首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultralow sulfur diesel blended with biodiesel and ethanol to investigate the gaseous emissions of the engine under five engine loads at the maximum torque engine speed of 1800 rev min?1. Four biodiesel blended fuels and four ethanol blended fuels with oxygen concentrations of 2%, 4%, 6% and 8% were used. With the increase of oxygen content in the blended fuels, the brake thermal efficiency improves slightly.For the diesel-biodiesel fuels, the brake specific HC and CO emissions decrease while the brake specific NOx and NO2 emissions increase. The emissions of formaldehyde, 1,3-butadiene, toluene, xylene and overall BTX (benzene, toluene, xylene) in general decrease, however, acetaldehyde and benzene emissions increase. For the diesel-ethanol fuels, the brake specific HC and CO emissions increase significantly at low engine load, NOx emission decreases at low engine load but increases at high engine load. The emissions of benzene and BTX vary with engine load and ethanol content. Similar to the biodiesel-diesel fuels, the formaldehyde, 1,3-butadiene, toluene and xylene emissions decrease while the acetaldehyde and NO2 emissions increase. Despite having the same oxygen contents in the blended fuels, there are significant differences in the gaseous emissions between the biodiesel-diesel blends and the ethanol-diesel blends.  相似文献   

2.
A study to characterize primary particulate matter (PM2.5 and PM10) from the French vehicular fleet was conducted during winter 2008, in a tunnel in Marseille, France. The carbonaceous fraction represents 70% of the aerosol mass and elemental carbon fraction (EC) represent 60% of the carbonaceous fraction. The organic carbon OC was characterized in term of its water soluble fraction, functionalization rate and HULIS content. Seventy trace organic compounds including alkanes, polycyclic aromatic hydrocarbons (PAH), petroleum biomarkers and carboxylic acids were also quantified, in order to determine an organic emission profile for chemical mass balance modeling studies. Such source profiles were still missing in Europe and particularly in France. The profile obtained in this study is consistent with profiles determined in tunnel or dynamometer studies performed in other countries during the last ten years. These results suggest that organic compounds profiles from vehicular exhaust emissions are not significantly influenced by the geographic area and are thus suitable for use in aerosol source apportionment modeling applied across extensive regions. The chemical profile determined here is very similar to those obtained for diesel emissions with high concentrations of EC relative to OC (EC/OC = 1.8) and low concentrations of the higher molecular weight PAH. These results are consistent with the high proportion of diesel vehicles in the French fleet (49%).  相似文献   

3.
Fine particles (PM2.5) and nanoparticles (PM0.1) were sampled using Dichotomous sampler and MOUDI, respectively, in Xueshan Tunnel, Taiwan. Eight carbon fractions were analyzed using IMPROVE thermal-optical reflectance (TOR) method. The concentrations of different temperature carbon fractions (OC1–OC4, EC1–EC3) in both PM2.5 and PM0.1 were measured and the correlations between OC and EC were discussed. Results showed that the ratios of OC/EC were 1.26 and 0.67 for PM2.5 and PM0.1, respectively. The concentration of EC1 was found to be more abundant than other elemental carbon fractions in PM2.5, while the most abundant EC fraction in PM0.1 was found to be EC2. The variation of contributions for elemental carbon fractions was different among PM2.5 and PM0.1 samples, which was partly owing to the metal catalysts for soot oxidation. The correlations between char-EC and soot-EC showed that char-EC dominated EC in PM2.5 while soot-EC dominated EC in PM0.1. Using eight individual carbon fractions, the gasoline and diesel source profiles of PM0.1 and PM2.5 were extracted and analyzed with the positive matrix factorization (PMF) method.  相似文献   

4.
Particulate matter, including coarse particles (PM2.5–10, aerodynamic diameter of particle between 2.5 and 10 μm) and fine particles (PM2.5, aerodynamic diameter of particle lower than 2.5 μm) and their compositions, including elemental carbon, organic carbon, and 11 water-soluble ionic species, and elements, were measured in a tunnel study. A comparison of the six-hour average of light-duty vehicle (LDV) flow of the two sampling periods showed that the peak hours over the weekend were higher than those on weekdays. However, the flow of heavy-duty vehicles (HDVs) on the weekdays was significant higher than that during the weekend in this study. EC and OC content were 49% for PM2.5–10 and 47% for PM2.5 in the tunnel center. EC content was higher than OC content in PM2.5–10, but EC was about 2.3 times OC for PM2.5. Sulfate, nitrate, ammonium were the main species for PM2.5–10 and PM2.5. The element contents of Na, Al, Ca, Fe and K were over 0.8 μg m?3 in PM2.5–10 and PM2.5. In addition, the concentrations of S, Ba, Pb, and Zn were higher than 0.1 μg m?3 for PM2.5–10 and PM2.5. The emission factors of PM2.5–10 and PM2.5 were 18 ± 6.5 and 39 ± 11 mg km?1-vehicle, respectively. The emission factors of EC/OC were 3.6/2.7 mg km?1-vehicle for PM2.5–10 and 15/4.7 mg km?1-vehicle for PM2.5 Furthermore, the emission factors of water-soluble ions were 0.028(Mg2+)–0.81(SO42?) and 0.027(NO2?)–0.97(SO42?) mg km?1-vehicle for PM2.5–10 and PM2.5, respectively. Elemental emission factors were 0.003(V)–1.6(Fe) and 0.001(Cd)–1.05(Na) mg km?1-vehicle for PM2.5–10 and PM2.5, respectively.  相似文献   

5.
Organic aerosol is the least understood component of ambient fine particulate matter (PM2.5). In this study, organic and elemental carbon (OC and EC) within ambient PM2.5 over a three-year period at a forested site in the North Carolina Piedmont are presented. EC exhibited significant weekday/weekend effects and less significant seasonal effects, in contrast to OC, which showed strong seasonal differences and smaller weekend/weekday effects. Summer OC concentrations are about twice as high as winter concentrations, while EC was somewhat higher in the winter. OC was highly correlated with EC during cool periods when both were controlled by primary combustion sources. This correlation decreased with increasing temperature, reflecting higher contributions from secondary organic aerosol, likely of biogenic origin. PM2.5 radiocarbon data from the site confirms that a large fraction of the carbon in PM2.5 is indeed of biogenic origin, since modern (non-fossil fuel derived) carbon accounted for 80% of the PM2.5 carbon over the course of a year. OC and EC exhibited distinct diurnal profiles, with summertime OC peaking in late evening and declining until midday. During winter, OC peaked during the early morning hours and again declined until midday. Summertime EC peaked during late morning hours except on weekends. Wintertime EC often peaked in late PM or early AM hours due to local residential wood combustion emissions. The highest short term peaks in OC and EC were associated with wildfire events. These data corroborate recent source apportionment studies conducted within 20 km of our site, where oxidation products of isoprene, α-pinene, and β-caryophyllene were identified as important precursors to organic aerosols. A large fraction of the carbon in rural southeastern ambient PM2.5 appears to be of biogenic origin, which is probably difficult to reduce by anthropogenic controls.  相似文献   

6.
Daily and seasonal variation in the total elemental, organic carbon (OC) and elemental carbon (EC) content and mass of PM2.5 were studied at industrial, urban, suburban and agricultural/rural areas. Continuous (optical Dustscan, standard tapered element oscillating micro-balance (TEOM), TEOM with filter dynamics measurement system), semi-continuous (Partisol filter-sampling) and non-continuous (Dekati-impactor sampling and gravimetry) methods of PM2.5 mass monitoring were critically evaluated. The average elemental fraction accounted for 2-6% of the PM2.5 mass measured by gravimetry. Metals, like K, Mn, Fe, Cu, Zn and Pb were strongly inter-correlated, also frequently with non-metallic elements (P, S, Cl and/or Br) and EC/OC. A high OC/EC ratio (2-9) was generally observed. The total carbon content of PM2.5 ranged between 3 and 77% (averages: 12-32%), peaking near industrial/heavy trafficked sites. Principal component analysis identified heavy oil burning, ferrous/non-ferrous industry and vehicular emissions as the main sources of metal pollution.  相似文献   

7.
Fine particles were collected over four seasons from October 1995 to August 1996 to evaluate the chemical characteristics of principal PM2.5 components in Chongju, South Korea. The annual mean concentrations of PM2.5 (dp⩽2.5 μm), sulfate, nitrate, ammonium, elemental carbon (EC) and organic carbon (OC) were 44.2, 8.22, 3.63, 2.84, 4.44 and 4.99 μg m−3, respectively. The sum of the species measured from this study accounted for 50–62% of the PM2.5 mass. Sulfate was the most abundant species and constituted 13–23% of the PM2.5 mass. The EC and OC accounted for 17–28% of PM2.5. The correlation between OC and EC was strong, and the annual mean ratio of OC/EC was 1.12, suggesting that OC measured in the Chongju area may be emitted directly in particulate form as a primary aerosol.  相似文献   

8.
The characterization of carbonaceous species in PM2.5 during a spring period in a suburb of Xi'an, China was investigated. PM2.5 samples were collected on quartz filters and analyzed for organic carbon (OC) and elemental carbon (EC). The thermal optical reflectance method was used. The minimum OC/EC ratio method was used to estimate the concentration of secondary organic carbon (SOC). The distribution of eight carbon fractions was investigated as well. The average mass concentrations of OC and EC were 15.90 and 8.38 μg/m3, respectively. The average OC/EC ratio ranged from 1.16 to 3.16 with an average value of 2.25. This implies the existence of SOC in PM2.5. The mean SOC concentration was 7.20 μg/m3, accounting for 45.28% of total OC. This result suggests that SOC is a significant component of OC in the suburb of Xi'an. Results from the distribution of eight carbon fractions revealed that emissions from motor vehicle, coal combustion, and road dust were the main source of carbonaceous particles in the sampling period.  相似文献   

9.
Experiments were carried out on a diesel engine operating on Euro V diesel fuel, pure biodiesel and biodiesel blended with methanol. The blended fuels contain 5%, 10% and 15% by volume of methanol. Experiments were conducted under five engine loads at a steady speed of 1800 rev min−1 to assess the performance and the emissions of the engine associated with the application of the different fuels. The results indicate an increase of brake specific fuel consumption and brake thermal efficiency when the diesel engine was operated with biodiesel and the blended fuels, compared with the diesel fuel. The blended fuels could lead to higher CO and HC emissions than biodiesel, higher CO emission but lower HC emission than the diesel fuel. There are simultaneous reductions of NOx and PM to a level below those of the diesel fuel. Regarding the unregulated emissions, compared with the diesel fuel, the blended fuels generate higher formaldehyde, acetaldehyde and unburned methanol emissions, lower 1,3-butadiene and benzene emissions, while the toluene and xylene emissions not significantly different.  相似文献   

10.
This research is one of the largest studies of biodiesel in both on-road and off-road uses. The testing was conducted for the military and encompassed a wide range of application types including two medium-duty trucks, two Humvees, a heavy heavy-duty diesel truck, a bus, two stationary backup generators (BUGs), a forklift, and an airport tow vehicle. The full range of fuels tested included a California ultra-low sulfur diesel (ULSD) fuel, different blend ratios of two different yellow-grease biodiesels and one soy-based biodiesel, JP-8, and yellow-grease biodiesel blends with two different NOx reduction additives. The B20-YGA, B20-YGB, and B20-Soy did not show trends relative to ULSD that were consistent over all applications tested. Higher biodiesel blends were tested on only one vehicle, but showed a tendency for higher total hydrocarbons (THC) and carbon monoxide (CO) emissions and lower particulate matter (PM) emissions. The JP-8 showed increases in THC and CO relative to the ULSD.  相似文献   

11.
Multi-year hourly measurements of PM2.5 elemental carbon (EC) and organic carbon (OC) from a site in the South Bronx, New York were used to examine diurnal, day of week and seasonal patterns. The hourly carbon measurements also provided temporally resolved information on sporadic EC spikes observed predominantly in winter. Furthermore, hourly EC and OC data were used to provide information on secondary organic aerosol formation. Average monthly EC concentrations ranged from 0.5 to 1.4 μg m?3 with peak hourly values of several μg m?3 typically observed from November to March. Mean EC concentrations were lower on weekends (approximately 27% lower on Saturday and 38% lower on Sunday) than on weekdays (Monday to Friday). The weekday/weekend difference was more pronounced during summer months and less noticeable during winter. Throughout the year EC exhibited a similar diurnal pattern to NOx showing a pronounced peak during the morning commute period (7–10 AM EST). These patterns suggest that EC was impacted by local mobile emissions and in addition by emissions from space heating sources during winter months. Although EC was highly correlated with black carbon (BC) there was a pronounced seasonal BC/EC gradient with summer BC concentrations approximately a factor of 2 higher than EC. Average monthly OC concentrations ranged from 1.0 to 4.1 μg m?3 with maximum hourly concentrations of 7–11 μg m?3 predominantly in summer or winter months. OC concentrations generally correlated with PM2.5 total mass and aerosol sulfate and with NOx during winter months. OC showed no particular day of week pattern. The OC diurnal pattern was typically different than EC except in winter when OC tracked EC and NOx indicating local primary emissions contributed significantly to OC during winter at the urban location. On average secondary organic aerosol was estimated to account for 40–50% of OC during winter and up to 63–73% during summer months.  相似文献   

12.
24-h PM2.5 carbonaceous samples were collected between 27 November and 9 December 1999 in Seoul, and between 7 and 20 June 2000 in Kwangju to investigate characteristics of carbonaceous species, and the relationship between elemental carbon (EC) and Aethalometer-based black carbon (BC) measurements. 5-min PM2.5 BC and criteria air pollutant data were also measured using the Aethalometer and ambient air monitoring system. The PM2.5 samples were analyzed for EC and OC using a selective thermal manganese dioxide oxidation (TMO) method. The daily average EC and OC concentrations in Seoul were higher in the winter than in the summer (Atmos. Environ. 35 (2001a) 657). It was found that difference between ambient BC levels in the two cities was not directly proportional to the population ratio (∼8) or diesel traffic ratio (∼5.9) since particulate matter or BC concentration is strongly influenced by a result of varying traffic and meteorological conditions at the site. Using the primary OC/EC ratio approach, the results suggest that most of the measured OC in Kwangju is of primary origin during the summer. In Seoul, the observed OC includes additional secondary organic aerosol during the wintertime conditions. The relationship between the 24-h TMO-EC and Aethalometer BC measurements in PM2.5 reflected very good agreement for the two urban sites, with correlation coefficients of R2=0.99 and 0.92, and BC/EC slopes of 0.93 and 1.07, respectively. It was found that comparing TMO-EC to BC at a different location in Korea, a different scaling factor was needed.  相似文献   

13.
Abstract

The objectives of this study were to examine the use of carbon fractions to identify particulate matter (PM) sources, especially traffic‐related carbonaceous particle sources, and to estimate their contributions to the particle mass concentrations. In recent studies, positive matrix factorization (PMF) was applied to ambient fine PM (PM2.5) compositional data sets of 24‐hr integrated samples including eight individual carbon fractions collected at three monitoring sites in the eastern United States: Atlanta, GA, Washington, DC, and Brigantine, NJ. Particulate carbon was analyzed using the Interagency Monitoring of Protected Visual Environments/Thermal Optical Reflectance method that divides carbon into four organic carbons (OC): pyrolized OC and three elemental carbon (EC) fractions. In contrast to earlier PMF studies that included only the total OC and EC concentrations, gasoline emissions could be distinguished from diesel emissions based on the differences in the abundances of the carbon fractions between the two sources. The compositional profiles for these two major source types show similarities among the three sites. Temperature‐resolved carbon fractions also enhanced separations of carbon‐rich secondary sulfate aerosols. Potential source contribution function analyses show the potential source areas and pathways of sulfate‐rich secondary aerosols, especially the regional influences of the biogenic, as well as anthropogenic secondary aerosol. This study indicates that temperature‐resolved carbon fractions can be used to enhance the source apportionment of ambient PM2.5.  相似文献   

14.
A nested version of the source-oriented externally mixed UCD/CIT model was developed to study the source contributions to airborne particulate matter (PM) during a two-week long air quality episode during the Texas 2000 Air Quality Study (TexAQS 2000). Contributions to primary PM and secondary ammonium sulfate in the Houston–Galveston Bay (HGB) and Beaumont–Port Arthur (BPA) areas were determined.The predicted 24-h elemental carbon (EC), organic compounds (OC), sulfate, ammonium ion and primary PM2.5 mass are in good agreement with filter-based observations. Predicted concentrations of hourly sulfate, ammonium ion, and primary OC from diesel and gasoline engines and biomass burning organic aerosol (BBOA) at La Porte, Texas agree well with measurements from an Aerodyne Aerosol Mass Spectrometer (AMS).The UCD/CIT model predicts that EC is mainly from diesel engines and majority of the primary OC is from internal combustion engines and industrial sources. Open burning contributes large fractions of EC, OC and primary PM2.5 mass. Road dust, internal combustion engines and industries are the major sources of primary PM2.5. Wildfire dominates the contributions to all primary PM components in areas near the fires. The predicted source contributions to primary PM are in general agreement with results from a chemical mass balance (CMB) model. Discrepancy between the two models suggests that further investigations on the industrial PM emissions are necessary.Secondary ammonium sulfate accounts for the majority of the secondary inorganic PM. Over 80% of the secondary sulfate in the 4 km domain is produced in upwind areas. Coal combustion is the largest source of sulfate. Ammonium ion is mainly from agriculture sources and contributions from gasoline vehicles are significant in urban areas.  相似文献   

15.
The objective of this study was to characterize exhaust emissions from a series of handheld, 2-stroke small engines. A total of 23 new and used engines from model years 1981–2003 were studied; these engines spanned three phases of emission control (pre-control, phase-1, phase-2). Measured emissions included carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), hydrocarbons (HC), fine particulate matter (PM2.5), and sulfur dioxide (SO2). Emissions reductions in CO (78%) and HC (52%) were significant between pre-control and phase-2 engines. These reductions can be attributed to improvements in engine design, reduced scavenging losses, and implementation of catalytic exhaust control. Total hydrocarbon emissions were strongly correlated with fuel consumption rates, indicating varying degrees of scavenging losses during the intake/exhaust stroke. The use of a reformulated gasoline containing 10% ethanol resulted in a 15% decrease in HC and a 29% decrease in CO emissions, on average. Increasing oil content of 2-stroke engine fuels results in a substantial increase of PM2.5 emissions as well as smaller increases in HC and CO emissions. Results from this study enhance existing emission inventories and appear to validate predicted improvements to ambient air quality through implementation of new phase-2 handheld emission standards.  相似文献   

16.
Multi-year inventories of biomass burning emissions were established in the Pearl River Delta (PRD) region for the period 2003–2007 based on the collected activity data and emission factors. The results indicated that emissions of sulfur dioxide (SO2), nitrogen oxide (NOx), ammonia (NH3), methane (CH4), organic carbon (OC), non-methane volatile organic compounds (NMVOC), carbon monoxide (CO), and fine particulate matter (PM2.5) presented clear declining trends. Domestic biofuel burning was the major contributor, accounting for more than 60% of the total emissions. The preliminary temporal profiles were established with MODIS fire count information, showing that higher emissions were observed in winter (from November to March) than other seasons. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3  km, using GIS-based land use data as spatial surrogates. Large amount of emissions were observed mostly in the less developed areas in the PRD region. The uncertainties in biomass burning emission estimates were quantified using Monte Carlo simulation; the results showed that there were higher uncertainties in organic carbon (OC) and elemental carbon (EC) emission estimates, ranging from ?71% to 133% and ?70% to 128%, and relatively lower uncertainties in SO2, NOx and CO emission estimates. The key uncertainty sources of the developed inventory included emission factors and parameters used for estimating biomass burning amounts.  相似文献   

17.
Abstract

Motor graders are a common type of nonroad vehicle used in many road construction and maintenance applications. In-use activity, fuel use, and emissions were measured for six selected motor graders using a portable emission measurement system. Each motor grader was tested with petroleum diesel and B20 biodiesel. Duty cycles were quantified in terms of the empirical cumulative distribution function of manifold absolute pressure (MAP), which is an indicator of engine load. The motor graders were operated under normal duty cycles for road maintenance and repair at various locations in Wake and Nash Counties in North Carolina. Approximately 3 hr of quality-assured, second-by-second data were obtained during each test. An empirical modal-based model of vehicle fuel use and emissions was developed, based on stratifying the data with respect to ranges of normalized MAP, to enable comparisons between duty cycles, motor graders, and fuels. Time-based emission factors were found to increase monotonically with MAP. Fuel-based emission factors were mainly sensitive to differences between idle and non-idle engine operation. Cycle average emission factors were estimated for road “resurfacing”, “roading,” and “shouldering” activities. On average, the use of B20 instead of petroleum diesel leads to a negligible decrease of 1.6% in nitric oxide emission rate, and decreases of 19– 22% in emission rates of carbon monoxide, hydrocarbons, and particulate matter. Emission rates decrease significantly when comparing newer engine tier vehicles to older ones. Significant reductions in tailpipe emissions accrue especially from the use of B20 and adoption of newer vehicles.  相似文献   

18.
Continuous observation of PM2.5 was conducted in Taiyuan, a heavily polluted city in China, during high pollution season from December 2005 to February 2006. The results of this study showed that PM2.5 and carbonaceous species pollution were serious during winter in Taiyuan. The organic carbon (OC) and element carbon (EC) were accounted for 18.6±11.2% and 2.9±1.6% of PM2.5, respectively, which indicated that carbonaceous aerosols were key components for control fine particles pollution in Taiyuan. Coal combustion was a dominant source of OC and EC of PM2.5 in the urban area of Taiyuan during winter. The impact of local and remote particle sources on urban air quality was assessed using PM2.5 concentration rose and 3-day back trajectories of air masses arriving at Taiyuan. The meteorological conditions were found to affect the ambient concentrations of PM2.5, OC, EC and OC/EC ratio.  相似文献   

19.
Rural and background sites provide valuable information on the concentration and optical properties of organic, elemental, and water-soluble organic carbon (OC, EC, and WSOC), which are relevant for understanding the climate forcing potential of regional atmospheric aerosols. To quantify climate- and air quality-relevant characteristics of carbonaceous aerosol in the central United States, a regional background site in central Texas was chosen for long-term measurement. Back trajectory (BT) analysis, ambient OC, EC, and WSOC concentrations and absorption parameters are reported for the first 15 months of a long-term campaign (May 2011–August 2012). BT analysis indicates consistent north–south airflow connecting central Texas to the Central Plains. Central Texas aerosols exhibited seasonal trends with increased fine particulate matter (<2.5 μm aerodynamic diameter, PM2.5) and OC during the summer (PM2.5 = 10.9 μg m?3 and OC = 3.0 μg m?3) and elevated EC during the winter (0.22 μg m?3). When compared to measurements in Dallas and Houston, TX, central Texas OC appears to have mixed urban and rural sources. However, central Texas EC appears to be dominated by transport of urban emissions. WSOC averaged 63% of the annual OC, with little seasonal variability in this ratio. To monitor brown carbon (BrC), absorption was measured for the aqueous WSOC extracts. Light absorption coefficients for EC and BrC were highest during summer (EC MAC = 11 m2 g?1 and BRC MAE365 = 0.15 m2 g?1). Results from optical analysis indicate that regional aerosol absorption is mostly due to EC with summertime peaks in BrC attenuation. This study represents the first reported values of WSOC absorption, MAE365, for the central United States.
Implications:Background concentration and absorption measurements are essential in determining regional potential radiative forcing due to atmospheric aerosols. Back trajectory, chemical, and optical analysis of PM2.5 was used to determine climatic and air quality implications of urban outflow to a regional receptor site, representative of the central United States. Results indicate that central Texas organic carbon has mixed urban and rural sources, while elemental carbon is controlled by the transport of urban emissions. Analysis of aerosol absorption showed black carbon as the dominant absorber, with less brown carbon absorption than regional studies in California and the southeastern United States.  相似文献   

20.
PM2.5 samples were collected at five sites in Guangzhou and Hong Kong, Pearl River Delta Region (PRDR), China in both summer and winter during 2004–2005. Elemental carbon (EC) and organic carbon (OC) in these samples were measured. The OC and EC concentrations ranked in the order of urban Guangzhou > urban Hong Kong > background Hong Kong. Total carbonaceous aerosol (TCA) contributed less to PM2.5 in urban Guangzhou (32–35%) than that in urban Hong Kong (43–57%). The reason may be that, as an major industrial city in South China, Guangzhou would receive large amount of inorganic aerosol from all kinds of industries, however, as a trade center and seaport, urban Hong Kong would mainly receive organic aerosol and EC from container vessels and heavy-duty diesel trucks. At Hong Kong background site Hok Tsui, relatively lower contribution of TCA to PM2.5 may result from contributions of marine inorganic aerosol and inland China pollutant. Strong correlation (R2=0.76–0.83) between OC and EC indicates minor fluctuation of emission and the secondary organic aerosol (SOA) formation in urban Guangzhou. Weak correlation between OC and EC in Hong Kong can be related to the impact of the long-range transported aerosol from inland China. Averagely, secondary OC (SOC) concentrations were 3.8–5.9 and 10.2–12.8 μg m−3, respectively, accounting for 21–32% and 36–42% of OC in summer and winter in Guangzhou. The average values of 4.2–6.8% for SOA/ PM2.5 indicate that SOA was minor component in PM2.5 in Guangzhou.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号