of magnitude lower than those measured in the monitoring stations, highlighting the presence of other sources.This study outlines the limited influence of the source in the local PCDD/F air concentrations and at the same time the usefulness of a joint analysis of measured, literature and calculated data to correctly evaluate the role of a source to the local pollution. The study also highlights the usefulness of AERMOD as a complementary tool to define the correct placement of monitoring stations and to locate those areas expected to have the highest air concentrations deriving from a source. 相似文献
4.
Elena Gottardini Antonella Cristofori Fabiana Cristofolini Marco Ferretti 《Atmospheric environment (Oxford, England : 1994)》2010,44(2):147-152
To evaluate the spatial variability of ozone concentrations, two studies were undertaken in the montane environment of Trentino region, northern Italy, in 2007. In the first study, a 225 km2 area was considered. Here, a randomized design was used to evaluate the variability of ozone concentration at 1 and 225 km2 scale. Measurements were carried out by passive samplers between May and June 2007. In a second study, the whole 6207 km2 area of Trentino was considered. The area is covered by five grid cells of the European Monitoring and Evaluation Programme (EMEP). A systematic 15 × 15 km grid was used to allocate 15 passive samplers over the entire province, resulting into 1–4 samplers for each of the 5 EMEP grid cells (2500 km2 each) overlapping the study area. Measurements were carried out between June and September 2007. Accuracy of passive samplers was checked by direct comparison with conventional ozone analysers. Significant differences (P = 0.034) were found in ozone concentration among 1 × 1 km quadrates within the 225 km2 study area, while variability within the 1 × 1 km grid cells (coefficient of variation, CV′ = 0.12) slightly exceed the measurement error (CV′ = 0.08). At larger scales (225, 2500 and 6207 km2), ozone concentration shows much higher variability (CV′ from 0.18 to 0.28, with peak values at 0.40). Reported differences lead to very different AOT40 estimates even within the same EMEP grid cell. These findings suggest that 1 × 1 km resolution seems appropriate for ozone concentration modelling. On the other hand, significant sub-grid variation may exist at the resolution adopted by the EMEP model. Coupled with the likely variability of other important meteorological, soil and vegetation variables, our findings suggest that ozone risk assessment for vegetation based on large-scale modelled AOT40 and flux needs to be considered with great caution. The evidence reported in this paper asks for more detailed national-scale modelling, and the development of methods to incorporate local scale variations into large-scale models. 相似文献
5.
《Atmospheric environment (Oxford, England : 1994)》2007,41(9):1803-1818
Land use and pollutant emission changes can have significant impacts on air quality, regional climate, and human health. Here we describe a modeling study aimed at quantifying the potential effects of extensive changes in urban land cover in the New York City (NYC), USA metropolitan region on surface meteorology and ozone (O3) concentrations. The SLEUTH land-use change model was used to extrapolate urban land cover over this region from “present-day” (ca. 1990) conditions to a future year (ca. 2050), and these projections were subsequently integrated into meteorological and air quality simulations. The development of the future-year land-use scenario followed the narrative of the “A2” scenario described by the Intergovernmental Panel on Climate Change (IPCC), but was restricted to the greater NYC area. The modeling system consists of the Penn State/NCAR MM5 mesoscale meteorological model; the Sparse Matrix Operator Kernal Emissions processing system; and the US EPA Community Multiscale Air Quality model, and simulations were performed for two 18-day episodes, one near-past and one future. Our results suggest that extensive urban growth in the NYC metropolitan area has the potential to increase afternoon near-surface temperatures by more than 0.6 °C and planetary boundary layer (PBL) heights by more than 150 m, as well as decrease water vapor mixing ratio by more than 0.6 g kg−1, across the NYC metropolitan area, with the areal extent of all of these changes generally coinciding with the area of increased urbanization. On the other hand, the impacts of these land use changes on ozone concentrations are more complex. Simulation results indicate that future changes in urbanization, with emissions held constant, may lead to increases in episode-average O3 levels by about 1–5 ppb, and episode-maximum 8 h O3 levels by more than 6 ppb across much of the NYC area. However, spatial patterns of ozone changes are heterogeneous and also indicate the presence of areas with decreasing ozone concentrations. When anthropogenic emissions were increased to be consistent with the extensive urbanization in the greater NYC area, the O3 levels increased in outer counties of the metropolitan region but decreased in others, including coastal Connecticut and the Long Island Sound area. 相似文献
6.
Scott Beaver Ahmet Palazoglu 《Atmospheric environment (Oxford, England : 1994)》2009,43(10):1779-1788
The distribution of historical ozone levels for a region is tabulated as a function of its prevailing synoptic and mesoscale influences. Meteorological patterns are determined sequentially from extended records of hourly surface wind measurements sampling relevant low-level flows. A visualization method is presented to readily indicate the likelihoods for exceedances to occur under a variety of meteorological conditions. The study domain is San Joaquin Valley (SJV) of California, which is divided into three subregions (North, Central, and South). Each day from May–October of 1996–2004 is labeled using synoptic (single-day) and mesoscale (intra-day) patterns. Emissions levels are assumed roughly constant for this period following the introduction of reformulated gasoline to California. Synoptic motions largely control the regional SJV ozone pollution potential; the same single-day patterns are identified for all three SJV subregions. Additionally, a unique mesoscale flow feature is identified in each subregion that strongly affects its ozone levels: flows through minor Coast Range gaps for N-SJV, the Fresno Eddy for C-SJV, and flows through Mojave Pass for S-SJV. The strength of each mesoscale feature is characterized using 1-h surface u or v wind components that explain local ozone pollution potentials. 相似文献
7.
Hadj cherif Houda Chen Zhenling Ni Guohua 《Environmental science and pollution research international》2021,28(46):65499-65512
Environmental Science and Pollution Research - This paper explores the complex nexus between the global oil prices and the food prices of the Middle East and North Africa (MENA) region during the... 相似文献
8.
Klingberg J Danielsson H Simpson D Pleijel H 《Environmental pollution (Barking, Essex : 1987)》2008,155(1):99-111
Measurements of ground-level ozone concentrations and meteorology (temperature, vapour pressure deficit (VPD), solar radiation) at the monitoring site Ostad (south-west Sweden) were compared to data from the corresponding grid in the EMEP photo-oxidant model for 1997, 1999 and 2000. The influence of synoptic weather on the agreement between model and measurements was studied. Implications of differences between modelled and observed inputs for ozone flux calculations for wheat and potato were investigated. The EMEP model output of ozone, temperature and VPD correlated well with measurements during daytime. Deviations were larger during the night, especially in calm conditions, attributed to local climatological conditions at the monitoring site deviating from average conditions of the grid. These differences did not lead to significant differences in calculated ozone uptake, which was reproduced remarkably well. The uptake calculations were sensitive to errors in the ozone and temperature input data, especially when including a flux threshold. 相似文献
9.
《国际环境与污染杂志》2011,17(4):390-404
Hourly measurements of ozone concentration in the urban atmosphere of Istanbul were carried out from February 1998 to July 1999. An assessment of the annual variations and relationships of ozone concentrations and meteorological variables was made. Annual variations were first examined without considering meteorological variables, and meteorological influences on ozone seasonal values were then examined. Furthermore, a typical ozone threshold period was analysed by considering meteorological variables for a case study. Meteorological conditions favourable for high ozone concentrations appeared when Istanbul and its surrounding region were dominated by an anticyclonic pressure system. During conducive ozone days, southerly and southwesterly winds with low speeds (daytime mean value <11m1sSUP align=right>-1) influence Istanbul. 相似文献
10.
Triantafyllou AG 《Journal of the Air & Waste Management Association (1995)》2000,50(6):1017-1022
In this study, continuous data of PM10 (particles with aerodynamic diameter < 10 microns) concentration measurements for a 4-yr period were analyzed. These measurements have been carried out in the Eordea Basin, an industrial area in the northwestern mountainous region of Greece. The annual, monthly, and diurnal patterns are presented and investigated regarding the prevailing meteorological conditions and atmospheric processes that affect the ambient concentrations of PM10. The effect of wind on controlling PM10 concentration is also discussed. Based on the data analysis, an attempt is made to provide useful information about air quality levels, taking into account U.S. Environmental Protection Agency air quality standards. 相似文献
11.
The objective of this study is to develop an automated synoptic climatological procedure to forecast high air pollution concentrations in the most polluted synoptic categories. The procedure is able to identify air masses historically associated with high air pollution concentrations. The arrival of air mass can be predicted 24 or 48 h in advance with the use of the weather forecast data. The development and statistical basis of the procedure are discussed, and an analysis of the procedure's ability to forecast weather conditions associated with high air pollution concentrations is presented. In addition, the dataset of 24 weather variables from 1993 to 1995 is used to validate the procedure. The procedure predicts that 70.3 and 83.3% of total high and severe SO2 concentration days fall into the identified most polluted categories, and the corresponding figures for NOx are 47.8 and 73.7%. The agreement between observed and predicted values is generally good. The prediction models can explain about 58 and 45% of total variance for NOx and SO2 with RMSEs of 42.5 and 16.5 microg m(-3), respectively. They are smaller than 1 SD of the observations. 相似文献
12.
G. Curci M. Beekmann R. Vautard G. Smiatek R. Steinbrecher J. Theloke R. Friedrich 《Atmospheric environment (Oxford, England : 1994)》2009,43(7):1444-1455
The impact of biogenic volatile organic compound (BVOC) emissions on European ozone distributions has not yet been evaluated in a comprehensive way. Using the CHIMERE chemistry-transport model the variability of surface ozone levels from April to September for 4 years (1997, 2000, 2001, 2003) resulting from biogenic emissions is investigated. It is shown that BVOC emissions increased on average summer daily ozone maxima over Europe by 2.5 ppbv (5%). The impact is most significant in Portugal (up to 15 ppbv) and in the Mediterranean region (about 5 ppbv), being smaller in the northern part of Europe (1.3 ppbv north of 47.5°N). The average impact is rather similar for the three summers (1997, 2000, 2001), but is much larger during the extraordinarily hot summer of 2003. Here, the biogenic contribution to surface ozone doubles compared to other years at some locations. Interaction with anthropogenic NOx emissions is found to be a key process for ozone production of biogenic precursors. Comparing the impact of the state-of-the-art BVOC emission inventory compiled within the NatAir project and an earlier, widely used BVOC inventory derived from Simpson et al. [1999. Inventorying emissions from nature in Europe. Journal of Geophysical Research 104(D7), 8113–8152] on surface ozone shows that ozone produced from biogenic precursors is less in central and northern Europe but in certain southern areas much higher e.g. Iberian Peninsula and the Mediterranean Sea. The uncertainty in the regionally averaged impact of BVOC on ozone build-up in Europe is estimated to be ±50%. 相似文献
13.
Urban and non-urban rural ozone (O3) concentrations are high in Bulgaria and often exceed the European AOT40 ecosystem as well as the AOT60 human health standards. This paper presents preliminary estimates to establish background, non-urban O3 concentrations for the southern region of Bulgaria. Ozone concentrations from three distinctly different sites are presented: a mountain site influenced by mountain-valley wind flow; a coastal site influenced by sea-breeze wind flow; and a 1700-m mountain peak site without 'local' wind flow characteristics. The latter offers the best estimate of 46-50 ppb for a background O3 level. The highest non-urban hourly value, 118 ppb, was measured at the mountain-valley site. 相似文献
14.
A biennial integrated survey, based on the use of vascular plants for the bioindication of the effects of tropospheric ozone together with the use of automatic analysers of ozone, as well as the mapping of lichen biodiversity was performed in the area of Castelfiorentino (Tuscany, central Italy). Photochemically produced ozone proved to be a fundamental presence during the warm season, with maximum hourly means reaching 114 ppb, exceeding the information threshold as fixed by EU: the use of supersensitive tobacco Bel-W3 confirmed the opportunity of carrying out detailed cost-effective monitoring surveys. The potential for didactical and educational implications of this methodology are appealing. Critical levels set up for the protection of vegetation have exceeded considerably. The comparison of biomass productivity in sensitive and resistant individuals (NC-S and NC-R white clover clones, in the framework of an European network) provided evidence that ambient ozone levels are associated with relevant reduction (up to 30%) in the performance of sensitive material; effects on flowering were also pronounced. The economic assessment of such an impact deserves attention. Mapping of epiphytic lichen biodiversity – which has been used to monitor air quality worldwide – was not related to ozone geographical distribution as depicted by tobacco response. 相似文献
15.
Methane fluxes were measured, using closed chambers, in the Crater of Solfatara volcano, Campi Flegrei (Southern Italy), along eight transects covering areas of the crater presenting different landscape physiognomies. These included open bare areas, presenting high geothermal fluxes, and areas covered by vegetation, which developed along a gradient from the central open area outwards, in the form of maquis, grassland and woodland. Methane fluxes decreased logarithmically (from 150 to -4.5 mg CH4 m(-2)day(-1)) going from the central part of the crater (fangaia) to the forested edges, similarly to the CO2 fluxes (from 1500 g CO2 m(-2)day(-1) in the centre of the crater to almost zero flux in the woodlands). In areas characterized by high emissions, soil presented elevated temperature (up to 70 degrees C at 0-10 cm depth) and extremely low pH (down to 1.8). Conversely, in woodland areas pH was higher (between 3.7 and 5.1) and soil temperature close to air values. Soil (0-10 cm) was sampled, in two different occasions, along the eight transects, and was tested for methane oxidation capacity in laboratory. Areas covered by vegetation mostly consumed CH4 in the following order woodland>macchia>grassland. Methanotrophic activity was also measured in soil from the open bare area. Oxidation rates were comparable to those measured in the plant covered areas and were significantly correlated with field CH4 emissions. The biological mechanism of uptake was demonstrated by the absence of activity in autoclaved replicates. Thus results suggest the existence of a population of micro-organisms adapted to this extreme environment, which are able to oxidize CH4 and whose activity could be stimulated and supported by elevated concentrations of CH4. 相似文献
16.
Palli D Sera F Giovannelli L Masala G Grechi D Bendinelli B Caini S Dolara P Saieva C 《Environmental pollution (Barking, Essex : 1987)》2009,157(5):1521-1525
In 71 adults residing in Florence, Italy, enrolled in a prospective study, we investigated the correlation between individual levels of oxidative DNA damage detected by the Comet assay in circulating lymphocytes, and a specific ozone exposure score calculated in 10 different time-windows (0-5 to 0-90 days) before blood drawing, based on daily measurements provided by the local environmental monitoring system.Overall, statistically significant positive correlations between average ozone concentrations and DNA damage emerged in almost all time-windows considered; correlations were more evident among males, non-smokers, and traffic-exposed workers. Multivariate regression analyses taking into account selected individual characteristics, showed an independent effect on DNA damage of average ozone concentrations in the last 60-90 days before blood drawing. Local residents showed a divergent pattern with correlations restricted to shorter time-windows.Our results suggest that ozone concentrations at ground levels modulate oxidative DNA damage in circulating lymphocytes of residents of polluted areas. 相似文献
17.
S. Szopa G. Foret L. Menut A. Cozic 《Atmospheric environment (Oxford, England : 1994)》2009,43(6):1189-1195
In this study, we investigate the benefit for European ozone simulation of using day-to-day varying chemical boundary conditions produced by a global chemical weather forecast platform instead of climatological monthly means at the frontiers of a regional model. We performed two simulations over Europe using the regional (0.5 × 0.5°) CHIMERE CTM forced by global scale simulations based on the LMDz-INCA CTM. For summer 2005, ozone differences exceeding 20 ppb can be punctually found between these two simulations in the borders of the domain. The mean of the differences ranges between 0 and 3 ppb beyond 15° of the frontiers of the regional model.Correlations with ground-based ozone measurements at more than 400 stations are slightly increased by the use of daily boundary conditions. The simulation of the temporal variability is significantly enhanced in particular for the daily means and daily maxima. As expected, the gain is higher at the borders of the regional domain.The change of percentile distribution shows that the net impact of high temporal resolution boundary conditions is not of major concern for surface ozone peaks which are mainly due to local photochemistry. The use of daily boundary conditions is however necessary to correctly simulate concentrations in the 20–35 ppb range which are of crucial interest for human and vegetation exposure effects. 相似文献
18.
《Journal of the Air & Waste Management Association (1995)》2013,63(6):797-805
Abstract Three 2-wk seasonal field campaigns were performed in 2003 and 2004 at a sampling site on the southern Tyrrhenian coast of Italy with the aim to investigate the dynamics and characteristics of particle-bound pollutants in the Mediterranean area. Fine (PM2.5) and coarse particulate matter (PM10–2.5) size fractions were collected by a manual dichotomous sampler on 37-mm Teflon filters over a 24-hr sampling period. On average, 70% of the total PM10 (PM2.5 + PM10–2.5) mass was associated with the coarse fraction and 30% with the fine fraction during the three campaigns. The ambient concentrations of Pb, Ni, Cr, Zn, Mn, V, Cd, Fe, Cu, Ca, and Mg associated with both size fractions were determined by atomic absorption spec-trometry. Ambient concentrations showed differences in their absolute value, ranging from few ng · m-3 to µg ?m-3, as well as in their variability within the PM2.5 and PM10–2.5 size fractions. PM10 levels were well below the European Union (EU) limit value during the study period with the exception of three events during the first campaign (fall) and five events during the third campaign (spring). Two main sources were identified as the major contributors including mineral dust, transported from North Africa, and sea spray from the Tyrrhenian Sea. Comparing the results with backward trajectories, calculated using the Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) and Total Ozone Mapping Spectrometer-National Aeronautics and Space Administration (TOMS-NASA) maps, it was observed that in central and eastern Europe, the Tyrrhenian Sea and North Africa were the major emission source regions that affected the temporal variations and daily averages of PM2.5 and PM10–2.5 concentrations. 相似文献
19.
Bencardino M Sprovieri F Cofone F Pirrone N 《Journal of the Air & Waste Management Association (1995)》2011,61(9):952-967
In order to evaluate the spatial variation of aerosol (particulate matter with aerodynamic diameter < or = 10 microm [PM10]) and ozone (03) concentrations and characterize the atmospheric conditions that lead to 03 and PM10-rich episodes in southern Italy during summer 2007, an intensive sampling campaign was simultaneously performed, from middle of July to the end of August, at three ground-based sites (marine, urban, and high-altitude monitoring stations) in Calabria region. A cluster analysis, based on the prevailing air mass backward trajectories, was performed, allowing to discriminate the contribution of different air masses origin and paths. Results showed that both PM10 and 03 levels reached similar high values when air masses originated from the industrialized continental Europe as well as under the influence of wildfire emissions. Among natural sources, dust intrusion and wildfire events seem to involve a marked impact on the recorded data. Typical fair weather of Mediterranean summer and persisting anticyclone system at synoptic scale were indeed favorable conditions to the arrival of heavily dust-loaded air masses over three periods of consecutive days and more than half of the observed PM10 daily exceedances have been attributed to Saharan dust events. During the identified dust outbreaks, a consistent increase in PM10 levels with a concurrent decrease in 03 values was also observed and discussed. 相似文献
20.
Dev E. Millstein Robert A. Harley 《Atmospheric environment (Oxford, England : 1994)》2009,43(40):6328-6335
Emissions from diesel-powered construction equipment are an important source of nitrogen oxides (NOx) and particulate matter (PM). A new emission inventory for construction equipment emissions is developed based on surveys of diesel fuel use; the revised inventory is compared to current emission inventories. California's OFFROAD model estimates are 4.5 and 3.1 times greater, for NOx and PM respectively, than the fuel-based estimates developed here. The most relevant uncertainties are the overall amount of construction activity/diesel fuel use, exhaust emission factors for PM and NOx, and the spatial allocation of emissions to county level and finer spatial scales. Construction permit data were used in this study to estimate spatial distributions of emissions; the resulting distribution is well correlated with population growth. An air quality model was used to assess the impacts of revised emission estimates. Increases of up to 15 ppb in predicted peak ozone concentrations were found in southern California. Elemental carbon and fine particle mass concentrations were in better agreement with observations using revised emission estimates, whereas negative bias in predictions of ambient NOx concentrations increased. 相似文献