共查询到20条相似文献,搜索用时 15 毫秒
1.
Ling Huang Gary McGaughey Yosuke Kimura David T. Allen 《Journal of the Air & Waste Management Association (1995)》2013,63(10):1194-1205
Accurate estimates of biogenic emissions are required for air quality models that support the development of air quality management plans and attainment demonstrations. Land cover characterization is an essential driving input for most biogenic emissions models. This work contrasted the global Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product against a regional land cover product developed for the Texas Commissions on Environmental Quality (TCEQ) over four climate regions in eastern Texas, where biogenic emissions comprise a large fraction of the total inventory of volatile organic compounds (VOCs) and land cover is highly diverse. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) was utilized to investigate the influences of land cover characterization on modeled isoprene and monoterpene emissions through changes in the standard emission potential and emission activity factor, both separately and simultaneously. In Central Texas, forest coverage was significantly lower in the MODIS land cover product relative to the TCEQ data, which resulted in substantially lower estimates of isoprene and monoterpene emissions by as much as 90%. Differences in predicted isoprene and monoterpene emissions associated with variability in land cover characterization were primarily caused by differences in the standard emission potential, which is dependent on plant functional type. Photochemical modeling was conducted to investigate the effects of differences in estimated biogenic emissions associated with land cover characterization on predicted ozone concentrations using the Comprehensive Air Quality Model with Extensions (CAMx). Mean differences in maximum daily average 8-hour (MDA8) ozone concentrations were 2 to 6 ppb with maximum differences exceeding 20 ppb. Continued focus should be on reducing uncertainties in the representation of land cover through field validation.Implications: Uncertainties in the estimation of biogenic emissions associated with the characterization of land cover in global and regional data products were examined in eastern Texas. Misclassification between trees and low-growing vegetation in central Texas resulted in substantial differences in isoprene and monoterpene emission estimates and predicted ground-level ozone concentrations. Results from this study indicate the importance of land cover validation at regional scales. 相似文献
2.
D.Y.C. Leung P. Wong B.K.H. Cheung A. Guenther 《Atmospheric environment (Oxford, England : 1994)》2010,44(11):1456-1468
This paper describes a study of local biogenic volatile organic compounds (BVOC) emissions from the Hong Kong Special Administrative Region (HKSAR). An improved land cover and emission factor database was developed to estimate Hong Kong emissions using MEGAN, a BVOC emission model developed by Guenther et al. (2006). Field surveys of plant species composition and laboratory measurements of emission factors were combined with other data to improve existing land cover and emission factor data. The BVOC emissions from Hong Kong were calculated for 12 consecutive years from 1995 to 2006. For the year 2006, the total annual BVOC emissions were determined to be 12,400 metric tons or 9.82 × 109 g C (BVOC carbon). Isoprene emission accounts for 72%, monoterpene emissions account for 8%, and other VOCs emissions account for the remaining 20%. As expected, seasonal variation results in a higher emission in the summer and a lower emission in the winter, with emission predominantly in day time. A high emission of isoprene occurs for regions, such as Lowest Forest-NT North, dominated by broadleaf trees. The spatial variation of total BVOC is similar to the isoprene spatial variation due to its high contribution. The year to year variability in emissions due to weather was small over the twelve-year period (?1.4%, 2006 to 1995 trendline), but an increasing trend in the annual variation due to an increase in forest land cover can be observed (+7%, 2006 to 1995 trendline). The results of this study demonstrate the importance of accurate land cover inputs for biogenic emission models and indicate that land cover change should be considered for these models. 相似文献
3.
《Atmospheric environment (Oxford, England : 1994)》2007,41(10):2214-2224
Olson World Ecosystem (OWE) land cover data based on data sources of the 1970s and 1980s with a 10-min spatial resolution, and up-to-date Moderate Resolution Imaging Spectroradiometer (MODIS) land cover data with a 30-s resolution, were used, respectively, in modeling wind-blown desert dust in the southwest United States. The model using different land cover data sets preformed similarly in modeling meteorological field patterns, vertical profiles and surface wind and temperature, in comparisons against observations. The differences of wind and temperature at a specific time and location can be big. Compared against satellite and ground measurements, modeled dust spatial distributions using MODIS land cover data were considerably better than those using OWE land cover. Site against site comparisons of modeled and observed surface PM2.5 concentration time series showed that model performance improved significantly using MODIS land cover data. Modeled surface PM2.5 contour distributions using MODIS land cover data compared more favorably against observations. The performance statistics for modeled PM2.5 concentrations at 40 surface sites increased from 0.15 using OWE data, to 0.58 using MODIS data. This demonstrates that the survey updates and spatial resolution of land cover data are critical in correctly predicting dust events and dust concentrations. Using land cover data such as MODIS data from satellite remote sensing is promising in improving wind-blown dust modeling and forecasting. 相似文献
4.
Marc Carreras-Sospedra Robert Williams 《Journal of the Air & Waste Management Association (1995)》2016,66(2):134-150
It is estimated that there is sufficient in-state “technically” recoverable biomass to support nearly 4000 MW of bioelectricity generation capacity. This study assesses the emissions of greenhouse gases and air pollutants and resulting air quality impacts of new and existing bioenergy capacity throughout the state of California, focusing on feedstocks and advanced technologies utilizing biomass resources predominant in each region. The options for bioresources include the production of bioelectricity and renewable natural gas (NG). Emissions of criteria pollutants and greenhouse gases are quantified for a set of scenarios that span the emission factors for power generation and the use of renewable natural gas for vehicle fueling. Emissions are input to the Community Multiscale Air Quality (CMAQ) model to predict regional and statewide temporal air quality impacts from the biopower scenarios. With current technology and at the emission levels of current installations, maximum bioelectricity production could increase nitrogen oxide (NOx) emissions by 10% in 2020, which would cause increases in ozone and particulate matter concentrations in large areas of California. Technology upgrades would achieve the lowest criteria pollutant emissions. Conversion of biomass to compressed NG (CNG) for vehicles would achieve comparable emission reductions of criteria pollutants and minimize emissions of greenhouse gases (GHG). Air quality modeling of biomass scenarios suggest that applying technological changes and emission controls would minimize the air quality impacts of bioelectricity generation. And a shift from bioelectricity production to CNG production for vehicles would reduce air quality impacts further. From a co-benefits standpoint, CNG production for vehicles appears to provide the best benefits in terms of GHG emissions and air quality.Implications:?This investigation provides a consistent analysis of air quality impacts and greenhouse gas emissions for scenarios examining increased biomass use. Further work involving economic assessment, seasonal or annual emissions and air quality modeling, and potential exposure analysis would help inform policy makers and industry with respect to further development and direction of biomass policy and bioenergy technology alternatives needed to meet energy and environmental goals in California. 相似文献
5.
Cook R Touma JS Fernandez A Brzezinski D Bailey C Scarbro C Thurman J Strum M Ensley D Baldauf R 《Journal of the Air & Waste Management Association (1995)》2007,57(12):1469-1479
Analyses of U.S. Environmental Protection Agency (EPA) certification data, California Air Resources Board surveillance testing data, and EPA research testing data indicated that EPA's MOBILE6.2 emission factor model substantially underestimates emissions of gaseous air toxics occurring during vehicle starts at cold temperatures for light-duty vehicles and trucks meeting EPA Tier 1 and later standards. An unofficial version of the MOBILE6.2 model was created to account for these underestimates. When this unofficial version of the model was used to project emissions into the future, emissions increased by almost 100% by calendar year 2030, and estimated modeled ambient air toxics concentrations increased by 6-84%, depending on the pollutant. To address these elevated emissions, EPA recently finalized standards requiring reductions of emissions when engines start at cold temperatures. 相似文献
6.
《Atmospheric environment (Oxford, England : 1994)》2007,41(34):7180-7194
Ambient measurements of hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2005 were analyzed for diurnal, seasonal, and/or annual variability and trends. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Sufficient data were available to analyze diurnal variability for 14 air toxics, seasonal variability for 24 air toxics, and annual trends for 26 air toxics. Four diurnal variation patterns were identified and labeled invariant, nighttime peak, morning peak, and daytime peak. Three distinct seasonal patterns were identified and labeled invariant, cool, and warm. Multiple air toxics showed consistent decreasing trends over three trend periods, 1990–2005, 1995–2005, and 2000–2005. Trends appeared to be relatively consistent within chemically similar pollutant groups. Hydrocarbons such as benzene, 1,3-butadiene, styrene, xylene, and toluene decreased by approximately 5% or more per year at more than half of all monitoring sites. Concentrations of carbonyl compounds such as formaldehyde, acetaldehyde, and propionaldehyde were equally likely to have increased or decreased at monitoring sites. Chlorinated volatile organic compounds (VOCs) such as tetrachloroethylene, dichloromethane, and methyl chloroform decreased at more than half of all monitoring sites, but decreases among these species were much more variable than among the hydrocarbons. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time. 相似文献
7.
Singh Shatrughan Dash Padmanava Silwal Saurav Feng Gary Adeli Ardeshir Moorhead Robert J. 《Environmental science and pollution research international》2017,24(16):14124-14141
Environmental Science and Pollution Research - Water quality of lakes, estuaries, and coastal areas serves as an indicator of the overall health of aquatic ecosystems as well as the health of the... 相似文献
8.
Huiqun Wang Daniel J. Jacob Philippe Le Sager David G. Streets Rokjin J. Park Alice B. Gilliland A. van Donkelaar 《Atmospheric environment (Oxford, England : 1994)》2009,43(6):1310-1319
We use a global chemical transport model (GEOS-Chem) with 1° × 1° horizontal resolution to quantify the effects of anthropogenic emissions from Canada, Mexico, and outside North America on daily maximum 8-hour average ozone concentrations in US surface air. Simulations for summer 2001 indicate mean North American and US background concentrations of 26 ± 8 ppb and 30 ± 8 ppb, as obtained by eliminating anthropogenic emissions in North America vs. in the US only. The US background never exceeds 60 ppb in the model. The Canadian and Mexican pollution enhancement averages 3 ± 4 ppb in the US in summer but can be occasionally much higher in downwind regions of the northeast and southwest, peaking at 33 ppb in upstate New York (on a day with 75 ppb total ozone) and 18 ppb in southern California (on a day with 68 ppb total ozone). The model is successful in reproducing the observed variability of ozone in these regions, including the occurrence and magnitude of high-ozone episodes influenced by transboundary pollution. We find that exceedances of the 75 ppb US air quality standard in eastern Michigan, western New York, New Jersey, and southern California are often associated with Canadian and Mexican pollution enhancements in excess of 10 ppb. Sensitivity simulations with 2020 emission projections suggest that Canadian pollution influence in the Northeast US will become comparable in magnitude to that from domestic power plants. 相似文献
9.
Kirchgessner DA Piccot SD Masemore SS 《Journal of the Air & Waste Management Association (1995)》2000,50(11):1904-1919
Past efforts to estimate methane emissions from underground mines, surface mines, and other coal mine operations have been hampered, to different degrees, by a lack of direct emissions data. Direct measurements have been completely unavailable for several important coal mining operations. A primary goal of this study was to collect new methane emissions measurements and other data for the most poorly characterized mining operations and use these data to develop an improved methane emission inventory for the U.S. coal mining industry. This required the development and verification of measurement methods for surface mines, coal handling operations, and abandoned underground mines and the use of these methods at about 30 mining sites across the United States. Although the study's focus was on surface mines, abandoned underground mines, and coal handling operations, evaluations were also conducted to improve our understanding of underground mine emission trends and to develop improved national data sets of coal properties. Total U.S. methane emissions are estimated to be 4.669 million tons, and as expected, emissions from underground mine ventilation and methane drainage systems dominate (74% of the total emissions). On the other hand, emissions from coal handling, abandoned underground mines, and surface mines are significant, and collectively they represent approximately 26% of the total emissions. 相似文献
10.
Mendoza-Dominguez A Wilkinson JG Yang YJ Russell AG 《Journal of the Air & Waste Management Association (1995)》2000,50(1):21-31
A spatially and temporally resolved biogenic hydrocarbon and nitrogen oxides (NOx) emissions inventory has been developed for a region along the Mexico-U.S. border area. Average daily biogenic non-methane organic gases (NMOG) emissions for the 1700 x 1000 km2 domain were estimated at 23,800 metric tons/day (62% from Mexico and 38% from the United States), and biogenic NOx was estimated at 1230 metric tons/day (54% from Mexico and 46% from the United States) for the July 18-20, 1993, ozone episode. The biogenic NMOG represented 74% of the total NMOG emissions, and biogenic NOx was 14% of the total NOx. The CIT photochemical airshed model was used to assess how biogenic emissions impact air quality. Predicted ground-level ozone increased by 5-10 ppb in most rural areas, 10-20 ppb near urban centers, and 20-30 ppb immediately downwind of the urban centers compared to simulations in which only anthropogenic emissions were used. A sensitivity analysis of predicted ozone concentration to emissions was performed using the decoupled direct method for three dimensional air quality models (DDM-3D). The highest positive sensitivity of ground-level ozone concentration to biogenic volatile organic compound (VOC) emissions (i.e., increasing biogenic VOC emissions results in increasing ozone concentrations) was predicted to be in locations with high NOx levels, (i.e., the urban areas). One urban center--Houston--was predicted to have a slight negative sensitivity to biogenic NO emissions (i.e., increasing biogenic NO emissions results in decreasing local ozone concentrations). The highest sensitivities of ozone concentrations to on-road mobile source VOC emissions, all positive, were mainly in the urban areas. The highest sensitivities of ozone concentrations to on-road mobile source NOx emissions were predicted in both urban (either positive or negative sensitivities) and rural (positive sensitivities) locations. 相似文献
11.
《Atmospheric environment (Oxford, England : 1994)》2007,41(30):6379-6395
A network of 10 stations, with passive sampling for VOCs (including benzene), NO2, and SO2, over 2-week periods, grab sampling for CO, and 48-h pumped sampling for PM10, was set up to make an air quality survey for 12 months around Aberdeen Harbour. Benzene, CO, SO2 and PM10 were always well below the AQS target values. However, NO2 frequently showed a pronounced gradient across the harbour reaching its highest concentrations at the city end, indicating that the road traffic was the principal source of the pollution. This was backed up by the predominance of aromatics in the VOCs in the city centre, derived from petrol engined vehicles, compared to the predominance of alkanes and alkenes around the docks, derived from diesel engined heavy trucks and possibly ships. Black carbon on the PM10 filters also showed a gradient with highest levels in the city centre. It is proposed that for such surveys in future, NO2 and black carbon would be the two most informative parameters.This emissions inventory has shown first, that trucks contribute very little to the total, and second, that the ro-ro ferries are the major contributors as they burn light fuel oil while the oil platform supply vessels burn low-sulphur marine gas oil with around 0.1% S. When the whole picture of the emissions from the city is considered, the emissions from the harbour constitute only a small part. 相似文献
12.
《Atmospheric environment(England)》1988,22(9):1829-1833
Regional apportionments of sulfate and Se in pollution aerosol have been reproduced to within 10% for winter and summer at Narragansett, RI, and for summer at Underhill, VT, over a 3-yr period. Agreement of observed variability of apportionments with earlier estimates of their uncertainties served to empirically confirm both error-propagation methods and original uncertainties assigned to regional signatures. Winter apportionments at Underhill were more variable because of systematic differences in meteorology. 相似文献
13.
Esther Coz Begoña Artíñano Lisa M. Clark Mark Hernandez Allen L. Robinson Gary S. Casuccio Traci L. Lersch Spyros N. Pandis 《Atmospheric environment (Oxford, England : 1994)》2010,44(32):3952-3962
Scanning electron microscopy coupled to energy-dispersive x-ray spectroscopy (SEM/EDX) was used to quantify individual bioparticles in PM2.5 samples collected during the Pittsburgh Air Quality Study. Microscopy-based estimates of primary biogenic organic aerosol (PBOA) mass were compared to carbohydrate mass associated with PM2.5. Carbohydrates show substantial seasonal variations, with higher concentrations in the spring and the fall. During the summer, carbohydrates were about 30% of the estimated PBOA concentrations, but in the winter carbohydrate concentrations often greatly exceeded the PBOA mass estimate. Spores and insect detritus were the most abundant PBOA types in the summer samples, while winter samples were comprised predominantly of a mixture of microorganisms, insect and vegetative detritus. During the summer PBOA contributed on average 6.9 ± 5.4% by mass of the PM2.5 versus 3.3 ± 1.4% of the PM2.5 mass during the winter. 相似文献
14.
Aneja VP Brittig JS Kim DS Hanna A 《Journal of the Air & Waste Management Association (1995)》2004,54(6):681-688
An analysis of ozone (O3) concentrations and several other air quality-related variables was performed to elucidate their relationship with visibility at five urban and semi-urban locations in the southeast United States during the summer seasons of 1980-1996. The role and impact of O3 on aerosols was investigated to ascertain a relationship with visibility. Regional trend analysis over the 1980s reveals an increase in maximum O3 concentration coupled with a decrease in visibility. However, a similar analysis for the 1990s shows a leveling-off of both O3 and visibility; in both cases, the results were not statistically significant at the 5% level. A case study of site-specific trends at Nashville, TN, followed similar trends. To better understand the relationships between O3 concentration and visibility, the analysis was varied from yearly through daily to hourly averaged values. This increased temporal resolution showed a statistically significant inverse relationship between visibility and O3. Site-specific hourly r2 values ranged from 0.02 to 0.43. Additionally, by performing back-trajectory analysis, it was found that the visibility degraded by air mass migration over polluted areas. 相似文献
15.
Lough GC Schauer JJ Lonneman WA Allen MK 《Journal of the Air & Waste Management Association (1995)》2005,55(5):629-646
On-road vehicle emission rates of nonmethane hydrocarbons (NMHCs) were measured in two tunnels in Milwaukee, WI, in summer 2000 and winter 2001. Seasonal ambient temperatures in the Midwestern United States vary more widely than in locations where most studies of NMHC emissions from vehicle fleets have been conducted. Ethanol is the added fuel oxygenate in the area, and, thus, emissions measured here are of interest as other regions phase out methyl tertiary butyl ether and increase the use of ethanol. Total emissions of NMHCs in three types of tunnel tests averaged 4560 +/- 800 mg L(-1) fuel burned (average +/- standard error). To investigate the impact of cold start on vehicle emissions, samples were collected as vehicles exited a parking structure in subzero temperatures. NMHC emissions in the subzero cold-start test were 8830 +/- 190 mg L(-1) fuel-nearly double the tunnel emissions. Comparison of ambient data for the Milwaukee area with tunnel emissions showed the impact of seasonal differences in fuels and emissions on the urban atmosphere. Composition of fuel samples collected from area gas stations in both seasons was correlated with vehicle emissions; the predominant difference was increased winter emissions of lighter hydrocarbons present in winter gasoline. A chemical mass balance model was used to determine the contributions of whole gasoline and gasoline headspace vapors to vehicle emissions in the tunnel and cold-start tests, which were found to vary with season. Results of the mass balance model also indicate that partially combusted components of gasoline are a major contributor to emissions of aromatic compounds and air toxic compounds, including benzene, toluene, xylenes, napthalene, and 1,3-butadiene, whereas air toxics hexane and 2,2,4-trimethylpentane are largely attributed to gasoline and headspace vapors. 相似文献
16.
Daiwen Kang Rohit Mathur S. Trivikrama Rao 《Atmospheric environment (Oxford, England : 1994)》2010,44(18):2203-2212
The National Air Quality Forecast Capacity (NAQFC) system, which links NOAA’s North American Mesoscale (NAM) meteorological model with EPA’s Community Multiscale Air Quality (CMAQ) model, provided operational ozone (O3) and experimental fine particular matter (PM2.5) forecasts over the continental United States (CONUS) during 2008. This paper describes the implementation of a real-time Kalman Filter (KF) bias-adjustment technique to improve the accuracy of O3 and PM2.5 forecasts at discrete monitoring locations. The operational surface-level O3 and PM2.5 forecasts from the NAQFC system were post-processed by the KF bias-adjusted technique using near real-time hourly O3 and PM2.5 observations obtained from EPA’s AIRNow measurement network. The KF bias-adjusted forecasts were created daily, providing 24-h hourly bias-adjusted forecasts for O3 and PM2.5 at all AIRNow monitoring sites within the CONUS domain. The bias-adjustment post-processing implemented in this study requires minimal computational cost; requiring less than 10 min of CPU on a single processor Linux machine to generate 24-h hourly bias-adjusted forecasts over the entire CONUS domain.The results show that the real-time KF bias-adjusted forecasts for both O3 and PM2.5 have performed as well as or even better than the previous studies when the same technique was applied to the historical O3 and PM2.5 time series from archived AQF in earlier years. Compared to the raw forecasts, the KF forecasts displayed significant improvement in the daily maximum 8-h O3 and daily mean PM2.5 forecasts in terms of both discrete (i.e., reduced errors, increased correlation coefficients, and index of agreement) and categorical (increased hit rate and decreased false alarm ratio) evaluation metrics at almost all locations during the study period in 2008. 相似文献
17.
R. Vautard M. Schaap R. Bergström B. Bessagnet J. Brandt P.J.H. Builtjes J.H. Christensen C. Cuvelier V. Foltescu A. Graff A. Kerschbaumer M. Krol P. Roberts L. Rouïl R. Stern L. Tarrason P. Thunis E. Vignati P. Wind 《Atmospheric environment (Oxford, England : 1994)》2009,43(31):4822-4832
Recently several regional air quality projects were carried out to support the negotiation under the Clean Air For Europe (CAFE) programme by predicting the impact of emission control policies with an ensemble of models. Within these projects, CITYDELTA and EURODELTA, the fate of air quality at the scale of European cities or that of the European continent was studied using several models. In this article we focus on the results of EURODELTA. The predictive skill of the ensemble of models is described for ozone, nitrogen dioxide and secondary inorganic compounds, and the uncertainty in air quality modelling is examined through the model ensemble spread of concentrations.For ozone daily maxima the ensemble spread origin differs from one region to another. In the neighbourhood of cities or in mountainous areas the spread of predicted values does not span the range of observed data, due to poorly resolved emissions or complex-terrain meteorology. By contrast in Atlantic and North Sea coastal areas the spread of predicted values is found to be larger than the observations. This is attributed to large differences in the boundary conditions used in the different models. For NO2 daily averages the ensemble spread is generally too small compared with observations. This is because models miss highest values occurring in stagnant meteorology in stable boundary layers near cities. For secondary particulate matter compounds the simulated concentration spread is more balanced, observations falling nearly equiprobably within the ensemble, and the spread originates both from meteorology and aerosol chemistry and thermodynamics. 相似文献
18.
Golam Sarwar Robert W. Pinder K. Wyat Appel Rohit Mathur Annmarie G. Carlton 《Atmospheric environment (Oxford, England : 1994)》2009,43(40):6383-6387
Impact of the excited nitrogen dioxide (NO21) chemistry on air quality in the U.S. is examined using the Community Multiscale Air Quality (CMAQ) model for a summer month. Model simulations were conducted with and without the NO21 chemistry. The largest impact of the NO21 chemistry in the eastern U.S. occurred in the northeast and in the western U.S. occurred in Los Angeles. While the single largest daily maximum 8-h ozone (O3) increased by 9 ppbv in eastern U.S. and 6 ppbv in western U.S., increases on most days were much lower. No appreciable change in model performance statistics for surface-level O3 predictions relative to measurements is noted between simulations with and without the NO21 chemistry. Based on model calculations using current estimates of tropospheric emission burden, the NO21 chemistry can increase the monthly mean daytime hydroxyl radicals (OH) and nitrous acid (HONO) by a maximum of 28% and 100 pptv, respectively. 相似文献
19.
Derwent RG Stevenson DS Doherty RM Collins WJ Sanderson MG Johnson CE Cofala J Mechler R Amann M Dentener FJ 《Ambio》2005,34(1):54-59
A global three-dimensional Lagrangian chemistry-transport model STOCHEM is used to describe the European regional acid deposition and ozone air quality impacts along the Atlantic Ocean seaboard of Europe, from the SO2, NOx, VOCs and CO emissions from international shipping under conditions appropriate to the year 2000. Model-derived total sulfur deposition from international shipping reaches over 200 mg S m(-2) yr(-1) over the southwestern approaches to the British Isles and Brittany. The contribution from international shipping to surface ozone concentrations during the summertime, peaks at about 6 ppb over Ireland, Brittany and Portugal. Shipping emissions act as an external influence on acid deposition and ozone air quality within Europe and may require control actions in the future if strict deposition and air quality targets are to be met. 相似文献
20.
《Atmospheric environment (Oxford, England : 1994)》2007,41(1):103-118
To study the impact of emissions at an airport on local air quality, a measurement campaign at the Zurich airport was performed from 30 June 2004 to 15 July 2004. Measurements of NO, NO2, CO and CO2 were conducted with open path devices to determine real in-use emission indices of aircraft during idling. Additionally, air samples were taken to analyse the mixing ratios of volatile organic compounds (VOC). Temporal variations of VOC mixing ratios on the airport were investigated, while other air samples were taken in the plume of an aircraft during engine ignition. CO concentrations in the vicinity of the terminals were found to be highly dependent on aircraft movement, whereas NO concentrations were dominated by emissions from ground support vehicles. The measured emission indices for aircraft showed a strong dependence upon engine type. Our work also revealed differences from emission indices published in the emission data base of the International Civil Aviation Organisation. Among the VOC, reactive C2–C3 alkenes were found in significant amounts in the exhaust of an engine compared to ambient levels. Also, isoprene, a VOC commonly associated with biogenic emissions, was found in the exhaust, however it was not detected in refuelling emissions. The benzene to toluene ratio was used to discriminate exhaust from refuelling emission. In refuelling emissions, a ratio well below 1 was found, while for exhaust this ratio was usually about 1.7. 相似文献