首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The main objective of this study was to investigate the chemical characteristics of post-harvest biomass burning aerosols from field burning of barley straw in late spring and rice straw in late fall in rural areas of Korea. A 12-hr integrated intensive sampling of particulate matter (PM) with an aerodynamic diameter less than or equal to 10 microm (PM10) and PM with an aerodynamic diameter less than or equal to 2.5 microm (PM2.5) biomass burning aerosols had been conducted continuously in Gwangju, Korea, during two biomass burning periods: June 4--15, 2001, and October 8--November 14, 2002. The fine and coarse particles of biomass burning aerosols were analyzed for mass and ionic, elemental, and carbonaceous species. The average fine and coarse mass concentrations of biomass burning aerosols were, respectively, 129.6 and 24.2 microg/m3 in June 2001 and 47.1 and 33.2 microg/m3 in October--November 2002. An exceptionally high PM2.5 concentration of 157.8 microg/m3 was observed during biomass burning events under stagnant atmospheric conditions. In the fine mode, chlorine and potassium were unusually rich because of the high content of semi-arid vegetation. Both organic carbon (OC) and elemental carbon increased during the biomass burning periods, with the former exhibiting a higher abundance. PM from the open field burning of agricultural waste has an adverse impact on local air quality and regional climate.  相似文献   

2.
The advection and dispersion of Asian dust events from China to the Pacific Ocean around Japan during 2000–2002 were investigated using the meteorological satellite data of NOAA/AVHRR and GMS-5/VISSR. Aerosol vapour index images, taking the brightness temperature difference between 11 and 12 μm, are very effective for monitoring the Asian dust phenomenon in the East Asia region, with their capacity for detection during the day or night. We discuss the dust events, focusing on the advection patterns shown in satellite images, which are classified into three types as ‘dry slot’, ‘high-pressure wedge’ and ‘travelling high’, based on synoptic patterns. The results are compared with suspended particulate matter concentrations measured at Japanese surface stations and with ground-based observations of Sakurajima volcano by a web camera system at Kagoshima in Kyushu, Japan. We found that the passage of cold fronts caused a rapid increase of suspended particulate matter (SPM) concentrations, which exceeded 100 μg m−3, and that deep low-pressure complexes strengthened the dust phenomenon. The ‘high-pressure wedge’ type is seen much more clearly in satellite images than the ‘travelling high’ type, but SPM concentrations and visibility were similar in both owing to the differences in the vertical distribution of the dust and in viewing conditions.  相似文献   

3.
In order to better understand the characteristics of atmospheric carbonaceous aerosol at a background site in Northeast Asia, semicontinuous organic carbon (OC) and elemental carbon (EC), and time-resolved water-soluble organic carbon (WSOC) were measured by a Sunset OC/ EC and a PILS-TOC (particle-into-liquid sampler coupled with an online total organic carbon) analyzer, respectively, at the Gosan supersite on Jeju Island, Korea, in the summer (May 28-June 17) and fall (August 24-September 30) of 2009. Hourly average OC concentration varied in the range of approximately 0.87-28.38 microgC m-3, with a mean of 4.07+/- 2.60 microgC m-3, while the hourly average EC concentration ranged approximately from 0.04 to 8.19 .microgC m-3, with a mean of 1.35 +/- 0.71 microgC m-3, from May 28 to June 17, 2009. During the fall season, OC varied in the approximate range 0.9-9.6 microgC m-3, with a mean of 2.30 +/-0.80 microgC m-3, whereas EC ranged approximately from 0.01 to 5.40 microgC m-3, with a mean of 0.66 +/- 0.38 microgC m-3. Average contributions of EC to TC and WSOC to OC were 26.0% +/- 9.7% and 20.6% +/-7.4%, and 37.6% +/- 23.5% and 57.2% +/- 22.2% during summer and fall seasons, respectively. As expected, clear diurnal variation of WSOC/OC was found in summer, varying from 0.22 during the nighttime up to 0.72 during the daytime, mainly due to the photo-oxidation process. In order to investigate the effect of air mass pathway on the characteristics of carbonaceous aerosol, 5-day back-trajectory analysis was conducted using the HYSPLIT model. The air mass pathways were classified into four types: Continental (CC), Marine (M), East Sea (ES) and Korean Peninsula (KP). The highest OC/EC ratio of 3.63 was observed when air mass originated from the Continental area (CC). The lowest OC/EC ratio of 0.79 was measured when air mass originated from the Marine area (M). A high OC concentration was occasionally observed at Gosan due to local biomass burning activities. The contribution of secondary OC to total OC varied approximately between 8.4% and 32.2% and depended on air mass type.  相似文献   

4.
利用2007-2010年丽水市逐日大气污染物浓度数据和地面气象观测资料,对PM10、SO2、NO23种大气污染物浓度进行了时空分布特征研究,进而探讨了气象要素对大气污染的影响.结果表明:2007-2010年,丽水市主要的3种大气污染物的负荷为PM10> NO2 >SO2,影响大气环境质量的污染物以PM10为主;总体来说,NO2的月均浓度基本达到《环境空气质量标准》(GB3095-1996)-级标准,冬半年(9-12月、1-2月)SO2的月均浓度仅达到二级标准,而夏半年(3-8月)月均浓度基本达到一级标准,PM10的月均浓度都达到二级标准(0.10 mg/m3);在空间分布上,PM10、NO2的年均浓度都表现出东向西逐渐减少的特征,而SO2年均浓度主要体现为南向北递增的特征,3种大气污染物在空间上都表现为在东部缙云、青田等地的污染相对严重,而在西面的遂昌、龙泉等地的污染程度较轻;各种气象要素对大气污染的影响中,除了气压与3种大气污染物的浓度呈极显著正相关外,其他气象要素都表现为负相关,只是影响程度有所差异.气象要素对大气污染的影响不是单一作用的,而是通过多种气象要素相互配合、相互作用、综合反应来产生作用的.  相似文献   

5.
Classification of synoptic patterns and their correlation with dust events over East Asia were performed by means of cluster analysis. The average linkage and K-means clustering techniques were used to identify two major weather types during Asian dust events (ADEs; total 26 ADEs with 47 dusty days) of six spring seasons from 1996 to 2001. The first weather type mainly influenced neighboring Asian countries and frequently occurred with ADEs (approximately 23% of ADE cases). It mostly occurred under a surface high (low)-pressure system over the west (east) of the Korean peninsula coupled with an upper-level trough and cutoff low passage over the center of the Korean peninsula. It showed strong advection in the middle/ upper troposphere with both a high aerosol index and enhanced coarse particulate matter (PM) loading over Korea. In contrast, the second weather type was mostly associated with long distance or continental-scale transport and occurred less frequently with ADEs (approximately 15%). It appeared with an upper-level trough and a cutoff low vertically connected with a surface low system that was formed by a strong cyclonic vortex over the north of the Korean peninsula. There were weak advection, low aerosol index, and low coarse PM concentration over the Korean peninsula during the second weather type. In addition, it was found to be mostly associated with the trans-Pacific transport of Asian dust to the western coast of North America.  相似文献   

6.
The dominant optical characteristics of Southeast Asia (SEA)'s regional aerosols were determined from the cluster analysis of the 26 AERONET aerosol inversion products, including aerosol light scattering/absorption indicators and aerosol size/shape parameters retrieved from 2003 to 2007. The data sets were acquired from four stations: Bac Giang in Vietnam and Mukdahan, Pimai, and Silpakorn University in Thailand. The cluster analysis showed agreement among the aerosol optical characteristics, land cover/uses, season as the surrogate of the prevailing winds, and observations from the literature. The results of this study showed that during the northeast prevailing winds from mid-September to December, the high aerosol exposure events were most frequently observed over the upwind station and less often over the downwind stations. This aerosol exhibited a single scattering albedo (SSA) of approximately 0.95 (440 nm), a relatively low refractive index, and a larger fine-mode size, suggesting it had the characteristics of urban/industrial aerosols reported in the literature. These aerosol sources were upwind from Bac Giang, probably in eastern China. From January to April, the aerosol exhibited a lower SSA of approximately 0.90, a higher refractive index, and a smaller fine-mode size, suggesting biomass burning smoke reported in the literature. The SEA urban aerosol exhibited a mean SSA of approximately 0.90 (440 nm) or lower, and the coarse-mode aerosol, possibly road dust or soil dust, played a role from October to January when seasonal winds are strongest. The results from a canonical discriminant function analysis suggest that the dominant SEA aerosol clusters tended to be separated by a canonical function positively correlated with SSA, the fine-mode asymmetry factor, and the overall fine-mode size and negatively correlated with the refractive index.  相似文献   

7.
8.
The mass concentration of carbonaceous species, organic carbon (OC), and elemental carbon (EC) using a semicontinuous thermo-optical EC-OC analyzer, and black carbon (BC) using an Aethalometer were measured simultaneously at an urban mega city Delhi in Ganga basin from January 2011 to May 2012. The concentrations of OC, EC, and BC exhibit seasonal variability, and their concentrations were ~2 times higher during winter (OC 38.1?±?17.9 μg m?3, EC 15.8?±?7.3 μg m?3, and BC 10.1?±?5.3 μg m?3) compared to those in summer (OC 14.1?±?4.3 μg m?3, EC 7.5?±?1.5 μg m?3, and BC 4.9?±?1.5 μg m?3). A significant correlation between OC and EC (R?=?0.95, n?=?232) indicate their common emission sources with relatively lower OC/EC ratio (range 1.0–3.6, mean 2.2?±?0.5) suggests fossil fuel emission as a major source of carbonaceous aerosols over the station. On average, mass concentration of EC was found to be ~38 % higher than BC during the study period. The measured absorption coefficient (babs) was significantly correlated with EC, suggesting EC as a major absorbing species in ambient aerosols at Delhi. Furthermore, the estimated mass absorption efficiency (σabs) values are similar during winter (5.0?±?1.5 m2 g?1) and summer (4.8?±?2.8 m2 g?1). Significantly high aerosol loading of carbonaceous species emphasize an urgent need to focus on air quality management and proper impact assessment on health perspective in these regions.  相似文献   

9.
This paper summarizes the results of a yearlong continuous measurements of gaseous pollutants, NO, NO2, NOx and O3 in the ambient air at Kathmandu valley. Measured concentration of the pollutants in study area is a function of time. NO, NO2 and O3 peak occurred in succession in presence of sunlight. At the time of maximum O3 concentration most of the NOx are utilized. The diurnal cycle of ground level ozone concentrations, revealed mid-day peak with lower nocturnal concentrations and inverse relationship exists between O3 and NOx, which are evidences of photochemical O3 formation. The observed ground level ozone during monsoon is slight lower than the pre-monsoon value. Further, lack of rainfall and higher temperature, solar radiation in the pre-monsoon have given rise to the gradual build up of ozone and it is lowest during winter. Ground level ozone concentrations measured during bandha (general strike) and weekend are 19% and 13% higher than those measured during weekdays. The most effective ozone abatement strategy for Kathmandu Valley may be control of NOx emissions.  相似文献   

10.
Based on data from the 1997 Investigación sobre Materia Particulada y Deterioro Atmosférico-Aerosol and Visibility Evaluation Research (IMADA-EVER) campaign and the inorganic aerosol model ISORROPIA, the response of inorganic aerosols to changes in precursor concentrations was calculated. The aerosol behavior is dominated by the abundance of ammonia and thus, changes in ammonia concentration are expected to have a small effect on particle concentrations. Changes in sulfate and nitrate are expected to lead to proportional reductions in inorganic fine particulate matter (PM2.5). Comparing the predictions of ISORROPIA with the observations, the lowest bias and error are achieved when the aerosols are assumed to be in the efflorescence branch. Including crustal species reduces the bias and error for nitrate but does not improve overall model performance. The estimated response of inorganic PM2.5 to changes in precursor concentrations is affected by the inclusion of crustal species in some cases, although average responses are comparable with and without crustal species. Observed concentrations of particle chloride suggest that gas phase concentrations of hydrogen chloride may not be negligible, and future measurement campaigns should include observations to test this hypothesis. Our ability to model aerosol behavior in Mexico City and, thus, design control strategies, is constrained primarily by a lack of observations of gas phase precursors. Future campaigns should focus in particular on better understanding the temporal and spatial distribution of ammonia concentrations. In addition, gas phase observations of nitric acid are needed, and a measure of particle water content will allow stable versus metastable aerosol behavior to be distinguished.  相似文献   

11.
An elemental composition study of atmospheric aerosols from the City of Colima, in the Western Coast of Mexico, is presented. Samples of PM(15)-PM(2.5) and PM(2.5) were collected with Stacked Filter Units (SFU) of the Davis design, in urban and rural sites, the latter located between the City of Colima and the Volcán de Colima, an active volcano. Elemental analyses were carried out using Particle Induced X-ray Emission (PIXE). The gravimetric mass concentrations for the fine fraction were slightly higher in the urban site, while the mean concentrations in the coarse fraction were equal within the uncertainties. High Cl contents were determined in the coarse fraction, a fact also observed in emissions from the Volcán de Colima by other authors. In addition to average elemental concentrations, cluster analysis based on elemental contents was performed, with wind speed and direction data, showing that there is an industrial contributor to aerosols North of the urban area. Moreover, a contribution from the volcanic emissions was identified from the grouping of S, Cl, Cu, and Zn, elements associated to particles emitted by the Volcán de Colima.  相似文献   

12.
The new method for the forecasting hourly concentrations of air pollutants is presented in the paper. The method was developed for a site in urban residential area in city of Zagreb, Croatia, for four air pollutants (NO2, O3, CO and PM10). Meteorological variables and concentrations of the respective pollutant were taken as predictors. A novel approach, based on families of univariate regression models, was employed in selecting the averaging intervals for input variables. For each variable and each averaging period between 1 and 97 h, a separate model was built. By inspecting values of the coefficient of correlation between measured and modelled concentrations, optimal averaging periods for each variable were selected. A new dataset for building the forecasting model was then calculated as temporal moving averages (running means) of former variables. A multi-layer perceptron type of neural networks is used as the forecasting model. Index of agreement, calculated for the entire dataset including the data for model building, ranged from 0.91 to 0.97 for the respective pollutants. As suggested by the analysis of the relative importance of the input variables, different agreements for different pollutants are likely due to different sources and production mechanisms of investigated pollutants. A comparison of the new method with more traditional method, which takes hourly averages of the forecast hour as input variables, showed similar or better performance. The model was developed for the purpose of public-health-oriented air quality forecasting, aiming to use a numerical weather forecast model for the prediction of the part of input data yet unknown at the forecasting time. It is to expect that longer term averages used as inputs in the proposed method will contribute to smaller input errors and the greater accuracy of the model.  相似文献   

13.
Carbonaceous components (organic carbon [OC] and elemental carbon [EC]) and optical properties (light absorption and scattering) of fine particulate matter (aerodynamic diameter <2.5 μm; PM2.5) were simultaneously measured at an urban site in Gwangju, Korea, during the winter of 2011. OC was further classified into OC1, OC2, OC3, and OC4, based on a temperature protocol using a Sunset OC/EC analyzer. The average OC and EC concentrations were 5.0 ± 2.5 and 1.7 ± 0.9 μg C m?3, respectively. The average single-scattering albedo (SSA) at a wavelength of 550 nm was 0.58 ± 0.11, suggesting that the aerosols observed in the winter of 2011 had a local warming effect in this area. During the whole sampling period, “stagnant PM” and “long-range transport PM” events were identified. The light absorption coefficient (babs) was higher during the stagnant PM event than during the long-range transport PM event due to the existence of abundant light-absorbing OC during the stagnant PM event. In particular, the OC2 and OC3 concentrations were higher during the stagnant PM event than those during the long-range transport event, suggesting that OC2 and OC3 might be more related to the light-absorbing OC. The light scattering coefficient (bscat) was similar between the events. On average, the mass absorption efficiency attributed to EC (σEC) was 9.6 m2 g?1, whereas the efficiency attributed to OC (σOC) was 1.8 m2 g?1 at λ = 550 nm. Furthermore, the σEC is comparable among the PM event days, but the σOC for the stagnant PM event was significantly higher than that for the long-range transport PM event (1.7 vs. 0.5).

Implications: Optical and thermal properties of carbonaceous aerosol were measured at Gwangju, and carbonaceous aerosol concentration and optical property varied between “stagnant PM” and “long-range transport PM” events. More abundant light absorbing OC was observed during the stagnant PM event.  相似文献   

14.
Environmental Science and Pollution Research - Mosquitoes are the underlying cause of various public health and economic problems. In this study, patterns of mosquito occurrence were analyzed based...  相似文献   

15.
Particulate matter (PM) emissions from stationary combustion sources burning coal, fuel oil, biomass, and waste, and PM from internal combustion (IC) engines burning gasoline and diesel, are a significant source of primary particles smaller than 2.5 microns (PM2.5) in urban areas. Combustion-generated particles are generally smaller than geologically produced dust and have unique chemical composition and morphology. The fundamental processes affecting formation of combustion PM and the emission characteristics of important applications are reviewed. Particles containing transition metals, ultrafine particles, and soot are emphasized because these types of particles have been studied extensively, and their emissions are controlled by the fuel composition and the oxidant-temperature-mixing history from the flame to the stack. There is a need for better integration of the combustion, air pollution control, atmospheric chemistry, and inhalation health research communities. Epidemiology has demonstrated that susceptible individuals are being harmed by ambient PM. Particle surface area, number of ultrafine particles, bioavailable transition metals, polycyclic aromatic hydrocarbons (PAH), and other particle-bound organic compounds are suspected to be more important than particle mass in determining the effects of air pollution. Time- and size-resolved PM measurements are needed for testing mechanistic toxicological hypotheses, for characterizing the relationship between combustion operating conditions and transient emissions, and for source apportionment studies to develop air quality plans. Citations are provided to more specialized reviews, and the concluding comments make suggestions for further research.  相似文献   

16.
17.
Recent reports have suggested that dietary and environmental estrogens such as organochlorine pollutants may play a role in the increased incidence of breast cancer in women and disorders of the male reproductive tract. For example, elevated levels of DDE and polychlorinated biphenyls (PCB) have been measured in women with breast cancer. However, it should also be noted that numerous environmental and dietary compounds have also been characterized as antiestrogenic and as inhibitors of mammary cancer cell growthin vitro and/orin vivo. Some of these compounds include 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds, polynuclear aromatic hydrocarbons (PAH), other naturally-occurring TCDD receptor agonists, retinoids, phorbol esters, terpenes, fatty acids, and polysaccharides. Thus, it is possible that dietary and environmental estrogens and antiestrogens may be contra-active, and these interactions must be considered in the overall risk assessment of the potential adverse human and environmental health impacts of these chemicals.  相似文献   

18.
This study examines the characteristics of volatile organic compounds (VOCs) and their major emission sources at the Bulgwang site in Seoul, Korea. The annual levels of VOCs (96.2–121.1 ppb C) have shown a decreasing trend from 2004 to 2008. The most abundant component in Seoul was toluene, which accounted for over 23.5 % of the total VOCs on the parts per billion on a carbon basis, and the portions of alkanes with two to six carbons constituted the largest major lumped group, ranging from 40.1 to 48.4 % (45.3?±?3.7 %) of the total VOCs. Major components of the solvent (toluene, m/p-xylene, o-xylene, and ethylbenzene) showed high in daytime and summer and low in nighttime and winter due mainly to the variation of the ambient temperature. The species mostly emitted from gasoline vapor (i/n-butane, i/n-pentane, n-hexane, and 2-methylpentane) and vehicular exhaust (ethylene, acetylene, and benzene) showed bimodal peaks in the diurnal variation around the commuting hours because of the high traffic volume. For the 14 out of 15 highest concentration species, the weekend effect was only evident on Sundays because of the stepwise implementation of the 5-day work-week system. Principal components analysis (PCA) was applied in order to identify the sources of the 15 highest concentration VOCs and, as a result, three principal components such as gasoline vapor (48.9 %), vehicular exhaust (17.9 %), and evaporation of solvents (9.8 %) were obtained to explain a total of 76.6 % of the data variance. Most influential contributing sources at the sampling site were traffic-related ones although the use of solvent was the dominant emission source based on the official emission inventory.  相似文献   

19.
To aid the studies of long-term impact assessment of cumulative ozone (O3) exposures, the representative 8-hr O3 pollution patterns have been identified over the Greater Seoul Area (GSA) in Korea. Principal component analysis and two-stage clustering techniques were used to identify the representative O3 patterns, and numerical and observational analyses were also used to interpret the identified horizontal distribution patterns. The results yielded three major O3 distribution patterns, and each of the three patterns was found to have strong correlations with local and synoptic meteorological conditions over the GSA. For example, pattern 1, accounting for 46% of O3 concentration distributions, mostly occurred under relatively weak westerly synoptic winds. The predominant features of this pattern were infrequent high O3 levels but a distinct gradient of O3 concentration from the western coastal area to the eastern inland area that was mainly induced by the local sea breeze. Pattern 2, accounting for 31% of O3 concentration distributions, was found with higher O3 levels in the western coastal area but lower in the eastern inland area. This is due to the modified sea breeze under the relatively stronger easterly opposing synoptic wind, affecting the high O3 occurrence in the western coastal area only. However, pattern 3, accounting for 21% of O3 concentration distributions, showed significantly higher O3 concentrations over the whole GSA mainly due to the retarded and slow-moving sea-breeze front under the weak opposing synoptic flow. Modeling study also indicated that local and synoptic meteorological processes play a major role in determining the high O3 concentration distribution patterns over the GSA.  相似文献   

20.
Bhatt I  Tripathi BN 《Chemosphere》2011,82(3):308-317
Nanoparticles are the materials with at least two dimensions between 1 and 100 nm. Mostly these nanoparticles are natural products but their tremendous commercial use has boosted the artificial synthesis of these particles (engineered nanoparticles). Accelerated production and use of these engineered nanoparticles may cause their release in the environment and facilitate the frequent interactions with biotic and abiotic components of the ecosystems. Despite remarkable commercial benefits, their presence in the nature may cause hazardous biological effects. Therefore, detail understanding of their sources, release interaction with environment, and possible risk assessment would provide a basis for safer use of engineered nanoparticles with minimal or no hazardous impact on environment. Keeping all these points in mind the present review provides updated information on various aspects, e.g. sources, different types, synthesis, interaction with environment, possible strategies for risk management of engineered nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号