首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

In order to evaluate the spatial variation of aerosol (particulate matter with aerodynamic diameter ≤10 μm [PM10]) and ozone (O3) concentrations and characterize the atmospheric conditions that lead to O3 and PM10-rich episodes in southern Italy during summer 2007, an intensive sampling campaign was simultaneously performed, from middle of July to the end of August, at three ground-based sites (marine, urban, and high-altitude monitoring stations) in Calabria region. A cluster analysis, based on the prevailing air mass backward trajectories, was performed, allowing to discriminate the contribution of different air masses origin and paths. Results showed that both PM10 and O3 levels reached similar high values when air masses originated from the industrialized continental Europe as well as under the influence of wildfire emissions. Among natural sources, dust intrusion and wildfire events seem to involve a marked impact on the recorded data. Typical fair weather of Mediterranean summer and persisting anticyclone system at synoptic scale were indeed favorable conditions to the arrival of heavily dust-loaded air masses over three periods of consecutive days and more than half of the observed PM10 daily exceedances have been attributed to Saharan dust events. During the identified dust outbreaks, a consistent increase in PM10 levels with a concurrent decrease in O3 values was also observed and discussed.

IMPLICATIONS In the summertime, the central-southern Mediterranean Basin is heavily affected by Saharan dust outbreaks and wildfire events. A focus on their significant influence on either oxidizing capacity of the atmosphere and air quality over Calabria, southern Italy, was here presented. Similar studies for most regions surrounding the Mediterranean Basin are needed to implement effective emission reduction measures, to prevent apparent air quality parameter exceedances and to define an appropriate health alert system. Because the frequency of these events is expected to increase due to climate change, these studies could even be a valid effort to better understand and characterize such atmospheric variations.  相似文献   

2.
Long-term surface observations indicate that soil dust represents over 30% of the annual fine (particle diameter less than 2.5 μm) particulate mass in many areas of the western US; in spring and summer, it represents an even larger fraction. There are numerous dust-producing playas in the western US, but surface dust aerosol concentrations in this region are also influenced by dust of Asian origin. This study examines the seasonality of surface soil dust concentrations at 15 western US sites using observations from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network from 2001 to 2004. Average soil concentrations in particulate matter less than 10 μm in diameter (PM10) were lowest in winter and peaked during the summer months at these sites; however, episodic higher-concentration events (>10 μg m−3) occurred in the spring, the time of maximum Asian dust transport to the western US. Simulated surface dust concentrations from the Navy Aerosol Analysis and Prediction System (NAAPS) suggested that long-range transport from Asia dominates surface dust concentrations in the western US in the spring, and that, although some long-range transport does occur throughout the year (1–2 μg m−3), locally generated dust plays a larger role in the region in summer and fall. However, NAAPS simulated some anomalously high concentrations (>50 μg m−3) of local dust in the fall and winter months over portions of the western US. Differences between modeled and observed dust concentrations were attributed to overestimation of total observed soil dust concentrations by the assumptions used to convert IMPROVE measurements into PM10 soil concentrations, lack of inhibition of model dust production in snow-covered regions, and lack of seasonal agricultural sources in the model.  相似文献   

3.
The objective of this study was to describe the ambient levels of particulate matter (PM) and its influence to air quality situation on the dry Mediterranean island of Cyprus. From October 2002 to August 2003 PM10 and PM2.5 samples were collected at 31 different sampling sites in Cyprus. In addition, continuous measurements of PM10 were carried out from 2003 to 2007 at a traffic and a rural site. It can be recognised that at all traffic and at some residential and urban background sites, the actual EU limit values have been exceeded. Special events e.g. long-range transport of Sahara dust storms were recorded over urban as well as rural areas in the order of 6–8 events per year, with a major frequency in summer and spring periods. The comparison of the PM10 concentrations in Cyprus cities with values of other European cities demonstrates the PM10 problem in Cyprus, especially in the dry summer season, when no rain is cleaning the air and the dry surfaces. This underlines the necessity of PM abatement strategies.  相似文献   

4.
The bilinear receptor model positive matrix factorization (PMF) was used to apportion particulate matter with an aerodynamic diameter of 1–10 μm (PM1–10) sources in a village, B?ezno, situated in an industrial region of northern Bohemia in Central Europe. The receptor model analyzed the data sets of 90- and 60-min integrations of PM1–10 mass concentrations and elemental composition for 27 elements. The 14-day sampling campaigns were conducted in the village in summer 2008 and winter 2010. Also, to ensure seasonal and regional representativeness of the data sets recorded in the village, the spatial-temporal variability of the 24-hr PM10 and PM1–10 within 2008–2010 in winter and summer across the multiple sites was evaluated. There were statistically significant interseasonal differences of the 24-hr PM data, but not intrasummer or intrawinter differences of the 24-hr PM1–10 data across the multiple sites. PMF resolved seven sources of PM1–10. They were high-temperature coal combustion; combustion in local heating boilers; marine aerosol; mineral dust; primary biological/wood burning; road dust, car brakes; and gypsum. The main summer factors were assigned to mineral dust (38.2%) and primary biological/wood burning (33.1%). In winter, combustion factors dominated (80%) contribution to PM1–10. The conditional probability function (CPF) helped to identified local sources of PM1–10. The source of marine aerosol from the North Sea and English Channel was indicated by the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT).

Implications: This is the first application of PMF to highly time/size resolved PM data in Czech Republic. The coarse aerosol fraction, PM1–10, was chosen with regard to industrial character of the region, sampling site near the coal strip mine and coal power stations. Contrary to expectation, source apportionment did not show dominance of emissions from the coal strip mine. The results will enable local authorities and state bodies responsible for air quality assessment to focus on sources most responsible for air pollution in this industrial region.

Supplemental Materials:?Supplemental materials are available for this paper. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for (1) details of measurement campaigns; (2) CPF for each of the sources contributing to PM1–10; (3) factors contribution to PM1–10 resolved by PMF; (4) diurnal pattern of road dust, car brake factor in summer and winter; (5) trajectories during the marine aerosol episode in winter 2010; and (6) temporal temperature, concentration, and wind speed relationships during the summer 2008 campaign and winter 2010 campaign.  相似文献   

5.
ABSTRACT

Three years of hourly averaged PM10 (particulate matter less than 10 Lrm in diameter) tapered element oscillating microbalance (TEOM) data from 10 sites in the large coastal valley incorporating Greater Vancouver were used to investigate the spatiotemporal dimensions and air pollution meteorology of particulate pollution. During the period studied, the provincial “acceptable” objective daily concentration of 50 μg m-3 was exceeded at 7 of the 10 sites. The highest annual, seasonal, and maximum hourly concentrations were recorded at Abbotsford in the central valley. Mean seasonal PM10 concentrations were highest in the wintertime in the western Lower Fraser Valley (LFV) and in the summertime at the central and eastern valley locations. Within the network, interstation correlations of daily average concentrations exceed 0.8 at interstation distances less than 20 km and decrease thereafter. For daily maximum concentrations (hourly), interstation correlations decrease sharply with distance. Meteorological conditions responsible for elevated par-ticulate concentrations in the LFV are associated with (1) short periods (1- to 3-hr duration) of reduced dispersion during summer nights at sites close to primary sources, (2) summer anticyclonic conditions when photochemical pollutant concentrations build up across the entire valley, and (3) occasional wintertime “gap wind” events in the eastern valley.  相似文献   

6.
A year-long study was conducted in Pinal County, AZ, to characterize coarse (2.5 – 10 μm aerodynamic diameter, AD) and fine (< 2.5 μm AD) particulate matter (PMc and PMf, respectively) to further understand spatial and temporal variations in ambient PM concentrations and composition in rural, arid environments. Measurements of PMc and PMf mass, ions, elements, and carbon concentrations at one-in-six day resolution were obtained at three sites within the region. Results from the summer of 2009 and specifically the local monsoon period are presented.

The summer monsoon season (July – September) and associated rain and/or high wind events, has historically had the largest number of PM10 NAAQS exceedances within a year. Rain events served to clean the atmosphere, decreasing PMc concentrations resulting in a more uniform spatial gradient among the sites. The monsoon period also is characterized by high wind events, increasing PMc mass concentrations, possibly due to increased local wind-driven soil erosion or transport. Two PM10 NAAQS exceedances at the urban monitoring site were explained by high wind events and can likely be excluded from PM10 compliance calculations as exceptional events. At the more rural Cowtown site, PM10 NAAQS exceedances were more frequent, likely due to the impact from local dust sources.

PM mass concentrations at the Cowtown site were typically higher than at the Pinal County Housing and Casa Grande sites. Crustal material was equal to 52-63% of the PMc mass concentration on average. High concentrations of phosphate and organic carbon found at the rural Cowtown were associated with local cattle feeding operations. A relatively high correlation between PMc and PMf (R2?=?0.63) indicated that the lower tail of the coarse particle fraction often impacts the fine particle fraction, increasing the PMf concentrations. Therefore, reductions in PMc sources will likely also reduce PMf concentrations, which also are near the value of the 24-hr PM2.5 NAAQS.

Implications: In the desert southwest, summer monsoons are often associated with above average PM10 (<10 μm AD) mass concentrations. Competing influences of monsoon rain and wind events showed that rain suppresses ambient concentrations while high wind increase them. In this region, the PMc fraction dominates PM10 and crustal sources contribute 52-63% to local PMc mass concentrations on average. Cattle feedlot emissions are also an important source and a unique chemical signature was identified for this source. Observations suggest monsoon wind events alone cannot explain PM10 NAAQS exceedances, thus requiring these values to remain in compliance calculations rather than being removed as exceptional wind events.  相似文献   

7.
Over a twelve year period from 1996 to 2007, 76 dust storm related events (as days) in Hong Kong were selected for study, based on Aluminium and Calcium concentrations in PM10. Four of the 76 events reach episodic levels with exceedances of the Hong Kong air quality standards. The purpose of the study is to identify and characterize dust sources impacting Hong Kong.Global distribution of aerosols in NASA’s daily aerosol index images from TOMS and OMI, are compared to plots generated by NRL(US)’s Navy Aerosol Analysis and Prediction System. Possible source areas are assigned by computing air parcel backward trajectories to Hong Kong using the NOAA HYSPLIT model. PM10 and elemental data are analyzed for crustal mass concentrations and element mass ratios.Our analysis reveals that 73 out of the 76 dust events (96%) involve non-East Asian sources-the Thar, Central/West Asian, Arabian and Sahara deserts (Saharan influence is found in 63 events), which are previously not known to affect Hong Kong. The Gobi desert is the most frequent origin of dust, affecting 68 dust events while the Taklamakan desert impacts only 30 of the dust events. The impact of the Gobi desert in March and December is apparently associated with the northeast monsoon in East Asia.Our results also show a seasonal pattern in dust impact from both East Asian and more remote sources, with a maximum in March. Dust event occurrences are conspicuously absent from summer. Dust transport to Hong Kong is commonly associated with the passage of frontal low-pressure systems.The coarse size fraction of PM10 concentrations were, as indicated by Al, Ca and Fe concentrations, about 4–8 times higher during dust events. The mean Ca/Al ratios of sources involving the Taklamakan desert are notably higher than those for non-East Asian sources owing to a higher Ca content of most of the East Asian deserts. The Fe/Al ratios follow a similar trend.Contributions from the desert sources are grossly estimated where possible, by using the average Al abundance of 8% in the upper continental crust to convert the Al mass in the PM10 to dust concentrations. This is done for the six events identified with air mass purely of non-East Asian origin and the two events related only to the Thar/Arabian/Sahara deserts. Results reveal that the average contribution from the non-East Asian sources (including C/W Asia) is approximately 10% and, that from the Thar/Arabian/Sahara deserts is about 8%.  相似文献   

8.
Abstract

Approximately 750 total suspended particulates (TSPs) and coarse particulate matter (PM10) filter samples from six urban sites and a background site and >210 source samples were collected in Jiaozuo City during January 2002 to April 2003. They were analyzed for mass and abundances of 25 chemical components. Seven contributive sources were identified, and their contributions to ambient TSP/PM10 levels at the seven sites in three seasons (spring, summer, and winter days) and a “whole” year were estimated by a chemical mass balance (CMB) receptor model. The spatial TSP average was high in spring and winter days at a level of approximately 530 ~g/m3 and low in summer days at 456 ~g/m3; however, the spatial PM10 average exhibited little variation at a level of approximately 325 ~g/m3, and PM10-to-TSP ratios ranged from 0.58 to 0.81, which suggested heavy particulate matter pollution existing in the urban areas. Apportionment results indicated that geological material was the largest contributor to ambient TSP/PM10 concentrations, followed by dust emissions from construction activities, coal combustion, secondary aerosols, vehicle movement, and other industrial sources. In addition, paved road dust and re-entrained dust were also apportioned to the seven source types and found soil, coal combustion, and construction dust to be the major contributors.  相似文献   

9.
ABSTRACT

The revised National Ambient Air Quality Standards for PM include fine particulate standards based upon mass measurements of PM25. It is possible in arid and semi-arid regions to observe significant coarse mode intrusion in the PM2.5 measurement. In this work, continuous PM10, PM2.5, and PM1.0 were measured during several windblown dust events in Spokane, WA. PM2 5 constituted ~30% of the PM10 during the dust event days, compared with ~48% on the non-dusty days preceding the dust events. Both PM10 and PM2.5 were enhanced during the dust events. However, PM1.0 was not enhanced during dust storms that originated within the state of Washington. During a dust storm that originated in Asia and impacted Spokane, PM1.0 was also enhanced, although the Asian dust reached Washington during a period of stagnation and poor dispersion, so that local sources were also contributing to high particulate levels. The “intermodal” region of PM, defined as particles ranging in aerodynamic size from 1.0 to 2.5 um, was found to represent a significant fraction of PM25 (~51%) during windblown dust events, compared with 28% during the non-dusty days before the dust events.  相似文献   

10.
In this study the frequencies of PM10 (as key urban pollutant) in 14 key environmental protection cities in northern China were analyzed. It follows that the PM10 concentration in the high-frequency period is higher with an extent 0.009–0.066 mg m−3 than in the low-frequency period of 2001–2002. Further the impacts of three kinds of dust events on the PM10 concentration in four cities (Beijing, Hohhot, Xi’an and Lanzhou) were explored. The results showed that different kinds of dust events have different influences on variation of PM10 concentration in these four cities. In Lanzhou and Hohhot, which are near the source areas of dust events, the contribution degree of these three dust events to the PM10 is: floating dust>dust storm>blowing dust. Whereas, in Beijing and Xi’an situated in dust event passing areas, the mean value of PM10 concentration is higher in blowing dust than in floating dust (no dust storm). In addition, the influences of dust events on PM10 concentration are different in the cities on different dust event paths. In Beijing and Hohhot (on the northern path), the high PM10 concentration is usually caused by blowing dust. But in both Lanzhou and Xi’an (on the western/northwestern path) the high PM10 pollution concentration is usually caused by floating dust.  相似文献   

11.
Positive matrix factorization (PMF) was used to infer the sources of PM2.5 observed at four sites in Georgia and Alabama. One pair of urban and rural sites in each state is used to examine the regional and urban influence on PM2.5 concentrations in the Southeast. Eight factors were resolved for the two urban sites and seven factors were resolved for the two rural sites. Spatial correlations of factors were investigated using the square of correlation coefficient (R2) calculated from the resolved G factors. Fourier transform was used to define the temporal characteristics of PM2.5 factors at these sites. Factors were normalized by using aerosol fine mass concentration data through multiple linear regression to obtain the quantitative factor contributions for each resolved factor. Common factors include: (1) secondary sulfate dominated by high concentrations of sulfate and ammonium with a strong seasonal variation peaking in summer; (2) nitrate and the associated ammonium with a seasonal maximum in winter; (3) “coal combustion/other” factor with presence of sulfate, EC, OC, and Se; (4) soil represented by Al, Ca, Fe, K, Si and Ti; and (5) wood smoke with the high concentrations of EC, OC and K. The motor vehicle factor with high concentrations of EC and OC and the presence of some soil dust components is found at the urban sites, but cannot be resolved for the two rural sites. Among the other factors, two similar industry factors are found at the two sites in each state. For the wood smoke factor, different seasonal trends are found between urban and rural sites, suggesting different wood burning patterns between urban and rural regions. For the industry factors, different seasonal variations are also found between urban and rural sites, suggesting that this factor may come from different sources or a common source may impact the two sites differently. Generally, sulfate, soil, and nitrate factors at the four sites showed similar chemical composition profiles and seasonal variation patterns reflecting the regional characteristics of these factors. These regional factors have predominantly low frequency variations while local factors such as coal combustion, motor vehicle, wood smoke, and industry factors have high frequency variations in addition to low frequency variations.  相似文献   

12.
Religious festivals (festas) in the densely populated Maltese archipelago (Central Mediterranean) are ubiquitous during summer when 86 of them are celebrated between June and October, each involving the burning of fireworks both in ground and aerial displays over a period of 3 days or longer per festival. We assessed the effect of fireworks on the air quality by comparing PM10 and its content of Al, Ba, Cu, Sr and Sb which materials are used in pyrotechnic compositions. PM10 was collected mainly from two sites, one in Malta (an urban background site) and the other in Gozo (a rural site) during July–August 2005 when 59 feasts were celebrated and September–October 2005 when only 11 feasts occurred. For both Malta and Gozo, PM10 and metal concentration levels measured as weekly means were significantly higher during July–August compared to September–October and there exist strong correlations between PM10 and total metal content. Additionally, for Malta dust, Al, Ba, Cu and Sr correlated strongly with each other and also with total concentration of all five metals. The same parameters measured in April 2006 in Malta were at levels similar to those found in the previous October. Ba and Sb in dust from the urban background site in Malta during July–August were at comparable or higher concentration than recently reported values in PM10 from a heavily-trafficked London road and this suggests that these metals are locally not dominated by sources from roadside materials such as break liner wear but more likely by particulate waste from fireworks. Our findings point to the fact that festa firework displays contribute significantly and for a prolonged period every year to airborne dust in Malta where PM10 is an intractable air quality concern. The presence in this dust of elevated levels of Ba and especially Sb, a possible carcinogen, is of concern to health.  相似文献   

13.
Italy is frequently affected by Saharan dust intrusions, which result in high PM10 concentrations in the atmosphere and can cause the exceedances of the PM10 daily limits (50 μg m?3) set by the European Union (EU/2008/50). The estimate of African dust contribution to PM10 concentrations is therefore a key issue in air quality assessment and policy formulation. This study presents a first identification of Saharan dust outbreaks as well as an estimate of the African dust contribution to PM10 concentrations during the period 2003–2005 over Italy. The identification of dust events has been carried out by looking at different sources of information such as monitoring network observations, satellite images, ground measurements of aerosol optical properties, dust model simulations and air mass backward trajectory analysis. The contribution of Saharan dust to PM10 monthly concentrations has been estimated at seven Italian locations. The results are both spatially (with station) and temporally (with month and year) variable, as a consequence of the variability of the meteorological conditions. However, excluding the contribution of severe dust events (21st February 2004, 25th–28th September 2003, 23rd–27th March 2005), the monthly contribution of dust varies approximately between 1 μg m?3 and 10 μg m?3 throughout year 2005 and between 1 μg m?3 and 8 μg m?3 throughout year 2003. In 2004 the dust concentration is lower than 2003 and 2005 (<5 μg m?3 at all sites). The reduction in the number of daily exceedances of the limit value (50 μg m?3) after subtraction of the dust contribution is also calculated at each station: it varies with station between 20% and 50% in 2005 and between 5% and 25% in 2003 and 2004.  相似文献   

14.
Three years of measurement of PM2.5 with 5-min time resolution was conducted from 2005 to 2007 in urban and rural environments in Beijing to study the seasonal and diurnal variations in PM2.5 concentration. Pronounced seasonal variation was observed in the urban area, with the highest concentrations typically observed in the winter and the lowest concentrations generally found in the summer. In the rural area, the maximum in PM2.5 concentration usually appeared during the spring, followed by a second maximum in the summer, while the minimum generally occurred in the winter. Significant diurnal variations in PM2.5 concentration were observed in both urban and rural areas. In the urban area, the PM2.5 concentration displays a bimodal pattern, with peaks between 7:00 and 8:00 a.m. and between 7:00 and 11:00 p.m. The minimum generally appears around noon. The morning peak is attributed to enhanced anthropogenic activity during rush hours. The decreases of boundary layer height and wind speed in the afternoon companying with increased source activity during the afternoon rush hour result in the highest PM2.5 concentration during evening hours. In the rural area, the PM2.5 concentration shows a unimodal pattern with a significant peak between 5:00 and 11:00 p.m.The seasonal and diurnal variations in PM2.5 concentration in the urban area are mostly dominated by the seasonal and diurnal variability of boundary layer and source emissions. The year-to-year variability of rainfall also has an important influence on the seasonal variation of PM2.5 in the urban area. The seasonal and diurnal wind patterns are more important factors for PM2.5 variation in the rural area. Southerly winds carry pollutants emitted in southern urban areas northward and significantly enhance the PM2.5 concentration level in the rural area.  相似文献   

15.
Response     
ABSTRACT

The Las Vegas Valley PM10 Study was conducted during 1995 to determine the contributions to PM10 aerosol from fugitive dust, motor vehicle exhaust, residential wood combustion, and secondary aerosol sources. Twenty-four-hr PM10 samples were collected at two neighborhood-scale sites every sixth day for 13 months. Five week-long intensive studies were conducted over a middle-scale sub-region at 29 locations that contained many construction projects emitting fugitive dust. The study found that the zone of influence around individual emitters was less than 1 km. Most of the sampling sites in residential and commercial areas yielded equivalent PM10 concentrations in the neighborhood region, even though they were more distant from each other than they were from the nearby construction sources. Based on chemical mass balance (CMB) receptor modeling, fugitive dust accounted for 80–90% of the PM10, and motor vehicle exhaust accounted for 3–9% of the PM10 in the Las Vegas Valley.  相似文献   

16.
An interdisciplinary field study designed to investigate the spatial and temporal variability of atmospheric aerosols during high particulate matter (PM) events along the US–Mexico border near Yuma, AZ was run during the week of March 18, 2007. The experiments were designed to quantify chemical composition and physical phenomena governing the transport of aerosols generated from episodic high PM events. The field study included two micrometeorological monitoring sites; one rural and one urban, equipped with sonic anemometers, continuous particulate concentration monitors and ambient aerosol collection equipment. In addition to the two main monitoring sites, five additional locations were equipped with optical particle counters to allow for the investigation of the spatial and temporal distribution of PM2.5 in the urban environment. In this paper, the meteorological and turbulence parameters governing the distribution and concentration of PM2.5 in the urban environment for two high-wind erosion events and one burning event are compared. The interaction between local atmospheric conditions and the particulate distribution is investigated. Results indicate that a single point measurement in the urban area of Yuma may not be sufficient for determining the ambient PM concentrations that the local population experiences; all three high PM events indicated PM2.5 varied considerably with maximum urban concentrations 5–10 times greater than the measured minima. A comparison of inorganic and carbonaceous content of the aerosols for the three high PM events is presented. The comparison shows an increase in silicon during crustal dust events and an increase in elemental and organic carbon during the burn event. Additional surface chemistry analysis, using time-of-flight secondary ion mass spectrometry (ToF-SIMS), for aerosols collected at the urban and rural sites during the burn event are discussed. The surface chemistry analysis provides positive ion mass spectra of organic and inorganic species in the ambient aerosol, and can be used to determine the type of combustion process that contributed to an increase in PM concentration during the burn event.  相似文献   

17.
In order to carry out efficient traffic and air quality management, validated models and PM emission estimates are needed. This paper compares current available emission factor estimates for PM10 and PM2.5 from emission databases and different emission models, and validates these against eight high quality street pollution measurements in Denmark, Sweden, Germany, Finland and Austria.The data sets show large variation of the PM concentration and emission factors with season and with location. Consistently at all roads the PM10 and PM2.5 emission factors are lower in the summer month than the rest of the year. For example, PM10 emission factors are in average 5–45% lower during the month 6–10 compared to the annual average.The range of observed total emission factors (including non-exhaust emissions) for the different sites during summer conditions are 80–130 mg km−1 for PM10, 30–60 mg km−1 for PM2.5 and 20–50 mg km−1 for the exhaust emissions.We present two different strategies regarding modelling of PM emissions: (1) For Nordic conditions with strong seasonal variations due to studded tyres and the use of sand/salt as anti-skid treatment a time varying emission model is needed. An empirical model accounting for these Nordic conditions was previously developed in Sweden. (2) For other roads with a less pronounced seasonal variation (e.g. in Denmark, Germany, Austria) methods using a constant emission factor maybe appropriate. Two models are presented here.Further, we apply the different emission models to data sets outside the original countries. For example, we apply the “Swedish” model for two streets without studded tyre usage and the “German” model for Nordic data sets. The “Swedish” empirical model performs best for streets with studded tyre use, but was not able to improve the correlation versus measurements in comparison to using constant emission factors for the Danish side. The “German” method performed well for the streets without clear seasonal variation and reproduces the summer conditions for streets with pronounced seasonal variation. However, the seasonal variation of PM emission factors can be important even for countries not using studded tyres, e.g. in areas with cold weather and snow events using sand and de-icing materials. Here a constant emission factor probably will under-estimate the 90-percentiles and therefore a time varying emission model need to be used or developed for such areas.All emission factor models consistently indicate that a large part (about 50–85% depending on the location) of the total PM10 emissions originates from non-exhaust emissions. This implies that reduction measures for the exhaust part of the vehicle emissions will only have a limited effect on ambient PM10 levels.  相似文献   

18.
Ambient concentrations of PM10 and associated elemental and ionic species were measured over the cold and the warm months of 2010 at an urban and two rural sites located in the lignite-fired power generation area of Megalopolis in Peloponnese, southern Greece. The PM10 concentrations at the urban site (44.2?±?33.6 μg m?3) were significantly higher than those at the rural sites (23.7?±?20.4 and 22.7?±?26.9 μg m?3). Source apportionment of PM10 and associated components was accomplished by an advanced computational procedure, the robotic chemical mass balance model (RCMB), using chemical profiles for a variety of local fugitive dust sources (power plant fly ash, flue gas desulfurization wet ash, feeding lignite, infertile material from the opencast mines, paved and unpaved road dusts, soil), which were resuspended and sampled through a PM10 inlet onto filters and then chemically analyzed, as well as of other common sources such as vehicular traffic, residential oil combustion, biomass burning, uncontrolled waste burning, marine aerosol, and secondary aerosol formation. Geological dusts (road/soil dust) were found to be major PM10 contributors in both the cold and warm periods of the year, with average annual contribution of 32.6 % at the urban site vs. 22.0 and 29.0 % at the rural sites. Secondary aerosol also appeared to be a significant source, contributing 22.1 % at the urban site in comparison to 30.6 and 28.7 % at the rural sites. At all sites, the contribution of biomass burning was most significant in winter (28.2 % at the urban site vs. 14.6 and 24.6 % at the rural sites), whereas vehicular exhaust contribution appeared to be important mostly in the summer (21.9 % at the urban site vs. 11.5 and 10.5 % at the rural sites). The highest contribution of fly ash (33.2 %) was found at the rural site located to the north of the power plants during wintertime, when winds are favorable. In the warm period, the highest contribution of fly ash was found at the rural site located to the south of the power plants, although it was less important (7.2 %). Moderate contributions of fly ash were found at the urban site (5.4 and 2.7 % in the cold and the warm period, respectively). Finally, the mine field was identified as a minor PM10 source, occasionally contributing with lignite dust and/or deposited wet ash dust under dry summer conditions, with the summertime contributions ranging between 3.1 and 11.0 % among the three sites. The non-parametric bootstrapped potential source contribution function analysis was further applied to localize the regions of sources apportioned by the RCMB. For the majority of sources, source regions appeared as being located within short distances from the sampling sites (within the Peloponnesse Peninsula). More distant Greek areas of the NNE sector also appeared to be source regions for traffic emissions and secondary calcium sulfate dust.  相似文献   

19.
PM2.5 and PM2.5–10 aerosol samples were collected in four seasons during November 2010, January, April, and August 2011 at 13 urban/suburban sites and one background site in Western Taiwan Straits Region (WTSR), which is the coastal area with rapid urbanization, high population density, and deteriorating air quality. The 10 days average PM2.5 concentrations were 92.92, 51.96, 74.48, and 89.69 μg/m3 in spring, summer, autumn, and winter, respectively, exceeding the Chinese ambient air quality standard for annual average value of PM2.5 (grade II, 35 μg/m3). Temporal distribution of water-soluble inorganic ions (WSIIs) in PM2.5 was coincident with PM2.5 mass concentrations, showing highest in spring, lowest in summer, and middle in autumn and winter. WSIIs took considerable proportion (42.2~50.1 %) in PM2.5 and PM2.5–10. Generally, urban/suburban sites had obviously suffered severer pollution of fine particles compared with the background site. The WSIIs concentrations and characteristics were closely related to the local anthropogenic activities and natural environment, urban sites in cities with higher urbanization level, or sites with weaker diffuse condition suffered severer WSIIs pollution. Fossil fuel combustion, traffic emissions, crustal/soil dust, municipal constructions, and sea salt and biomass burnings were the major potential sources of WSIIs in PM2.5 in WTSR according to the result of principal component analysis.  相似文献   

20.
The Mediterranean basin, because of its semi-enclosed configuration, is one of the areas heavily affected by air pollutants. Despite implications on both human health and radiative budget involving an increasing interest, monitoring databases measuring air pollution directly over this area are yet relatively limited. Owing to this context, concentrations of fine (PM2.5) and coarse (PM2.5–10) particles along with other ancillary data, such as ozone levels and meteorological parameters, were measured during six cruise campaigns covering almost the whole Mediterranean basin. Elemental composition of both PM2.5 and PM2.5–10 was also determined to identify specific tracers for different classes of particles that can be found in the Mediterranean atmosphere. Outcomes resulting from the integration of a preliminary qualitative examination with a more quantitative analysis, based on receptor modelling, suggested that European continental influence, Saharan dust outbreaks, wildfire events, sea spray and fossil fuel combustion were the leading causes of the aerosol-ozone variations within the Mediterranean basin. Shipping emissions, consisting in both local harbours and maritime traffic across the basin, were also tested using the marker ratio of V/Ni. Peak values observed for coarse fraction have shown to be driven by the occurrence of African dust events. Considering the major influence of Continental pollution and wildfire events, the spatial variability resulted in larger fine particle concentrations and higher ozone levels over the Eastern Mediterranean side in comparison to the Western one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号