首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A field evaluation between two annular denuder configurations was conducted during the spring of 2003 in the marine Arctic at Ny-Ålesund, Svalbard. The IIA annular denuder system (ADS) employed a series of five single-channel annular denuders, a cyclone and a filter pack to discriminate between gas and aerosol species, while the EPA-Versatile Air Pollution Sampler (VAPS) configuration used a single multi-channel annular denuder to protect the integrity of PM2.5 sample filters by collecting acidic gases. We compared the concentrations of gaseous nitric acid (HNO3), nitrous acid (HONO), sulfur dioxide (SO2) and hydrochloric acid (HCl) measured by the two systems. Results for HNO3 and SO2 suggested losses of gas phase species within the EPA-VAPS inlet surfaces due to low temperatures, high relative humidities, and coarse particle sea-salt deposition to the VAPS inlet during sampling. The difference in HNO3 concentrations (55%) between the two data sets might also be due to the reaction between HNO3 and NaCl on inlet surfaces within the EPA-VAPS system. Furthermore, we detected the release of HCl from marine aerosol particles in the EPA-VAPS inlet during sampling contributing to higher observed concentrations. Based on this work we present recommendations on the application of denuder sampling techniques for low-concentration gaseous species in Arctic and remote marine locations to minimize sampling biases. We suggest an annular denuder technique without a large surface area inlet device in order to minimize retention and/or production of gaseous atmospheric pollutants during sampling.  相似文献   

2.
An annular denuder and filter-pack system was tested in combination with the use of the in-tube and on-fiber O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA)-derivatization technique to simultaneously sample and measure gaseous and particulate concentrations of semivolatile bifunctional carbonyl compounds in the atmosphere. Ozone was denuded from the sampling air to avoid oxidation and PFBHA was used as the sorbent by coating the sampling denuders and impregnating the filters. The collection efficiency of the system was evaluated under different conditions in photochemical smog chamber experiments and in field samplings of urban and suburban atmospheres. The effects of concentration level, temperature, and humidity on the collection efficiency were assessed. The system showed average collection efficiencies in one denuder from 81% for pyruvic acid and 82% for glyoxylic acid to 87% for hydroxyacetone and dihydroxyacetone. The capacity of the filters to collect the gaseous fraction that cannot be collected in the denuders was also evaluated, and the system allows a correction for this artifact. The application of this method to chamber experiments and field samplings offers an easy-to-apply technique with good results that can be used to evaluate the partition mechanisms of these compounds in the atmosphere.  相似文献   

3.
The paper presents a highly simplified model of the long-range transport and deposition of nitric oxide, nitrogen dioxide, gaseous nitric acid and nitrate aerosol over NW Europe. A ‘constant drizzle’ representation of wet removal of gaseous nitric acid and nitrate aerosol is developed in addition to the representation of dry deposition using appropriate deposition velocities. An analysis of the sensitivity of dry and wet deposition rates of oxidized nitrogen species at a remote, receptor site to the individual model parameters is described. This analysis is extended using latin hypercube sampling to an evaluation of the uncertainties in modelled dry and wet deposition and the contribution played by each model input parameter.  相似文献   

4.
An annular denuder system, which consisted of a cyclone separator; two diffusion denuders coated with sodium carbonate and citric acid, respectively; and a filter pack consisting of Teflon and nylon filters in series, was used to measure acid gases, ammonia (NH3), and fine particles in the atmosphere from April 1998 to March 1999 in eastern North Carolina (i.e., an NH3-rich environment). The sodium carbonate denuders yielded average acid gas concentrations of 0.23 microg/m3 hydrochloric acid (standard deviation [SD] +/- 0.2 microg/m3); 1.14 microg/m3 nitric acid (SD +/- 0.81 microg/m3), and 1.61 microg/m3 sulfuric acid (SD +/- 1.58 microg/m3). The citric acid denuders yielded an average concentration of 17.89 microg/m3 NH3 (SD +/- 15.03 microg/m3). The filters yielded average fine aerosol concentrations of 1.64 microg/m3 ammonium (NH4+; SD +/- 1.26 microg/m3); 0.26 microg/m3 chloride (SD +/- 0.69 microg/m3), 1.92 microg/m3 nitrate (SD +/- 1.09 microg/m3), and 3.18 microg/m3 sulfate (SO4(2-); SD +/- 3.12 microg/m3). From seasonal variation, the measured particulates (NH4+, SO4(2-), and nitrate) showed larger peak concentrations during summer, suggesting that the gas-to-particle conversion was efficient during summer. The aerosol fraction in this study area indicated the domination of ammonium sulfate particles because of the local abundance of NH3, and the long-range transport of SO4(2-) based on back trajectory analysis. Relative humidity effects on gas-to-particle conversion processes were analyzed by particulate NH4+ concentration originally formed from the neutralization processes with the secondary pollutants in the atmosphere.  相似文献   

5.
The performance of citric acid, oxalic acid and phosphorous acid as denuder coating layers for the determination of atmospheric ammonia have been studied by means of laboratory and field tests. The parameters evaluated during the study include: collection efficiency, selectivity of the coating layer, stability of the reaction product, operative capacity and stability of the coating layer. The results of this study show that phosphorous acid is a suitable coating layer for a denuder line intended to determine both gaseous ammonia and particulate ammonium in the atmosphere. It has been found that the citric acid coating suffers from an insufficient strength of the bond between collected ammonia and the coating layer, which causes a release of the collected ammonia both towards the air flow and towards the active sites of the denuder glass. The performance of oxalic acid was very good in the determination of gaseous ammonia, but this coating showed to be unsuitable for denuder sampling lines which are intended also for the determination of atmospheric ammonium. The volatilisation of oxalic from the denuder surface, in fact, causes a displacement of nitrate from the Teflon filter and an excess of nitrate ion on the back-up filter.Phosphorous acid-coated denuders were added to the sampling line employed in the EMEP station of Montelibretti. Reliable and interesting results were obtained, which allowed us to detect the presence of gaseous ammonia adsorbed on atmospheric particles.  相似文献   

6.
The purpose of this study is to explore the possible reasons accounting for elevated nitrate aerosol levels during high particulate days (HPD) in Taichung urban area of central Taiwan. To achieve this goal, simultaneous measurements of particulate and gaseous pollutants were carried out from September 2004 to April 2005 using an annular denuder system (ADS). The formation rate of NO2 to nitrate aerosol, calculated using the relevant chemical reactions, was employed to interpret enhanced nitrate aerosol concentrations during HPD. The observations showed that nitrate concentration during HPD was 14 times higher than that during low particulate days (LPD). The average formation rate during HPD was 4.0% h?1, which was 3.1 times higher than that during LPD. The quantitative analysis showed that the formation rate was mainly influenced by temperature and relative humidity. Lower temperature and higher relative humidity led much nitrate aerosol formation in HPD. Moreover, the residence time analysis of air masses staying over the studied area showed that the slow-motion air retained high nitrate concentrations due to more nitrate aerosol converted from the precursors in NOx-rich areas.  相似文献   

7.
Measurements of airborne (gaseous and aerosol), cloud water, and precipitation concentrations of nitrogen compounds were made at Mt. Mitchell State Park (Mt. Gibbs, ~2006 m MSL), North Carolina, during May through September of 1988 and 1989, An annular denuder system was used to ascertain gaseous (nitric acid, nitrous acid, and ammonia) and particulate (nitrate and ammonium) nitrogen species, and a chemiluminescence nitrogen oxides analyzer was used to measure nitric oxide and nitrogen dioxide. Measurements of NO3 ? and NH4 + ions in cloud and rain water samples were made during the same time period. Mean concentrations of gaseous nitric acid, nitrous acid, and ammonia were 1.14 μg/m3, 0.3 μg/m3, and 0.62 μg/m3 for 1988, and 1.40 μg/m3,0.3 μg/m3, and 1.47 μg/m3 for 1989, respectively. Fine particulate nitrate and ammonium ranged from 0.02 to 0.21 μg/m3 and 0.01 to 4.72 μg/m3 for 1988, and 0.1 to 0.78 μg/m3 and 0.24 to 2.32 μg/m3 for 1989, respectively. The fine aerosol fraction was dominated by ammonium sulfate particles. Mean concentrations of nitrate and ammonium ions in cloud water samples were 238 and 214 μmol/l in 1988, and 135 and 147 μmol/l in 1989, respectively. Similarly, the concentrations of NO3 and NH4 + in precipitation were 26.4 and 14.0 μmol/l in 1988, and 16.6 and 15.2 μmol/l in 1989, respectively. The mean total nitrogen deposition due to wet, dry, and cloud deposition processes was estimated as ~30 and ~40 kg N/ha/year (i.e., ~10 and ~13 kg N/ha/growing season) for 1988 and 1989. Based on an analytical analysis, deposition to the forest canopy due to cloud interception, precipitation, and dry deposition processes was found to contribute ~60, ~20, and ~20 percent, respectively, of the total nitrogen deposition.  相似文献   

8.
The aim of this work is to develop and test a dynamic gas generator for semi-volatile organic compounds (SVOC). A single compound, naphthalene, is used as a surrogate PAH to test the system. The dynamic generation of PAH is based on the permeation technique [Analyst 106 (1981) 817; Am. Ind. Hyg. Assoc. J. 38 (1977) 712]. Monitoring the temperature and measuring the mass of PAH present in the permeation chamber every 48 h gives a direct measurement of the sublimation rate of the PAH. Knowing the flow rate, gives an accurate value of the concentration of PAH from the generator. It was found stable over a period of time under constant operating conditions. This concentration is diluted down to between 0.3 and 30 ppbv by a controlled flow of pure air. The diluting airflow is a mixture of dry and wet air, making it possible to control the relative humidity of the flow from the generator as well as its concentration in PAH. We used this generator to calibrate an annular denuder tube, based on the study by Gundel et al. [Atmos. Environ. 29 (1995) 1719]. Although this technique has been shown to be artefact-free for sampling gaseous PAH [Polycyclic Aromatic Compounds 9 (1996) 67; Atmos. Environ. 28 (1994) 3083], its trapping efficiency still depends on environmental parameters (temperature, relative humidity and sampling duration). Accordingly, we used our generator to calibrate a single annular denuder under controlled conditions (T degrees C, HR%, CPAH, sampling duration). The trapping efficiency of the denuder was calculated by two independent methods. Firstly, by comparing the amount trapped on a denuder with the measured mass sublimated in the generator. Secondly, by putting two denuders in series and comparing the mass collected on the first and the second tube. These two methods gave similar results, within the 10% relative uncertainties of both methods. The first results obtained show that, in environmental conditions, the efficiency ranges between 90 and 100%.  相似文献   

9.
Abstract

Air quality data collected in the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM2.5) mass concentrations in California (≤188 μg/m3 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filter and canister measurements and several months of wintertime continuous gas and aerosol measurements. The phase-partitioning of nitrogen oxide (NOx)-related nitrogen species and carbonaceous species shows that concentrations of gaseous precursor species are far more abundant than measured secondary aerosol nitrate or estimated secondary organic aerosols. Comparisons of ammonia and nitric acid concentrations indicate that ammonium nitrate formation is limited by the availability of nitric acid rather than ammonia. Time-resolved aerosol nitrate data collected at the surface and on a 90-m tower suggest that both the daytime and nighttime nitric acid formation pathways are active, and entrainment of aerosol nitrate formed aloft at night may explain the spatial homogeneity of nitrate in the SJV. NOx and volatile organic compound (VOC) emissions plus background O3 levels are expected to determine NOx oxidation and nitric acid production rates, which currently control the ammonium nitrate levels in the SJV. Secondary organic aerosol formation is significant in winter, especially in the Fresno urban area. Formation of secondary organic aerosol is more likely limited by the rate of VOC oxidation than the availability of VOC precursors in winter.  相似文献   

10.
A mathematical model was developed to evaluate HNO3 artifact of the annular denuder system due to evaporation and diffusional deposition of nitrate-containing aerosols. The model performance was validated by comparing its numerical solutions with laboratory and numerical data available in the literature for evaporation and diffusional deposition of monodisperse and polydisperse NH4NO3 aerosols. Measurement artifacts were evaluated by varying typical sampling ranges of ambient temperature, HNO3 gas concentration, aerosol number concentration, aerosol mass median diameter, and nitrate mass fraction of <2.5 μm aerosols to see their respective effects. Potential application of the present model on estimating HNO3 artifacts was demonstrated using literature data sampled in USA, Taiwan, Netherlands, Korea and Japan. Significant measurement artifact could be found in Taiwan and Netherlands due either to low HNO3 gas concentration and high nitrate concentration in <2.5 μm aerosols or to high ambient temperature.  相似文献   

11.
Experimental measurements of ammonia, acid gases, and the inorganic components of atmospheric aerosols were made at a commercial hog farm in eastern North Carolina from May 1998 to June 1999 by an annular denuder system (ADS). The ADS consisted of a cyclone separator, one diffusion denuder coated with sodium carbonate, another diffusion denuder with citric acid, and a filter pack containing Teflon and nylon filters in series. The equilibrium time constant for transfer between ammonia, acid gases, and aerosol phase of ammonium nitrate and ammonium chloride was determined based on kinetic rate constants (kN as the rate constant of ammonium nitrate aerosol: 2.04 × 10-4 m³/µmole/sec; kCl as the rate constant of ammonium chloride aerosol: 3.44 × 10-4 m³/µmole/sec) and the observed inorganic components of atmospheric aerosols. The equilibrium time constant was determined based on kinetic rate constants and the observed inorganic components of atmospheric aerosols. The equilibrium time constant has a wide range of values, with an average value of 15.26 (±10.94) minutes for ambient equilibrium time between ammonia, nitric acid gas and ammonium nitrate aerosol; and 8.22 (±6.81) minutes for ammonia, hydrochloric acid, and ammonium chloride. Significant correlations were determined between comparisons of equilibrium time constant estimates with meteorological parameters, such as ambient temperature and relative humidity. The predicted chemical compositions in the particle by EQUISOLV II Model are in good agreement with the observed chemical composition at the experimental site.  相似文献   

12.
Chemical coupling between ammonia, acid gases, and fine particles   总被引:2,自引:0,他引:2  
The concentrations of inorganic aerosol components in the fine particulate matter (PM(fine)< or =2.5 microm) consisted of primarily ammonium, sodium, sulfate, nitrate, and chloride are related to the transfer time scale between gas to particle phase, which is a function of the ambient temperature, relative humidity, and their gas phase constituent concentrations in the atmosphere. This study involved understanding the magnitude of major ammonia sources; and an up-wind and down-wind (receptor) ammonia, acid gases, and fine particulate measurements; with a view to accretion gas-to-particle conversion (GTPS) process in an agricultural/rural environment. The observational based analysis of ammonia, acid gases, and fine particles by annular denuder system (ADS) coupled with a Gaussian dispersion model provided the mean pseudo-first-order k(S-1) between NH(3) and H(2)SO(4) aerosol approximately 5.00 (+/-3.77)x10(-3) s(-1). The rate constant was found to increase as ambient temperature, wind speed, and solar radiation increases, and decreases with increasing relative humidity. The observed [NH(3)][HNO(3)] products exceeded values predicted by theoretical equilibrium constants, due to a local excess of ammonia concentration.  相似文献   

13.
Abstract

An annular denuder system, which consisted of a cyclone separator; two diffusion denuders coated with sodium carbonate and citric acid, respectively; and a filter pack consisting of Teflon and nylon filters in series, was used to measure acid gases, ammonia (NH3), and fine particles in the atmosphere from April 1998 to March 1999 in eastern North Carolina (i.e., an NH3?rich environment). The sodium carbonate denuders yielded average acid gas concentrations of 0.23 μg/m3 hydrochloric acid (standard deviation [SD] ± 0.2 μg/m3); 1.14 μg/m3 nitric acid (SD ± 0.81 μg/m3), and 1.61 μg/m3 sulfuric acid (SD ± 1.58 μg/m3). The citric acid denuders yielded an average concentration of 17.89 μg/m3 NH3 (SD ± 15.03 μg/m3). The filters yielded average fine aerosol concentrations of 1.64 μg/m3 ammonium (NH4 +;SD ± 1.26 μg/m3); 0.26 μg/m3 chloride (SD ± 0.69 μg/m3), 1.92 μg/m3 nitrate (SD ± 1.09 μg/m3), and 3.18 μg/m3 sulfate (SO4 2?; SD ± 3.12 μg/m3). From seasonal variation, the measured particulates (NH4 +,SO4 2?, and nitrate) showed larger peak concentrations during summer, suggesting that the gas-to-particle conversion was efficient during summer. The aerosol fraction in this study area indicated the domination of ammonium sulfate particles because of the local abundance of NH3, and the long-range transport of SO4 2? based on back trajectory analysis. Relative humidity effects on gas-to-particle conversion processes were analyzed by particulate NH4 + concentration originally formed from the neutralization processes with the secondary pollutants in the atmosphere.  相似文献   

14.
Air quality data collected in the California Regional PM10/ PM(2.5) Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM(2.5)) mass concentrations in California (< or = 188 microg/m3 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filter and canister measurements and several months of wintertime continuous gas and aerosol measurements. The phase-partitioning of nitrogen oxide (NO(x))-related nitrogen species and carbonaceous species shows that concentrations of gaseous precursor species are far more abundant than measured secondary aerosol nitrate or estimated secondary organic aerosols. Comparisons of ammonia and nitric acid concentrations indicate that ammonium nitrate formation is limited by the availability of nitric acid rather than ammonia. Time-resolved aerosol nitrate data collected at the surface and on a 90-m tower suggest that both the daytime and nighttime nitric acid formation pathways are active, and entrainment of aerosol nitrate formed aloft at night may explain the spatial homogeneity of nitrate in the SJV. NO(x) and volatile organic compound (VOC) emissions plus background O3 levels are expected to determine NO(x) oxidation and nitric acid production rates, which currently control the ammonium nitrate levels in the SJV. Secondary organic aerosol formation is significant in winter, especially in the Fresno urban area. Formation of secondary organic aerosol is more likely limited by the rate of VOC oxidation than the availability of VOC precursors in winter.  相似文献   

15.
Experiments on different annular denuder system (ADS) arrangements for sampling nitrous acid (HNO2) and nitric acid (HNO3) gases were conducted in this study to evaluate their sampling artifacts. The evaluation basis is the one that employed one sodium chloride denuder for sampling HNO3 gas and two sodium carbonate (Na2CO3) denuders for sampling HNO2 gas, which is a commonly employed ADS arrangement in many field applications in the United States. A field study was conducted in Hsinchu, Taiwan, and the results indicated that this ADS arrangement may yield over 80% relative errors for HNO3 gas. It also showed that the relative errors for HNO2 gas can be less than 10% as sampled with only one Na2CO3 denuder. This is attributed to the fact that the ambient HNO3 concentration measured in this study was relatively low while the HNO2 concentration was high, as compared to typical concentrations of these two gases measured in the United States. The sampling error of HNO3 gas may be due to high concentrations of N-containing interfering species present in Taiwan's atmosphere. Because the relative sampling errors of HNO3 and HNO2 gases depend mainly on their concentrations in the atmosphere as well as concentrations caused by interfering species, the risk for high error while measuring low HNO2 concentrations by only one Na2CO3 denuder is also possible. As a result, it is suggested that pretests are necessary to evaluate possible sources and degrees of sampling errors before field sampling of HNO2 and HNO3 gases. The sampling errors of these two gases can, therefore, be minimized with a better arrangement of the ADS.  相似文献   

16.
A new style of diffusion denuder has been evaluated specifically for sampling HNO3. A coated fabric is used as the denuder substrate, which can be loaded directly into a standard filter holder. This approach allows direct denuder sampling with no additional capital costs over filter sampling and simplifies the coating and extraction process. Potential denuder materials and coatings were evaluated in the laboratory to test the removal efficiency. NaCl coatings were used to assess more than 20 materials for HNO3 collection efficiency. Particle retention, which would cause a denuder to have a positive bias for gas concentration measurements, was evaluated by ambient air sampling using particulate sulfate as the reference aerosol. Particle retention varied from 0 to 15%, depending on the denuder material tested. The best performing material showed an average particle retention of less than 3%. Denuder efficiency of four fabric materials was tested under ambient conditions to determine removal efficiency. The fabric denuder method was compared with a long path-length Fourier transform infrared (FTIR) spectrometer, a tunable diode laser absorption spectrometer (TDLAS), and a denuder difference sampler to independently measure HNO3. HNO3 collection efficiency was typically 90% for the denuders, whether coated with NaCl or not. For 10-L/min sampling rates with the fabric denuder, the square of the correlation coefficient with the FTIR spectrometer was 0.73, compared to 0.24 with the TDLAS.  相似文献   

17.
Acidic aerosol concentrations measured by an annular denuder system (ADS) and a honeycomb denuder system (HDS) in Hsinchu, Taiwan, were compared. Aerosols were also sampled by a MOUDI (micro-orifice uniform deposit impactor) and analyzed by an ion chromatograph to determine the size distributions of different species. Using the measured aerosol size distribution, theoretical analysis showed that positive HNO3 artifact due to volatilization of NH4NO3 is generally negligible for both samplers. Comparing two different denuder samplers, the average concentration of HNO3 measured by the ADS was found to be lower than that measured by the HDS, while the difference between the two samplers for the average concentration of other species was found to be within +/- 15%. A possible cause of the difference in HNO3 concentrations is due to a greater loss of HNO3 in the cyclone used by the ADS than in the impactor used by the HDS. The study also showed incomplete absorption of the evaporated HCl and HNO3 from the particles on the Teflon filter by the first nylon filter in the filter pack of the ADS. Collection efficiency and capacity of HCl and HNO3 by the nylon filters need further investigation.  相似文献   

18.
Three methods for measuring gaseous ambient nitric acid in the low concentration range 0–15 μ m−3 were compared under field conditions in Southwestern Ontario during 1–14 June 1982. The methods employed were (1) tunable diode laser absorption, (2) a tungstic acid denuder tube and (3) a filter pack containing a Teflon-nylon-W41 filter combination operated over 3-h sampling periods. In general, the three methods measured nitric acid with adequate sensitivity (sub ppb) and they correlated reasonably over the low ambient concentrations considered here. However, there were some notable differences (up to a factor of 2 at night) by the tungstic acid and filter pack methods. During the field comparison, particulate nitrate and ammonium were also measured (0–6 μg m−3 range) by the tungstic acid and filter pack methods. These correlated well but some differences (less than 20%) were observed in the particulate nitrate measurements. In view of the low concentrations measured and the resultant larger experimental error, specific loss or interfering mechanisms could not be unambiguously identified.  相似文献   

19.
Passive samplers have been shown to be an inexpensive alternative to direct sampling. Diffusion denuders have been developed to measure the concentration of species such as ammonia (NH3), which is in equilibrium with particulate ammonium nitrate. Conventional denuder sampling has required active sampling that inherently requires air pumps and, therefore, electrical power. To estimate emissions of NH3 from a fugitive source would require an array of active samplers and meteorological measurements to estimate the flux. A recently developed fabric denuder was configured in an open tube to passively sample NH3 flux. Passive and active samplers were collocated at a dairy farm at the California State University, Fresno, Agricultural Research Facility. During this comparison study, NH3 flux measurements were made at the dairy farm lagoon before and after the lagoon underwent acidification. Comparisons were made of the flux measurements obtained directly from the passive flux denuder and those calculated from an active filter pack sampler and wind velocity. The results show significant correlation between the two methods, although a correction factor needed to be applied to directly compare the two techniques. This passive sampling approach significantly reduces the cost and complexity of sampling and has the potential to economically develop a larger inventory base for ambient NH3 emissions.  相似文献   

20.
ABSTRACT

A new style of diffusion denuder has been evaluated specifically for sampling HNO3. A coated fabric is used as the denuder substrate, which can be loaded directly into a standard filter holder. This approach allows direct denuder sampling with no additional capital costs over filter sampling and simplifies the coating and extraction process.

Potential denuder materials and coatings were evaluated in the laboratory to test the removal efficiency. NaCl coatings were used to assess more than 20 materials for HNO3 collection efficiency. Particle retention, which would cause a denuder to have a positive bias for gas concentration measurements, was evaluated by ambient air sampling using particulate sulfate as the reference aerosol. Particle retention varied from 0 to 15%, depending on the denuder material tested. The best performing material showed an average particle retention of less than 3%.

Denuder efficiency of four fabric materials was tested under ambient conditions to determine removal efficiency. The fabric denuder method was compared with a long path-length Fourier transform infrared (FTIR) spectrometer, a tunable diode laser absorption spectrometer (TDLAS), and a denuder difference sampler to independently measure HNO3. HNO3 collection efficiency was typically 90% for the denuders, whether coated with NaCl or not. For 10-L/min sampling rates with the fabric denuder, the square of the correlation coefficient with the FTIR spectrometer was 0.73, compared to 0.24 with the TDLAS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号