首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Volatile organic compounds (VOCs) are important precursors of tropospheric ozone formation. Isoprene contributions to ozone formation by using ambient mixing ratios are generally underestimated because of rapid chemical losses. In this study, ambient mixing ratios of major VOC species were continuously measured at Peking university (PKU) and YUFA, urban and sub-urban sites in Beijing, the city that will host 2008 Olympic Games. The observed mixing ratios of methyl vinyl ketone (MVK), methacrolein (MACR) and isoprene were used to derive the mixing ratios of initial isoprene, which means the ambient isoprene level before it undergoes any photochemical reaction with OH radicals. The average mixing ratios of initial isoprene were 3.3±1.6 and 2.9±1.5 ppbv at PKU and YUFA sites, respectively. The percentages of initial isoprene in total initial VOCs were 10.8% at PKU site and 11.4% at YUFA site, in reasonable agreement with the isoprene contribution in total VOC emissions as derived from source inventories. Maximum increment reactivity (MIR) was used to evaluate the ozone formation potential (OFP) for major VOC species. The OFP for initial isoprene accounted for 23% of the total OFPs for all measured species, compared to 11% using ambient mixing ratios of isoprene at PKU site. Similarly, at YUFA site, the ambient measured isoprene and initial isoprene contributed 10% and 22%, respectively, to the OFPs for total measured VOCs. It seems that isoprene has similar contribution to ozone formation at both sites in Beijing city.  相似文献   

2.
The stable-carbon kinetic isotope effects (KIEs) associated with the production of methacrolein (MACR) and methyl vinyl ketone (MVK) from the reactions of isoprene with ozone and OH radicals were studied in a 25 L reaction chamber at (298±2) K and ambient pressure. The time dependence of both the stable-carbon isotope ratios and the concentrations was determined using a gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) system. The average yields of 13C-containing MACR and MVK generated from the ozone reaction of 13C-containing isoprene differed by ?3.6‰ and ?4.5‰, respectively, from the yields for MACR and MVK containing only 12C. For MACR and MVK generated from the OH-radical oxidation of isoprene the corresponding values were ?3.8‰ and ?2.2‰, respectively. These values indicate a significant depletion in the 13C abundance of MACR and MVK upon their formation relative to isoprene’s pre-reaction 13C/12C ratio, which is supported by theoretical interpretations of the oxidation mechanism of isoprene and its 13C-substituted isotopomers. Numerical model calculations of the isoprene + O3 reaction predicted a similar depletion in 13C for both reaction products upon production. Furthermore, the model predicts mixing ratios and stable carbon delta values for isoprene, MACR, and MVK that were in agreement with the experimental results. The combined knowledge of isotope enrichment values with KIEs will reduce uncertainties in determinations of the photochemical histories of isoprene, MACR, and MVK in the troposphere. The studies presented here were conducted with using isoprene without any artificial isotope enrichment or depletion and it is therefore very likely that these results are directly applicable to the interpretation of studies of isoprene oxidation using stable carbon isotope ratio measurements.  相似文献   

3.
A field experiment was conducted in August 1998 to investigate the concentrations of isoprene and isoprene reaction products in the surface and mixed layers of the atmosphere in Central Texas. Measured near ground-level concentrations of isoprene ranged from 0.3 (lower limit of detection – LLD) to 10.2 ppbv in rural regions and from 0.3 to 6.0 ppbv in the Austin urban area. Rural ambient formaldehyde levels ranged from 0.4 ppbv (LLD) to 20.0 ppbv for 160 rural samples collected, while the observed range was smaller at Austin (0.4–3.4 ppbv) for a smaller set of samples (37 urban samples collected). Methacrolein levels did not vary as widely, with rural measurements from 0.1 ppbv (LLD) to 3.7 ppbv and urban concentrations varying between 0.2 and 5.7 ppbv. Isoprene flux measurements, calculated using a simple box model and measured mixed-layer isoprene concentrations, were in reasonable agreement with emission estimates based on local ground cover data. Ozone formation attributable to biogenic hydrocarbon oxidation was also calculated. The calculations indicated that if the ozone formation occurred at low VOC/NOx ratios, up to 20 ppbv of ozone formed could be attributable to biogenic photooxidation. In contrast, if the biogenic hydrocarbon reaction products were formed under low NOx conditions, ozone production attributable to biogenics oxidation would be as low as 1 ppbv. This variability in ozone formation potentials implies that biogenic emissions in rural areas will not lead to peak ozone levels in the absence of transport of NOx from urban centers or large rural NOx sources.  相似文献   

4.
Surface ozone records from ten polar research stations were investigated for the dependencies of ozone on radiative processes, snow-photochemisty, and synoptic and stratospheric transport. A total of 146 annual data records for the Arctic sites Barrow, Alaska; Summit, Greenland; Alert, Canada; Zeppelinfjellet, Norway; and the Antarctic stations Halley, McMurdo, Neumayer, Sanae, Syowa, and South Pole were analyzed. Mean ozone at the Northern Hemisphere (NH) stations (excluding Summit) is ∼5 ppbv higher than in Antarctica. Statistical analysis yielded best estimates for the projected year 2005 median annual ozone mixing ratios, which for the Arctic stations were 33.5 ppbv at Alert, 28.6 ppbv at Barrow, 46.3 ppbv ppb at Summit and 33.7 ppbv at Zeppelinfjellet. For the Antarctic stations the corresponding ozone mixing ratios were 21.6 ppbv at Halley, 27.0 ppbv at McMurdo, 24.9 ppbv at Neumayer, 27.2 ppbv at Sanae, 29.4 ppbv at South Pole, and 25.8 ppbv at Syowa. At both Summit (3212 m asl) and South Pole (2830 m asl), annual mean ozone is higher than at the lower elevation and coastal stations. A trend analysis revealed that all sites in recent years have experienced low to moderate increases in surface ozone ranging from 0.02 to 0.26 ppbv yr−1, albeit none of these changes were found to be statistically significant trends. A seasonal trend analysis showed above-average increases in ozone during the spring and early summer periods for both Arctic (Alert, Zeppelinfjellet) and Antarctic (McMurdo, Neumayer, South Pole) sites. In contrast, at Barrow, springtime ozone has been declining. All coastal stations experience springtime episodes with rapid depletion of ozone in the boundary layer, attributable to photochemically catalyzed ozone depletion from halogen chemistry. This effect is most obvious at Barrow, followed by Alert. Springtime depletion episodes are less pronounced at Antarctic stations. At South Pole, during the Antarctic spring and summer, photochemical ozone production yields frequent episodes with enhanced surface ozone. Other Antarctic stations show similar, though less frequent spring and summertime periods with enhanced ozone. The Antarctic data provide evidence that austral spring and summertime ozone production in Antarctica is widespread, respectively, affects all stations at least through transport events. This ozone production contributes to a several ppbv enhancement in the annual mean ozone over the Antarctic plateau; however, it is not the determining process in the Antarctic seasonal ozone cycle. Although Summit and South Pole have many similarities in their environmental conditions, this ozone production does not appear to be of equal importance at Summit. Amplitudes of diurnal, summertime ozone cycles at these polar sites are weaker than at lower latitude locations. Amplitudes of seasonal ozone changes are larger in the Southern Hemisphere (by ∼5 ppbv), most likely due to less summertime photochemical ozone loss and more transport of ozone-rich air to the Arctic during the NH spring and summer months.  相似文献   

5.
The impact of biogenic volatile organic compound (BVOC) emissions on European ozone distributions has not yet been evaluated in a comprehensive way. Using the CHIMERE chemistry-transport model the variability of surface ozone levels from April to September for 4 years (1997, 2000, 2001, 2003) resulting from biogenic emissions is investigated. It is shown that BVOC emissions increased on average summer daily ozone maxima over Europe by 2.5 ppbv (5%). The impact is most significant in Portugal (up to 15 ppbv) and in the Mediterranean region (about 5 ppbv), being smaller in the northern part of Europe (1.3 ppbv north of 47.5°N). The average impact is rather similar for the three summers (1997, 2000, 2001), but is much larger during the extraordinarily hot summer of 2003. Here, the biogenic contribution to surface ozone doubles compared to other years at some locations. Interaction with anthropogenic NOx emissions is found to be a key process for ozone production of biogenic precursors. Comparing the impact of the state-of-the-art BVOC emission inventory compiled within the NatAir project and an earlier, widely used BVOC inventory derived from Simpson et al. [1999. Inventorying emissions from nature in Europe. Journal of Geophysical Research 104(D7), 8113–8152] on surface ozone shows that ozone produced from biogenic precursors is less in central and northern Europe but in certain southern areas much higher e.g. Iberian Peninsula and the Mediterranean Sea. The uncertainty in the regionally averaged impact of BVOC on ozone build-up in Europe is estimated to be ±50%.  相似文献   

6.
Ozone peaks with mixing ratios as high as 138 ppbv were observed in the lower troposphere (2.5–4.5 km) over Hong Kong in spring. Simultaneously observed high humidity suggests that this enhanced ozone was not the result of transport from the upper troposphere. Back trajectory analysis suggests that these enhancements resulted from lateral transport. Air masses arriving at the altitude of the ozone peaks appear to have passed over continental Southeast Asia where the bulk of biomass burning occurs at this time of the year (February–April). We hypothesize that biomass burning in this region provided the necessary precursors for the observed ozone enhancement. As far as we know this is the first observation of highly enhanced ozone layers associated with biomass burning in continental Southeast Asia.  相似文献   

7.
A four and a half year study of ozone concentrations in the Central Mediterranean was carried out between January 1997 and August 2001 on a background monitoring station located on the island of Gozo midway between Southern Europe and North Africa.Seasonal and diurnal variations of background ozone are documented. They show the existence of seasonal cycles with a primary maximum in spring followed by a secondary, more variable maximum in summer which indicates that photochemically produced ozone is being transported over the Mediterranean to the rural island of Gozo. Although peak ozone concentrations seldom exceeded 100 ppbv during summer, the background ozone-mixing ratios (as monthly averages) are some of the highest values which can be found at low latitude sites throughout the world. An increasing trend in the annual background ozone concentration from 48.2 ppbv in 1997 to 52.2 ppbv in 2000 is observed. During wintertime the average ozone mixing-ratio (as monthly averages) of 44 ppbv in December is approximately twice as high as on the European continent. This may imply that on Malta, due to higher average ozone concentrations between autumn and spring (the main growing season), crop damage of high economic value may occur.  相似文献   

8.
Measurement of ambient gas-phase total peroxides was performed at the summit of Mount Tai (Mt. Tai, 1534 m above sea level) in central-eastern China during March 22–April 24 and June 16–July 20, 2007. The hourly averaged concentration of peroxides was 0.17 ppbv (± 0.16 ppbv, maximum: 1.28 ppbv) and 0.55 ppbv (± 0.67 ppbv, maximum: 3.55 ppbv) in the spring and summer campaigns, respectively. The average concentration of peroxides at Mt. Tai, which is in a heavily polluted region, was much lower than hydrogen peroxide measurements made at some rural mountain sites, suggesting that significant removal processes took place in this region. An examination of diurnal variation and a correlation analysis suggest that these removal processes could include chemical suppression of peroxide production due to the scavenging of peroxy and hydroxy radicals by high NOx, wet removal by clouds/fogs rich in dissolved sulfur dioxide which reacts quickly with peroxides, and photolysis. These sinks competed with photochemical sources of peroxides, resulting in different mean concentrations and diurnal pattern of peroxides in the spring and summer. A principal component analysis was conducted to quantify the major processes that influenced the variation of peroxide concentrations. This analysis shows that in the spring photochemical production was an important source of peroxides, and the major sink was scavenging during upslope transport of polluted and humid air from the lower part of the planetary boundary layer (PBL) and wet removal by synoptic scale clouds. During the summer, highly polluted PBL air (with high NOx) was often associated with very low peroxides due to the chemical suppression of HO2 by high NOx and wet-removal by clouds/fogs in this sulfur-rich atmosphere, especially during the daytime. Higher concentrations of peroxides, which often appeared at mid-nighttime, were mainly associated with subsidence of air masses containing relatively lower concentrations of NOy.  相似文献   

9.
In the United States, fertilized corn fields, which make up approximately 5% of the total land area, account for approximately 45% of total soil NOx emissions. Leaf chamber measurements were conducted of NO and NO2 fluxes between individual corn leaves and the atmosphere in (1) field-grown plants near Champaign, IL (USA) in order to assess the potential role of corn canopies in mitigating soil–NOx emissions to the atmosphere, and (2) greenhouse-grown plants in order to study the influence of various environmental variables and physiological factors on the dynamics of NO2 flux. In field-grown plants, fluxes of NO were small and inconsistent from plant to plant. At ambient NO concentrations between 0.1 and 0.3 ppbv, average fluxes were zero. At ambient NO concentrations above 1 ppbv, NO uptake occurred, but fluxes were so small (14.3±0.0 pmol m−2 s−1) as to be insignificant in the NOx inventory for this site. In field-grown plants, NO2 was emitted to the atmosphere at ambient NO2 concentrations below 0.9 ppbv (the NO2 compensation point), with the highest rate of emission being 50 pmol m−2 s−1 at 0.2 ppbv. NO2 was assimilated by corn leaves at ambient NO2 concentrations above 0.9 ppbv, with the maximum observed uptake rate being 643 pmol m−2 s−1 at 6 ppbv. When fluxes above 0.9 ppbv are standardized for ambient NO2 concentration, the resultant deposition velocity was 1.2±0.1 mm s−1. When scaled to the entire corn canopy, NO2 uptake rates can be estimated to be as much as 27% of the soil-emitted NOx. In greenhouse-grown and field-grown leaves, NO2 deposition velocity was dependent on incident photosynthetic photon flux density (PPFD; 400–700 nm), whether measured above or below the NO2 compensation point. The shape of the PPFD dependence, and its response to ambient humidity in an experiment with greenhouse-grown plants, led to the conclusion that stomatal conductance is a primary determinant of the PPFD response. However, in field-grown leaves, measured NO2 deposition velocities were always lower than those predicted by a model solely dependent on stomatal conductance. It is concluded that NO2 uptake rate is highest when N availability is highest, not when the leaf deficit for N is highest. It is also concluded that the primary limitations to leaf-level NO2 uptake concern both stomatal and mesophyll components.  相似文献   

10.
The temporal and spatial distributions of boundary-layer ozone were studied during June 2000 at Summit, Greenland, using surface-level measurements and vertical profiling from a tethered balloon platform. Three weeks of continuous ozone surface data, 133 meteorological vertical profile data and 82 ozone vertical profile data sets were collected from the surface to a maximum altitude of 1400 m above ground.The lower atmosphere at Summit was characterized by the prevalence of strong stable conditions with strong surface temperature inversions. These inversions reversed to neutral to slightly unstable conditions between ∼9.00 and 18.00 h local time with the formation of shallow mixing heights of ∼70–250 m above the surface.The surface ozone mixing ratio ranged from 39 to 68 ppbv and occasionally had rapid changes of up to 20 ppb in 12 h. The diurnal mean ozone mixing ratio showed diurnal trends indicating meteorological and photochemical controls of surface ozone. Vertical profiles were within the range of 37–76 ppb and showed strong stratification in the lower troposphere. A high correlation of high ozone/low water vapor air masses indicated the transport of high tropospheric/low stratospheric air into the lower boundary layer. A ∼0.1–3 ppb decline of the ozone mixing ratio towards the surface was frequently observed within the neutrally stable mixed layer during midday hours. These data suggest that the boundary-layer ozone mixing ratio and ozone depletion and deposition to the snowpack are influenced by photochemical processes and/or transport phenomena that follow diurnal dependencies. With 37 ppb of ozone being the lowest mixing ratio measured in all data no evidence was seen for the occurrence of ozone depletion episodes similar to those that have been reported within the boundary layer at coastal Arctic sites during springtime.  相似文献   

11.
Frequent smog episodes occur during spring, summer, and autumn in Insubria, Northern Italy. On a test site in this area the atmospheric concentration of the photo-oxidants ozone and peroxyacetyl nitrate has been monitored over a year (2000) together with ozone precursors listed in the European Union Air Quality Directive 2002/3/EC, such as nitrous oxides (NOX) and volatile organic compounds (VOC) including hydrocarbons and carbonyls. The results of this study revealed a strong impact of biogenic isoprene on the air quality.In winter isoprene was detected at the ppt level and correlated with anthropogenic VOC. However, during the growing season isoprene exhibited a distinct diurnal variation with maximum concentrations late in the afternoon reaching up 70 ppbC attributed to strong emissions from the abundant vegetation of broad-leaf deciduous trees in this area. A new HPLC-MS method was developed for the determination of isoprene's primary atmospheric oxidation products methacrolein as its 2,4-dinitrophenylhydrazone and methyl vinyl ketone as an unusual double derivative with 2,4-dinitrophenylhydrazine. Methacrolein and methyl vinyl ketone followed the same diurnal and annual trends as isoprene. The average monthly concentration of isoprene and these products ranged from around 10 ppbC in June, July and September to 20 ppbC in August, which constitutes 15–30% of C3–C9 VOCs. The contribution from isoprene photo-oxidation to the ambient air formaldehyde concentrations was also found to be high during this period ranging from 30% to 60% in May, June, July and August.From the atmospheric VOC and NOX concentrations the local photochemical ozone formation was estimated by the incremental reactivity approach. The calculations showed that in summer isoprene's contribution to the local ozone formation was as high as 50–75%.  相似文献   

12.
Mixing ratios of carbon monoxide (CO), methane (CH4), non-methane hydrocarbons, halocarbons and alkyl nitrates (a total of 72 species) were determined for 78 whole air samples collected during the winter of 1998–1999 in Karachi, Pakistan. This is the first time that volatile organic compound (VOC) levels in Karachi have been extensively characterized. The overall air quality of the urban environment was determined using air samples collected at six locations throughout Karachi. Methane (6.3 ppmv) and ethane (93 ppbv) levels in Karachi were found to be much higher than in other cities that have been studied. The very high CH4 levels highlight the importance of natural gas leakage in Karachi. The leakage of liquefied petroleum gas contributes to elevated propane and butane levels in Karachi, although the propane and butane burdens were lower than in other cities (e.g., Mexico City, Santiago). High levels of benzene (0.3–19 ppbv) also appear to be of concern in the Karachi urban area. Vehicular emissions were characterized using air samples collected along the busiest thoroughfare of the city (M.A. Jinnah Road). Emissions from vehicular exhaust were found to be the main source of many of the hydrocarbons reported here. Significant levels of isoprene (1.2 ppbv) were detected at the roadside, and vehicular exhaust is estimated to account for about 20% of the isoprene observed in Karachi. 1,2-Dichloroethane, a lead scavenger added to leaded fuel, was also emitted by cars. The photochemical production of ozone (O3) was calculated for CO and the various VOCs using the Maximum Incremental Reactivity (MIR) scale. Based on the MIR scale, the leading contributors to O3 production in Karachi are ethene, CO, propene, m-xylene and toluene.  相似文献   

13.
Surface O3 and CO were measured at Cape D’Aguilar, Hong Kong during the period of January 1994 to December1996 in order to understand the temporal variations of surface O3 and CO in East Asia–West Pacific region. The isentropic backward trajectories were used to isolate different air masses reaching the site and to analyze the long-range transport and photochemical buildup of O3 on a regional scale. The results show that the diurnal variation of surface O3 was significant in all seasons with daily O3 production being about 20 ppbv in fall and 10 ppbv in winter, indicating more active photochemical processes in the subtropical region. The distinct seasonal cycles of O3 and CO were found with a summer minimum (16 ppbv)–fall maximum (41 ppbv) for O3 and a summer minimum (116 ppbv)–winter maximum (489 ppbv) for CO. The isentropic backward trajectory cluster analyses suggest that the air masses (associated with regional characteristics) to the site can be categorized into five groups, which are governed by the movement of synoptic weather systems under the influence of the Asian monsoon. For marine-originated air masses (M-SW, M-SE and M-E, standing for marine-southwest, marine-southeast and marine-east, respectively) which always appear in summer and spring, the surface O3 and CO have relatively lower mixing ratios (18, 16 and 30 ppbv for O3, 127, 134 and 213 ppbv for CO), while the continental air masses (C-E and C-N, standing for continent-east and continent-north, respectively) usually arrive at the site in winter and fall seasons with higher O3 (43 and 48 ppbv) and CO (286 and 329 ppbv). The 43 ppbv O3 and 286 ppbv CO are representative of the regionally polluted continental outflow air mass due to the anthropogenic activity in East Asia, while 17 ppbv O3 and 131 ppbv CO can be considered as the signature of the approximately clean marine background of South China Sea. The very high CO values (461–508 ppbv) during winter indicate that the long-range transport of air pollutants from China continent is important at the monitoring site. The fall maximum (35–46 ppbv) of surface O3 was believed to be caused by the effects of the weak slowly moving high-pressure systems which underlie favorable photochemical production conditions and the long-range transport of aged air masses with higher O3 and its precursors.  相似文献   

14.
In this study, we will present evidence that aerosol particles have strong effects on the surface ozone concentration in a highly polluted city in China. The measured aerosol (PM10), UV flux, and O3 concentrations were analyzed from 1 November (1 Nov) to 7 November (7 Nov) 2005 in Tianjin, China. During this period, the aerosol concentration had a strong day-by-day variation, ranging from 0.2 to 0.6 mg m−3. The ozone concentration also shows a strong variability in correlation with the aerosol concentration. During 1 Nov, 2 Nov, 6 Nov, and 7 Nov, the ozone concentration was relatively high (about 30–35 ppbv; defined as a high-ozone period), and during 3 Nov to 5 Nov, the ozone concentration was relatively low (about 5–20 ppbv; defined as a low-ozone period). The analysis of the measurement shows that the ozone concentration is strongly correlated to the measured UV flux. Because there were near cloud-free conditions between 1 Nov and 7 Nov, the variation of the UV flux mainly resulted from the variation of aerosol concentration. The result shows that higher aerosol concentrations produce a lower UV flux and lower ozone concentrations. By contrast, the lower aerosol concentration leads to a higher UV flux and higher ozone concentrations. A chemical mechanism model (NCAR MM) is applied to interpret the measurement. The model result shows that the extremely high aerosol concentration in this polluted city has a very strong impact on photochemical activities and ozone formation. The correlation between aerosol and ozone concentrations appears in a non-linear feature. The O3 concentration is very sensitive to aerosol loading when aerosol loading is high, and this sensitivity is reduced when aerosol loading is low. For example, the ratio of Δ[O3]/Δ[AOD] is about −16 ppbv AOD−1 when AOD is less than 2, and is only −4 ppbv AOD−1 when AOD is between 2 and 5. This result implies that a future decrease in aerosol loading could lead to a rapid increase in the O3 concentration in this region.  相似文献   

15.
The use of alcohol fuel has received much attention since 1980s. In Brazil, ethanol-fueled vehicles have been currently used on a large scale. This paper reports the atmospheric methanol, ethanol and isopropanol concentrations which were measured from May to December 1997, in Osaka, Japan, where alcohol fuel was not used, and from 3 to 9 February 1998, in Sao Paulo, Brazil, where ethanol fuel was used. The alcohols were determined by the alkyl nitrite formation reaction using gas chromatography (GC-ECD) analysis. The concentration of atmospheric alcohols, especially ethanol, measured in Sao Paulo were significantly higher than those in Osaka. In Osaka, the average concentrations of atmospheric methanol, ethanol, and isopropanol were 5.8±3.8, 8.2±4.6, and 7.2±5.9 ppbv, respectively. The average ambient levels of methanol, ethanol, and isopropanol measured in Sao Paulo were 34.1±9.2, 176.3.±38.1, and 44.2±13.7 ppbv, respectively. The ambient levels of aldehydes, which were expected to be high due to the use of alcohol fuel, were also measured at these sampling sites. The atmospheric formaldehyde average concentration measured in Osaka was 1.9±0.9 ppbv, and the average acetaldehyde concentration was 1.5±0.8 ppbv. The atmospheric formaldehyde and acetaldehyde average concentrations measured in Sao Paulo were 5.0±2.8 and 5.4±2.8 ppbv, respectively. The C2H5OH/CH3OH and CH3CHO/HCHO were compared between the two measurement sites and elsewhere in the world, which have already been reported in the literature. Due to the use of ethanol-fueled vehicles, these ratios, especially C2H5OH/CH3OH, are much higher in Brazil than these measured elsewhere in the world.  相似文献   

16.
Ambient biogenic hydrocarbons were monitored in a forested site in Northern Greece during the summer of 1997 as part of the AEROBIC campaign. Significant concentrations of isoprene were observed, consistent with enclosure measurements presented in the previous paper (Harrison et al., 2001, Atmospheric Environment 35, 4687–4698). In addition, significant concentrations of monoterpenes were observed (nighttime maximum of 2.9 ppbv for total monoterpene concentration). Isoprene and the monoterpenes exhibited pronounced, but different, diurnal cycles which are interpreted via enclosure and OH measurements. The combination of relatively high emission rates at a time when OH concentrations are significantly lower leads to peak isoprene concentrations (∼3.0 ppbv) during the late evening. The temporal behaviour of the biogenic hydrocarbons is used to interpret the radical chemistry at the site and may indicate the presence of high (∼1×106 cm−3) nighttime concentrations of the OH radical. Biogenic hydrocarbon measurements were supported by a range of organic and inorganic measurements which are also presented in this paper.  相似文献   

17.
The objective of this research was to develop a statistical model to predict one day in advance both the maximum and 8 h (10 am–5 pm) average ozone for Houston (TX). A loess/generalized additive model (GAM) approach was taken to model development. Ozone data (1983–1991) from ten stations in the immediate Houston area were used in the study. The meteorological data came from the Houston International Airport. The models were developed using data for April through October for 1983–1987 and 1989–1990. Forecasts were developed for 1988 and 1991. The final model, which was multiplicative in nature, contained three interaction terms for the west/east and south/north wind components (average of hourly values from 8 pm to 5 am, 6 am to 9 am, and 10 am to 5 pm). Opaque cloud cover (averaged over the period 10  am to 5 pm), yesterday’s maximum ozone, today’s maximum temperature and morning mixing depth were also important variables in the model.Individual forecasts were generated for all ten stations in the Houston area using observed meteorology. In addition forecasts were produced for three measures of the network as a whole. The root-mean-square prediction error for the 8 h average forecasts ranged from 13.2 to 16.3 ppb (with R2 ranging from 0.66 to 0.73) for the individual stations and from 18.5 to 22.0 ppb (with R2 ranging from 0.61 to 0.68) for maximum ozone. A detailed examination was undertaken for a day on which the forecast was much too low.  相似文献   

18.
Photochemical production of formaldehyde (HCHO) was measured in rainwater from 13 precipitation events in Wilmington, North Carolina, USA under conditions of simulated sunlight. HCHO concentrations increased in all samples irradiated with no changes observed in dark controls. HCHO photoproduction rates were strongly correlated with dissolved organic carbon (DOC) suggesting HCHO was derived from direct or indirect photolysis of rainwater DOC. The higher photoproduction rates (0.03–2.9 μM h?1) relative to those reported for surface waters suggests that rainwater DOC is more photolabile in terms of HCHO production than surface waters. HCHO photoproduction rates were higher in growing season (1.0 ± 1.0 μM h?1) compared to non-growing season (0.08 ± 0.05 μM h?1) even when rates were normalized for DOC (6.8 ± 3.6 μM h?1 mM C?1 versus 1.8 ± 1.0 μM h?1 mM C?1). The higher growing season rate may be related to seasonal differences in the composition of DOC as evidenced by differences in fluorescence per unit carbon of rainwater samples. Irradiation of C18 extracts of rainwater also produced HCHO, but at lower rates compared to corresponding whole rain samples, suggesting that hydrophyllic components of rainwater play a role in HCHO photoproduction. Our results indicate that photolysis of rainwater DOC produces significant amounts of HCHO, and possibly other low molecular weight organic compounds, likely increasing its reactivity and bioavailability.  相似文献   

19.
In the Aguere Valley (in the oceanic boundary layer at Tenerife, 28°N, 16°W, 580 m a.s.l.) the ozone levels were monitored for ambient air quality assessment. Although precursors are emitted in this area, the strong correlation between ozone levels and wind velocity indicates that ozone is transported into the valley from the ocean. The inland ozone supply along the valley is induced by an orographic channelling effect of the northern oceanic air masses. The highest ozone concentrations are mostly recorded during the nocturnal stage under the influence of fresh oceanic air masses, and during high wind speed events. The seasonal cycle is characterised by elevated ozone mixing ratios in the spring (nighttime levels >45 ppbv) and low mixing ratios in the summer (nighttime levels in the range 20–35 ppbv). Back-trajectory analysis shows that the ozone monitored in the Aguere Valley is associated with long-range transport processes. High ozone events in the spring are associated with transport from upper tropospheric levels, both over the North Atlantic-high latitudes (>45°N) and Europe. This downward transport was observed in the western edge of upper tropospheric cyclones, which suggests that the upper tropospheric/low stratospheric ozone sources play a significant role. In summer, ozone is mainly transported from the North Atlantic-high latitudes (>45°N) and from mid- to low-tropospheric levels. In autumn and winter, the high ozone concentrations are transported from sources located a few km above the North Atlantic-high latitudes (>45°N) and over Europe. The Central-North Atlantic (<45°N) and North Africa are not significant sources of ozone. The high spring and lower summer ozone events in the Aguere Valley agree with other North Atlantic ozone observation in the oceanic boundary layer. However, this behaviour contrasts with the high ozone events frequently recorded at Izaña BAPMoN station (located in the free troposphere in Tenerife) during the summer, which have been attributed in the literature to downward transport from upper levels. An intensification of the inversion layer that separates the oceanic boundary layer of the free troposphere during the summer in Canary Islands is interpreted as the cause of this different behaviour between ozone in the Aguere Valley and Izaña BAPMoN station.  相似文献   

20.
Atmospheric levels of formaldehyde and acetaldehyde as well as their diurnal and seasonal variations were investigated from 1994 to 1997 in downtown Rome during sunny and wind calm days. Hourly concentrations of formaldehyde ranged from 8 to 28 ppbV in summer and 7 to 17 ppbv in winter; acetaldehyde concentrations varied correspondingly within the 3–18 and 2–7 ppbv intervals. Percentages of both aldehydes photochemically produced were estimated through a simple relationship based upon the comparison of individual ratios of formaldehyde and acetaldehyde to toluene in ambient air and automobile emission. Photochemical production was found to weigh upon atmospheric levels for 80–90% in summer days. It dropped below 35% in the winter period, when direct emission from traffic largely predominated. Photochemical summer source was more efficient for acetaldehyde than for formaldehyde, especially in the early morning. The importance of formaldehyde as the major source of hydroxyl radicals in Rome was also assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号