首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review has attempted to evaluate the present state of our knowledge of the effects on health in man of environmental exposure to oxides of sulfur, sulfates, and particulate matter. There has been a great deal of activity in this field over the last 15 years, and therefore any collation of this material will represent the selected biases of the reviewer. The conclusions reached can be summarized as follows: (1) These pollutants, as they have been measured in epidemiological investigations, can only be considered as indirect indices of general air pollution and in many cases cannot be separated from each other. Therefore, we cannot incriminate a specific source of any one pollutant as the producer of the most harmful substance to reach the ambient air. Conversely, we cannot excuse any specific source of one pollutant because that specific pollutant has not been found to cause disease at a given concentration. The measurements in ambient air are the net results from all sources of pollution in combination with factors influenced by weather and meteorological considerations. (2) Direct effects from acute, high ambient air pollution disasters have been adequately demonstrated. Significant excess mortality has occurred in association with particular air pollution episodes. All of these episodes have occurred during cold weather, and the effects of temperature must also be considered along with elevated levels of smoke and sulfur oxides. (3) Specific working groups exposed to unusually high levels of these pollutants do not demonstrate dramatic effects. This is presumably related to the fact that susceptible people are self-selected out of these environments. (4) Associations between the prevalence of chronic respiratory disease in the general population and specific levels of these air pollutants have been demonstrated. The major thrusts of epidemiological investigations have been to study the effects of chronic exposure to ambient levels of smoke and sulfur dioxide. The studies to date have collected and analyzed point-prevalence data and information obtained from retrospective investigations. Although epidemiological investigations cannot prove a cause-and-effect relationship, the consistency of the results is such that one must conclude that a causal association is likely. In this reviewer’s opinion we have reached the stage at which we no longer need to demonstrate the effect of past exposure to these pollutants. What is needed now is to demonstrate the effects of current and continued exposure. This will require a better understanding of the natural history and pathophysiology of the diseases thought to be associated with chronic exposure to smoke and sulfur dioxide. Because of the nature of chronic respiratory disease, groups of subjects for whom exposure is known, must be followed over extended periods of time. The logical extension of these observations will be the follow-up of large populations for whom exposure has been reduced. Only by studies of this kind may we be able to prove the cause-and-effect relationship which most likely exists.  相似文献   

2.
Air pollution and health studies in China--policy implications   总被引:1,自引:0,他引:1  
During the rapid economic development in China, ambient air pollutants in major cities, including PM10 (particulate matter with aerodynamic diameter < or =10 microm) and SO2 have been reduced due to various measures taken to reduce or control sources of emissions, whereas NO2 is stable or slightly increased. However, air pollution levels in China are still at the higher end of the world level. Less information is available regarding changes in national levels of other pollutants such as PM2.5 and ozone. The Chinese Ministry of Environmental Protection (MOEP) set an index for "controlling/reducing total SO2 emissions" to evaluate the efficacy of air pollution control strategy in the country. Total SO2 emissions declined for the first time in 2007. Chinese epidemiologic studies evidenced adverse health effects of ambient air pollution similar to those reported from developed countries, though risk estimates on mortality/morbidity per unit increase of air pollutant are somewhat smaller than those reported in developed countries. Disease burden on health attributable to air pollution is relatively greater in China because of higher pollution levels. Improving ambient air quality has substantial and measurable public health benefits in China. It is recommended that the current Chinese air quality standards be updated/revised and the target for "controlling/reducing total SO2 emissions" be maintained and another target for "reducing total NO2 emissions" be added in view of rapid increase in motor vehicles. Continuous and persistent efforts should be taken to improve ambient air quality.  相似文献   

3.
Air pollution studies are based on individual-level health response data and group-level exposure data. Therefore, exposure misclassification occurs, and the results may be biased to an unknown magnitude and direction. Testing the validity of such associations requires a study design using individual-level data for both exposure and response. One can test the plausibility of group-level PM risk estimates by comparing them to individual-level estimates of risk from constituents of ambient air. The twofold purpose of this review is to consider the internal consistency of risks estimated from the three major PM cohort studies and to determine individual-level mortality risks associated with ambient concentrations of tobacco smoke and occupational exposures and compare them with risks associated with ambient PM. The paper demonstrates the risks are not consistent within and between the PM cohort studies. Higher ambient concentration risks (ACRs) from the ambient PM cohort studies are not coherent with ACRs derived from individual-level smoking and occupational risks for total, cardiopulmonary, and lung cancer mortality. Individual-level studies suggest increased risk of mortality cannot be measured with reliability at concentrations found in ambient air.  相似文献   

4.
ABSTRACT

Air pollution studies are based on individual-level health response data and group-level exposure data. Therefore, exposure misclassification occurs, and the results may be biased to an unknown magnitude and direction. Testing the validity of such associations requires a study design using individual-level data for both exposure and response. One can test the plausibility of group-level PM risk estimates by comparing them to individual-level estimates of risk from constituents of ambient air. The twofold purpose of this review is to consider the internal consistency of risks estimated from the three major PM cohort studies and to determine individual-level mortality risks associated with ambient concentrations of tobacco smoke and occupational exposures and compare them with risks associated with ambient PM.

The paper demonstrates the risks are not consistent within and between the PM cohort studies. Higher ambient concentration risks (ACRs) from the ambient PM cohort studies are not coherent with ACRs derived from individual-level smoking and occupational risks for total, cardiopulmonary, and lung cancer mortality. Individual-level studies suggest increased risk of mortality cannot be measured with reliability at concentrations found in ambient air.  相似文献   

5.
To investigate the potential public health impact of ambient air pollution under various energy scenarios in Shanghai, we estimated the air pollution exposure level of the general population under various planned energy scenarios, and assessed the potential public health impact using the concentration–response functions derived from available epidemiologic studies. The results show that ambient air pollution in relation to various energy scenarios could have significant impact on the health status of Shanghai residents. Compared with base case scenario, implementation of various energy scenarios could prevent 608–5144 and 1189–10,462 PM10-related avoidable deaths (mid-value) in 2010 and 2020, respectively; and it could also decrease substantial cases of relevant diseases. These findings illustrate that an effective energy and environmental policy will play an active role in reduction of air pollutant emissions, improvement of air quality, and public health.  相似文献   

6.
Air pollution has become one main environmental concern because of its known impact on human health. Aiming to inform the population about the air they are breathing, several air quality modelling systems have been developed and tested allowing the assessment and forecast of air pollution ambient levels in many countries. However, every day, an individual is exposed to different concentrations of atmospheric pollutants as he/she moves from and to different outdoor and indoor places (the so-called microenvironments). Therefore, a more efficient way to prevent the population from the health risks caused by air pollution should be based on exposure rather than air concentrations estimations. The objective of the present study is to develop a methodology to forecast the human exposure of the Portuguese population based on the air quality forecasting system available and validated for Portugal since 2005. Besides that, a long-term evaluation of human exposure estimates aims to be obtained using one-year of this forecasting system application. Additionally, a hypothetical 50% emission reduction scenario has been designed and studied as a contribution to study emission reduction strategies impact on human exposure.To estimate the population exposure the forecasting results of the air quality modelling system MM5-CHIMERE have been combined with the population spatial distribution over Portugal and their time-activity patterns, i.e. the fraction of the day time spent in specific indoor and outdoor places. The population characterization concerning age, work, type of occupation and related time spent was obtained from national census and available enquiries performed by the National Institute of Statistics. A daily exposure estimation module has been developed gathering all these data and considering empirical indoor/outdoor relations from literature to calculate the indoor concentrations in each one of the microenvironments considered, namely home, office/school, and other indoors (leisure activities like shopping areas, gym, theatre/cinema and restaurants). The results show how this developed modelling system can be useful to anticipate air pollution episodes and to estimate their effects on human health on a long-term basis. The two metropolitan areas of Porto and Lisbon are identified as the most critical ones in terms of air pollution effects on human health over Portugal in a long-term as well as in a short-term perspective. The coexistence of high concentration values and high population density is the key factor for these stressed areas. Regarding the 50% emission reduction scenario, the model results are significantly different for both pollutants: there is a small overall reduction in the individual exposure values of PM10 (<10 μg m?3 h), but for O3, in contrast, there is an extended area where exposure values increase with emission reduction. This detailed knowledge is a prerequisite for the development of effective policies to reduce the foreseen adverse impact of air pollution on human health and to act on time.  相似文献   

7.
Background, Aim and Scope A series of severe air pollution episodes in Europe and North America prior to 1960 have focused scientific and regulatory attention on the adverse effects of air pollution on human health. As a consequence of significant reductions in ambient air pollution levels in the intervening years, scientists and public health officials have become more concerned with the potential health effects of exposure to routine concentrations of air pollution. Several recent time series studies conducted world-wide have found relatively low levels of air pollutants that are below national standards were associated with adverse effects on mortality and morbidity. This study examined the effects of ambient air pollution indicators on the daily rate of pediatric hospital admissions for asthma in the Oklahoma City Metropolitan area from 2001-2003. Results: Negative binomial regression analysis revealed significant relationships between the total number of hospitalizations per day and the one-hour maximum NO2 level, the proportion of susceptible children < 5 years old, and the ratio of temperature to humidity. Discussion: This study of the total number of children aged ≤ 14 years old experiencing hospitalizations on a daily basis in the Oklahoma City area from 2001-2003 underscores factors other than ambient air pollution, especially when concentrations are low, affect hospitalizations for pediatric asthma. For example, information related to indoor air quality, health care, family history, and exposure to environmental tobacco smoke and other irritants are not obtainable. Yet, those factors are risk drivers for asthma. Similarly, health privacy requirements prevented obtaining data on physiological factors specific to each child such as differentials in airways functional capacity or other impairments influenced asthma exacerbation. This makes calculating relative risk inappropriate. Conclusions: Although ambient air pollution concentrations and meteorological conditions influence pediatric asthma hospitalizations, they are not the major predictors in the Oklahoma City metropolitan area. This is consistent with other research that finds limited effects associated with low levels for concentrations of the criteria pollutants.  相似文献   

8.
Abstract

Air quality indices currently in use have been criticized because they do not capture additive effects of multiple pollutants, or reflect the apparent no-threshold concentration-response relationship between air pollution and health. We propose a new air quality health index (AQHI), constructed as the sum of excess mortality risk associated with individual pollutants from a time-series analysis of air pollution and mortality in Canadian cities, adjusted to a 0–10 scale, and calculated hourly on the basis of trailing 3-hr average pollutant concentrations. Extensive sensitivity analyses were conducted using alternative combinations of pollutants from single and multi-pollutant models. All formulations considered produced frequency distributions of the daily maximum AQHI that were right-skewed, with modal values of 3 or 4, and less than 10% of values at 7 or above on the 10-point scale. In the absence of a gold standard and given the uncertainty in how to best reflect the mix of pollutants, we recommend a formulation based on associations of nitrogen dioxide, ozone, and particulate matter of median aerodynamic diameter less than 2.5 µm with mortality from single-pollutant models. Further sensitivity analyses revealed good agreement of this formulation with others based on alternative sources of coefficients drawn from published studies of mortality and morbidity. These analyses provide evidence that the AQHI represents a valid approach to formulating an index with the objective of allowing people to judge the relative probability of experiencing adverse health effects from day to day. Together with health messages and a graphic display, the AQHI scale appears promising as an air quality risk communication tool.  相似文献   

9.
Air quality indices currently in use have been criticized because they do not capture additive effects of multiple pollutants, or reflect the apparent no-threshold concentration-response relationship between air pollution and health. We propose a new air quality health index (AQHI), constructed as the sum of excess mortality risk associated with individual pollutants from a time-series analysis of air pollution and mortality in Canadian cities, adjusted to a 0-10 scale, and calculated hourly on the basis of trailing 3-hr average pollutant concentrations. Extensive sensitivity analyses were conducted using alternative combinations of pollutants from single and multipollutant models. All formulations considered produced frequency distributions of the daily maximum AQHI that were right-skewed, with modal values of 3 or 4, and less than 10% of values at 7 or above on the 10-point scale. In the absence of a gold standard and given the uncertainty in how to best reflect the mix of pollutants, we recommend a formulation based on associations of nitrogen dioxide, ozone, and particulate matter of median aerodynamic diameter less than 2.5 microm with mortality from single-pollutant models. Further sensitivity analyses revealed good agreement of this formulation with others based on alternative sources of coefficients drawn from published studies of mortality and morbidity. These analyses provide evidence that the AQHI represents a valid approach to formulating an index with the objective of allowing people to judge the relative probability of experiencing adverse health effects from day to day. Together with health messages and a graphic display, the AQHI scale appears promising as an air quality risk communication tool.  相似文献   

10.
Abstract

Efforts to understand and mitigate the health effects of particulate matter (PM) air pollution have a rich and interesting history. This review focuses on six substantial lines of research that have been pursued since 1997 that have helped elucidate our understanding about the effects of PM on human health. There has been substantial progress in the evaluation of PM health effects at different time-scales of exposure and in the exploration of the shape of the concentration-response function. There has also been emerging evidence of PM-related cardiovascular health effects and growing knowledge regarding interconnected general pathophysiological pathways that link PM exposure with cardiopulmonary morbidity and mortality. Despite important gaps in scientific knowledge and continued reasons for some skepticism, a comprehensive evaluation of the research findings provides persuasive evidence that exposure to fine particulate air pollution has adverse effects on cardiopulmonary health. Although much of this research has been motivated by environmental public health policy, these results have important scientific, medical, and public health implications that are broader than debates over legally mandated air quality standards.  相似文献   

11.
Time-series of daily mortality data from May 1992 to September 1995 for various portions of the seven-county Philadelphia, PA, metropolitan area were analyzed in relation to weather and a variety of ambient air quality parameters. The air quality data included measurements of size-classified PM, SO4(2-), and H+ that had been collected by the Harvard School of Public Health, as well as routine air pollution monitoring data. Because the various pollutants of interest were measured at different locations within the metropolitan area, it was necessary to test for spatial sensitivity by comparing results for different combinations of locations. Estimates are presented for single pollutants and for multiple-pollutant models, including gaseous pollutants and mutually exclusive components of PM (PM2.5 and coarse particles, SO4(2-) and non-SO4(2-) portions of total suspended particulate [TSP] and PM10), measured on the day of death and the previous day. We concluded that associations between air quality and mortality were not limited to data collected in the same part of the metropolitan area; that is, mortality for one part may be associated with air quality data from another, not necessarily neighboring, part. Significant associations were found for a wide variety of gaseous and particulate pollutants, especially for peak O3. Using joint regressions on peak O3 with various other pollutants, we found that the combined responses were insensitive to the specific other pollutant selected. We saw no systematic differences according to particle size or chemistry. In general, the associations between daily mortality and air pollution depended on the pollutant or the PM metric, the type of collection filter used, and the location of sampling. Although peak O3 seemed to exhibit the most consistent mortality responses, this finding should be confirmed by analyzing separate seasons and other time periods.  相似文献   

12.
Assessment of human exposure to ambient particulate matter   总被引:8,自引:0,他引:8  
Recent epidemiological studies have consistently shown that the acute mortality effects of high concentrations of ambient particulate matter (PM), documented in historic air pollution episodes, may also be occurring at the low to moderate concentrations of ambient PM found in modern urban areas. In London in December 1952, the unexpected deaths due to PM exposure could be identified and counted as integers by the coroners. In modern times, the PM-related deaths cannot be as readily identified, and they can only be inferred as fractional average daily increases in mortality rates using sophisticated statistical filtering and analyses of the air quality and mortality data. The causality of the relationship between exposure to ambient PM and acute mortality at these lower modern PM concentrations has been questioned because of a perception that there is little significant correlation in time between the ambient PM concentrations and measured personal exposure to PM from all sources (ambient PM plus indoor-generated PM). This article shows that the critical factor supporting the plausibility of a linear PM mortality relationship is the expected high correlation in time of people's exposure to PM of ambient origin with measured ambient PM concentrations, as used in the epidemiological time series studies. The presence of indoor and personal sources of PM masks this underlying relationship, leading to confusion in the scientific literature about the strong underlying temporal relationship between personal exposure to PM of ambient origin and ambient PM concentration. The authors show that the sources of PM of non-ambient origin operate independently of the ambient PM concentrations, so that the mortality effect of non-ambient PM, if any, must be independent of the effects of the ambient PM exposures.  相似文献   

13.
In celebration of the 100th anniversary of the Air & Waste Management Association, this review examines the history of air quality management (AQM) in the United States over the last century, with an emphasis on the ambient standards programs established by the landmark 1970 Clean Air Act (CAA) Amendments. The current CAA system is a hybrid of several distinct air pollution control philosophies, including the recursive or circular system driven by ambient standards. Although this evolving system has resulted in tremendous improvements in air quality, it has been far from perfect in terms of timeliness and effectiveness. The paper looks at several periods in the history of the U.S. program, including: (1) 1900-1970, spanning the early smoke abatement and smog control programs, the first federal involvement, and the development of a hybrid AQM approach in the 1970 CAA; (2) 1971-1976, when the first National Ambient Air Quality Standards (NAAQS) were set and implemented; (3) 1977-1993, a period of the first revisions to the standards, new CAA Amendments, delays in implementation and decision-making, and key science/policy/legislative developments that would alter both the focus and scale of air pollution programs and how they are implemented; and (4) 1993-2006, the second and third wave of NAAQS revisions and their implementation in the context of the 1990 CAA. This discussion examines where NAAQS have helped drive implementation programs and how improvements in both effects and air quality/control sciences influenced policy and legislation to enhance the effectiveness of the system over time. The review concludes with a look toward the future of AQM, emphasizing challenges and ways to meet them. The most significant of these is the need to make more efficient progress toward air quality goals, while adjusting the system to address the growing intersections between air quality management and climate change.  相似文献   

14.
The purpose of this study was to analyze quantitative relationships between air pollution and mortality, and to examine the impact of migration on pollution-related mortality functions. Dose-response functions were estimated for intra-urban variations in ambient air quality for the city of Jacksonville, Florida. Indices of air pollution used in this study were sulfur dioxide (SO2) and total suspended particulates (TSP). Ambient air quality was measured by the dispersion of TSP and SO2 across census tracts using the SYMAP dispersion model in conjunction with air quality monitoring stations.

Holding other things constant, TSP apeared to have no statistically significant association with mortality rates. By contrast, the significance of the estimated coefficient for the pollution variable, SO2, supported the contention that there is a positive and statistically significant relationship between air pollution and mortality rates. However, after making a limited test of the impact of migration on dose-response functions, the SO2 pollution variable was no longer statistically significant. That is, recent migrants may have limited exposure to the existing level of SO2 in Jacksonville, Florida, but carry with them long term exposure to more heavily polluted areas in the Northern United States. The results of this study suggest that further epidemiological studies and economic analysis of the health effects on air pollution should make some attempt to control the migration effect.  相似文献   

15.
Health effects of fine particulate air pollution: lines that connect   总被引:46,自引:0,他引:46  
Efforts to understand and mitigate thehealth effects of particulate matter (PM) air pollutionhave a rich and interesting history. This review focuseson six substantial lines of research that have been pursued since 1997 that have helped elucidate our understanding about the effects of PM on human health. There hasbeen substantial progress in the evaluation of PM health effects at different time-scales of exposure and in the exploration of the shape of the concentration-response function. There has also been emerging evidence of PM-related cardiovascular health effects and growing knowledge regarding interconnected general pathophysiological pathways that link PM exposure with cardiopulmonary morbidiity and mortality. Despite important gaps in scientific knowledge and continued reasons for some skepticism, a comprehensive evaluation of the research findings provides persuasive evidence that exposure to fine particulate air pollution has adverse effects on cardiopulmonaryhealth. Although much of this research has been motivated by environmental public health policy, these results have important scientific, medical, and public health implications that are broader than debates over legally mandated air quality standards.  相似文献   

16.
The ongoing program Clean Air for Europe (CAFE) is an initiative from the EU Commission to establish a coordinated effort to reach better air quality in the EU. The focus is on particulate matter as it has been shown to have large impact on human health. CAFE requested that WHO make a review of the latest findings on air pollutants and health to facilitate assessments of the different air pollutants and their health effects. The WHO review project on health aspects of air pollution in Europe confirmed that exposure to particulate matter (PM), despite the lower levels we face today, still poses a significant risk to human health. Using the recommended uniform risk coefficients for health impact assessment of PM, regardless of sources, premature mortality related to long-range transported anthropogenic particles has been estimated to be about 3500 deaths per year for the Swedish population, corresponding to a reduction in life expectancy of up to about seven months. The influence of local sources is more difficult to estimate due to large uncertainties when linking available risk coefficients to exposure data, but the estimates indicate about 1800 deaths brought forward each year with a life expectancy reduction of about 2-3 months. However, some sectors of the population are exposed to quite high locally induced concentrations and are likely to suffer excessive reductions in life expectancy. Since the literature increasingly supports assumptions that combustion related particles are associated with higher relative risks, further studies may shift the focus for abatement strategies. CAFE sets out to establish a general cost effective abatement strategy for atmospheric particles. Our results, based on studies of background exposure, show that long-range transported sulfate rich particles dominate the health effects of PM in Sweden. The same results would be found for the whole of Scandinavia and many countries influenced by transboundary air pollution. However, several health studies, including epidemiological studies with a finer spatial resolution, indicate that engine exhaust particles are more damaging to health than other particles. These contradictory findings must be understood and source specific risk estimates have to be established by expert bodies, otherwise it will not be possible to find the most cost effective abatement strategy for Europe. We are not happy with today's situation where every strategy to reduce PM concentrations is estimated to have the same impact per unit change in the mass concentration. Obviously there is a striking need to introduce more specific exposure variables and a higher geographical resolution in epidemiology as well as in health impact assessments.  相似文献   

17.
ABSTRACT

Recent epidemiological studies have consistently shown that the acute mortality effects of high concentrations of ambient particulate matter (PM), documented in historic air pollution episodes, may also be occurring at the low to moderate concentrations of ambient PM found in modern urban areas. In London in December 1952, the unexpected deaths due to PM exposure could be identified and counted as integers by the coroners. In modern times, the PM-related deaths cannot be as readily identified, and they can only be inferred as fractional average daily increases in mortality rates using sophisticated statistical filtering and analyses of the air quality and mortality data. The causality of the relationship between exposure to ambient PM and acute mortality at these lower modern PM concentrations has been questioned because of a perception that there is little significant correlation in time between the ambient PM concentrations and measured personal exposure to PM from all sources (ambient PM plus indoor-generated PM).

This article shows that the critical factor supporting the plausibility of a linear PM mortality relationship is the expected high correlation in time of people's exposure to PM of ambient origin with measured ambient PM concentrations, as used in the epidemiological time series studies. The presence of indoor and personal sources of PM masks this underlying relationship, leading to confusion in the scientific literature about the strong underlying temporal relationship between personal exposure to PM of ambient origin and ambient PM concentration. The authors show that the sources of PM of non-ambient origin operate independently of the ambient PM concentrations, so that the mortality effect of non-ambient PM, if any, must be independent of the effects of the ambient PM exposures.  相似文献   

18.

Introduction  

Urban ambient air pollution exposures continue to be a global public health concern. Although air quality targets are often exceeded in Lisbon, the largest city in Portugal, there is currently no study that has assessed the quantitative impact of these pollutants on daily mortality.  相似文献   

19.
Abstract

Data from the U.S. Environmental Protection Agency Air Quality System, the Southeastern Aerosol Research and Characterization database, and the Assessment of Spatial Aerosol Composition in Atlanta database for 1999 through 2002 have been used to characterize error associated with instrument precision and spatial variability on the assessment of the temporal variation of ambient air pollution in Atlanta, GA. These data are being used in time series epidemiologic studies in which associations of acute respiratory and cardiovascular health outcomes and daily ambient air pollutant levels are assessed. Modified semivariograms are used to quantify the effects of instrument precision and spatial variability on the assessment of daily metrics of ambient gaseous pollutants (SO2, CO, NOx, and O3) and fine particulate matter ([PM2.5] PM2.5 mass, sulfate, nitrate, ammonium, elemental carbon [EC], and organic carbon [OC]). Variation because of instrument imprecision represented 7–40% of the temporal variation in the daily pollutant measures and was largest for the PM2.5 EC and OC. Spatial variability was greatest for primary pollutants (SO2, CO, NOx, and EC). Population–weighted variation in daily ambient air pollutant levels because of both instrument imprecision and spatial variability ranged from 20% of the temporal variation for O3 to 70% of the temporal variation for SO2 and EC. Wind rose plots, corrected for diurnal and seasonal pattern effects, are used to demonstrate the impacts of local sources on monitoring station data. The results presented are being used to quantify the impacts of instrument precision and spatial variability on the assessment of health effects of ambient air pollution in Atlanta and are relevant to the interpretation of results from time series health studies that use data from fixed monitors.  相似文献   

20.
Liu  Yao  Zhao  Shi  Li  Yifan  Song  Wanmei  Yu  Cuixiang  Gao  Lei  Ran  Jinjun  He  Daihai  Li  Huaichen 《Environmental science and pollution research international》2021,28(22):27757-27768
Environmental Science and Pollution Research - Few studies conducted in China have assessed the effects of ambient air pollution exposure on tuberculosis (TB) risk and mortality, especially with a...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号