首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is a continuation of our previous publication (Bari, M.A., Baumbach, G., Kuch, B., Scheffknecht, G., 2009. Wood smoke as a source of particle-phase organic compounds in residential areas. Atmospheric Environment 43, 4722–4732) and describes a detailed characterisation of different particle-phase wood smoke tracer compounds in order to find out the impact of wood-fired heating on ambient PM10 pollution in a residential area near Stuttgart in southern Germany. The results from previous flue gas measurements help distinguishing different tracer compounds in ambient PM10 samples. In the residential area, significant amounts of hardwood markers (syringaldehyde, acetosyringone, propionylsyringol, sinapylaldehyde) and low concentrations of softwood markers (vanillin, acetovanillone, coniferyldehyde, dehydroabietic acid, retene) were found in the ambient air. The general wood combustion markers Levoglucosan, mannosan and galactosan were detected in high concentrations in all particle-phase PM10 samples. To find out the size distribution of ambient particles, cascade impactor measurements were carried out. It was found that more than 70% of particulate matter was in the particle diameter of less than 1 μm. Using emission ratio of levoglucosan to PM10, it can be demonstrated that during winter months 59% of ambient PM10 pollution could be attributed to residential wood-fired heating.  相似文献   

2.
Abstract

Levels of the monosaccharide anhydride (MA) levoglucosan and its isomeric compounds galactosan and mannosan were quantified in the PM10 fraction (particulate matter ≤10 µm in aerodynamic diameter) of ambient aerosols from an urban (Oslo) and a suburban (Elverum) site in Norway, both influenced by small-scale wood burning. MAs are degradation products of cellulose and hemicellulose, and levoglucosan is especially emitted in high concentrations during pyrolysis and combustion of wood, making it a potential tracer of primary particles emitted from biomass burning. MAs were quantified using a novel high-performance liquid chromatography/ high-resolution mass spectrometry-time of flight method. This approach distinguishes between the isomeric compounds of MAs and benefits from the limited sample preparation required before analysis, and no extensive derivatization step is needed. The highest concentrations of levogucosan, galactosan, and mannosan (∑MA) were recorded in winter because of wood burning for residential heating (∑MAMAX = 1,240 ng m-3). This finding was substantiated by a relatively high correlation (R2 = 0.64) between the levoglucosan concentration and decreasing ambient temperature. At the suburban site, ∑MA accounted for 3.1% of PM10, whereas the corresponding level at the urban site was 0.6%. The mass size distribution of MAs associated with atmospheric aerosols was measured using a Berner cascade impactor. The size distribution was characterized with a single mode at 561 nm. Ninety-five percent of the mass concentration of the MAs was found to be associated with particles <2 µm. A preliminary attempt to estimate the contribution of wood burning to the mass concentration of PM10 in Oslo using levoglucosan as a tracer indicates that 24% comes from wood burning. This is approximately a factor of 2 lower than estimated by the AirQUIS dispersion model.  相似文献   

3.
The objective of this study was to investigate the organic composition of wood smoke emissions and ambient air samples in order to determine the wood smoke contribution to the ambient air pollution in the residential areas. From November 2005 to March 2006 particle-phase PM10 samples were collected in the residential town Dettenhausen surrounded by forests near Stuttgart in southern Germany. Samples collected on pre-baked glass fibre filters were extracted using toluene with ultrasonic bath and analysed by gas chromatography mass spectrometry (GC-MS). 21 polycyclic aromatic hydrocarbons (PAH) including 16 USEPA priority pollutants, different organic wood smoke tracers, primarily 21 species of syringol and guaiacol derivatives, levoglucosan and its isomers mannosan, galactosan and dehydroabietic acid were detected and quantified in this study. The concentrations of these compounds were compared with the fingerprints of emissions from hardwood and softwood combustion carried out in test facilities at Universitaet Stuttgart and field investigations at a wood stove during real operation in Dettenhausen. It was observed that the combustion derived PAH was detected in higher concentrations than other PAH in the ambient air PM10 samples. Syringol and its derivatives were found in large amounts in hardwood burning but were not detected in softwood burning emissions. On the other hand, guaiacol and its derivatives were found in both softwood and hardwood burning emissions, but the concentrations were higher in the softwood smoke compared to hardwood smoke. So, these compounds can be used as typical tracer compounds for the different types of wood burning emissions. In ambient air samples both syringol and guaiacol derivatives were found which indicates the wood combustion contribution to the PM load in such residential areas. Levoglucosan was detected in high concentrations in all ambient PM10 samples. A source apportionment modelling, Positive Matrix Factorization (PMF) was implemented to quantify the wood smoke contribution to the ambient PM10 bound organic compounds in the residential area.  相似文献   

4.
Levoglucosan (L), mannosan (M), galactosan (G) and other cellulose and lignin markers from burn tests of Miocene lignites of Poland were determined by gas chromatography–mass spectrometry (GC–MS) to assess their distributions and concentrations in the smoke. Their distributions were compared to those in the pyrolysis products of the lignites. Levoglucosan and other anhydrosaccharides are products from the thermal degradation of cellulose and hemicellulose and are commonly used as tracers for wood smoke in the atmosphere. Here we report emission factors of levoglucosan in smoke particulate matter from burning of lignite varying from 713 to 2154 mg kg?1, which are similar to those from burning of extant plant biomass. Solvent extracts of the lignites revealed trace concentrations of native levoglucosan (0.52–3.7 mg kg?1), while pyrolysis yielded much higher levels (1.6–3.5 × 104 mg kg?1), indicating that essentially all levoglucosan in particulate matter of lignite smoke is derived from cellulose degradation. The results demonstrate that burning of lignites is an additional input of levoglucosan to the atmosphere in regions where brown coal is utilized as a domestic fuel. Interestingly, galactosan, another tracer from biomass burning, is not emitted in lignite smoke and mannosan is emitted at relatively low concentrations, ranging from 7.8 to 70.5 mg kg?1. Thus, we propose L/M and L/(M + G) ratios as discriminators between products from combustion of lignites and extant biomass. In addition, other compounds, such as shonanin, belonging to lignans, and some saccharides, e.g., α- and β-glucose and cellobiose, are reported for the first time in extracts of bulk lignites and of smoke particulate matter from burning these lignites.  相似文献   

5.
Abstract

In an effort to better quantify wintertime particulate matter (PM) and the contribution of wood smoke to air pollution events in Fresno, CA, a field campaign was conducted in winter 2003–2004. Coarse and fine daily PM samples were collected at five locations in Fresno, including residential, urban, and industrial areas. Measurements of collected samples included gravimetric mass determination, organic and elemental carbon analysis, and trace organic compound analysis by gas chromatograph mass spectrometry (GC/MS). The wood smoke tracer levoglucosan was also measured in aqueous aerosol extracts using high-performance anion exchange chromatography coupled with pulsed amperometric detection. Sample preparation and analysis by this technique is much simpler and less expensive than derivatized levoglucosan analysis by GC/MS, permitting analysis of daily PM samples from all five of the measurement locations. Analyses revealed low spatial variability and similar temporal patterns of PM2.5 mass, organic carbon (OC), and levoglucosan. Daily mass concentrations appear to have been strongly influenced by meteorological conditions, including precipitation, wind, and fog events. Fine PM (PM2.5) concentrations are uncommonly low during the study period, reflecting frequent precipitation events. During the first portion of the study, levoglucosan had a strong relationship to the concentrations of PM2.5 and OC. In the later portion of the study, there was a significant reduction in levoglucosan relative to PM2.5 and OC. This may indicate a change in particle removal processes, perhaps because of fog events, which were more common in the latter period. Combined, the emissions from wood smoke, meat cooking, and motor vehicles appear to contribute ~65–80% to measured OC, with wood smoke, on average, accounting for ~41% of OC and ~18% of PM2.5 mass. Two residential sites exhibit somewhat higher contributions of wood smoke to OC than other locations.  相似文献   

6.
Polar organic species, including n-alkanols, sterols, anhydrosugars, n-alkanoic acids, n-alkenoic acids and dicarboxylic acids were quantified to typify the composition of fine (PM2.5) and coarse (PM10–2.5) aerosols collected simultaneously at roadside and background sites in Oporto (Portugal) and Copenhagen (Denmark) during separate month-long intensive summer and winter campaigns. As a general trend, both cities exhibit roadside average concentrations higher than their correspondent urban background levels. The polar organics are more abundant in the fine fraction, exhibiting a seasonal pattern with high winter concentrations and low summer loads. Aerosols from both cities showed typical distributions of n-alkanols and n-alkanoic acids in the ranges C12–C28 and C8–C28, respectively. The <C20 homologues, usually attributed to kitchen emissions, vehicular exhausts and microbial origins, dominated the fatty acid fraction. Linear alcohols were mainly represented by higher molecular weight homologues from vegetation waxes. Molecular tracer species for wood smoke (e.g. levoglucosan, mannosan and resinic acids) were found to contribute significantly to the urban aerosol, especially in winter. Ratios between these tracers indicated different biofuel contributions to the atmospheric particles of the two cities. Secondary constituents from both biogenic (e.g. pinonic acid) and anthropogenic precursors (e.g. phthalic and benzoic acids) were detected in both cities and seasons.  相似文献   

7.
Levels of the monosaccharide anhydride (MA) levoglucosan and its isomeric compounds galactosan and mannosan were quantified in the PM10 fraction (particulate matter < or = 10 microm in aerodynamic diameter) of ambient aerosols from an urban (Oslo) and a suburban (Elverum) site in Norway, both influenced by small-scale wood burning. MAs are degradation products of cellulose and hemicellulose, and levoglucosan is especially emitted in high concentrations during pyrolysis and combustion of wood, making it a potential tracer of primary particles emitted from biomass burning. MAs were quantified using a novel high-performance liquid chromatography/ high-resolution mass spectrometry-time of flight method. This approach distinguishes between the isomeric compounds of MAs and benefits from the limited sample preparation required before analysis, and no extensive derivatization step is needed. The highest concentrations of levogucosan, galactosan, and mannosan (sigmaMA) were recorded in winter because of wood burning for residential heating (sigmaMA(MAX) = 1,240 ng m(-3)). This finding was substantiated by a relatively high correlation (R2 = 0.64) between the levoglucosan concentration and decreasing ambient temperature. At the suburban site, sigmaMA accounted for 3.1% of PM10, whereas the corresponding level at the urban site was 0.6%. The mass size distribution of MAs associated with atmospheric aerosols was measured using a Berner cascade impactor. The size distribution was characterized with a single mode at 561 nm. Ninety-five percent of the mass concentration of the MAs was found to be associated with particles < 2 micro.m. A preliminary attempt to estimate the contribution of wood burning to the mass concentration of PM10 in Oslo using levoglucosan as a tracer indicates that 24% comes from wood burning. This is approximately a factor of 2 lower than estimated by the AirQUIS dispersion model.  相似文献   

8.
Fine particulate matter (PM2.5) air pollution has been linked to adverse health impacts, and combustion sources including residential wood-burning may play an important role in some regions. Recent evidence suggests that indoor air quality may improve in homes where older, non-certified wood stoves are exchanged for lower emissions EPA-certified alternatives. As part of a wood stove exchange program in northern British Columbia, Canada, we sampled outdoor and indoor air at 15 homes during 6-day sampling sessions both before and after non-certified wood stoves were exchanged. During each sampling session two consecutive 3-day PM2.5 samples were collected onto Teflon filters, which were weighed and analyzed for the wood smoke tracer levoglucosan. Residential PM2.5 infiltration efficiencies (Finf) were estimated from continuous light scattering measurements made with nephelometers, and estimates of Finf were used to calculate the outdoor- and indoor-generated contributions to indoor air. There was not a consistent relationship between stove technology and outdoor or indoor concentrations of PM2.5 or levoglucosan. Mean Finf estimates were low and similar during pre- and post-exchange periods (0.32 ± 0.17 and 0.33 ± 0.17, respectively). Indoor sources contributed the majority (~65%) of the indoor PM2.5 concentrations, independent of stove technology, although low indoor-outdoor levoglucosan ratios (median ≤ 0.19) and low indoor PM2.5-levoglucosan correlations (r ≤ 0.19) suggested that wood smoke was not a major indoor PM2.5 source in most of these homes. In summary, despite the potential for extensive wood stove exchange programs to reduce outdoor PM2.5 concentrations in wood smoke-impacted communities, we did not find a consistent relationship between stove technology upgrades and indoor air quality improvements in homes where stoves were exchanged.  相似文献   

9.
Particulate matter measurements of different size fractions (PM4, PM10, TSP) were performed in the Basel area (Switzerland) at seven urban sites throughout 1997 and at two urban and two rural sites during the following year (April 1998–May 1999). Based on a sample of filters which was chemically analyzed, we investigated the chemical composition of PM10 both within the city of Basel and among urban and rural sites. The temporal and spatial variability of the chemical composition of PM10 was evaluated taking into account additional data from meteorology and further air pollutants. The chemical analyses of PM10 showed that carbonaceous substances (elemental carbon, organic matter) and inorganic substances of secondary origin such as sulfate, nitrate and ammonium were the most abundant component of PM10 in the Basel area (approximately 60–70%). Difference in the PM10 concentration between urban and rural sites was larger during the cold season than during the warm season. This was mainly due to the presence of an inversion layer between the city and the more elevated rural sites resulting in higher concentrations of nitrate, ammonium and organic matter in the city during the cold season. The higher PM10 concentration on workdays compared to weekends was mostly a result of the temporal variation of the concentration of Ca, elemental carbon, Ti, Mn, and Fe, indicating that these compounds are for the most part caused by regional human activities. Although total PM10 mass concentration was found to be in general uniformly distributed within the city of Basel, the chemical composition was more variable due to specific sources like road traffic and other anthropogenic emissions.  相似文献   

10.
Anhydrosugars, such as levoglucosan and its isomers (mannosan, galactosan), as well as the solvent-extractable lignin phenols (methoxylated phenols) are thermal degradation products of cellulose/hemicellulose and lignin, respectively. These two groups of biomarkers are often used as unique tracers of combusted biomass inputs in diverse environmental media. However, detailed characterization of the relative proportion and signatures of these compounds in highly heterogeneous plant-derived chars are still scarce. Here we conducted a systematic study to investigate the yields of solvent-extractable anhydrosugars and lignin phenols in 25 lab-made chars produced from different plant materials under different combustion conditions. Solvent-extractable anhydrosugars and lignin phenols were only observed in chars formed below 350 °C and yields were variable across different combustion temperatures. The yields of mannosan (M) and galactosan (G) decreased more rapidly than those of levoglucosan (L) under increasing combustion severity (temperature and duration), resulting in variable L/M and L/(M + G) ratios, two diagnostic ratios often used for identification of combustion sources (e.g. hardwoods vs. softwoods vs. grasses). Our observations thus may provide an explanation for the wide ranges of values reported in the literature for these two ratios. On the other hand, the results of this study suggest that the ratios of the major solvent-extractable lignin phenols (vanillyls (V), syringyls (S), cinnamyls (C)) provide additional source reconstruction potential despite observed variations with combustion temperature. We thus propose using a property-property plot (L/M vs. S/V) as an improved means for source characterization of biomass combustion residues. The L/M-S/V plot has shown to be effective in environmental samples (soil organic matter, atmospheric aerosols) receiving substantial inputs of biomass combustion residues.  相似文献   

11.
Intensive measurements of aerosol (PM10) and associated water-soluble ionic and carbonaceous species were conducted in Guangzhou, a mega city of China, during summer 2006. Elevated levels of most chemical species were observed especially at nighttime during two episodes, characterized by dramatic build-up of the biomass burning tracers levoglucosan and non-sea-salt potassium, when the prevailing wind direction had changed due to two approaching tropical cyclones. High-resolution air mass back trajectories based on the MM5 model revealed that air masses with high concentrations of levoglucosan (43–473 ng m?3) and non-sea-salt potassium (0.83–3.2 μg m?3) had passed over rural regions of the Pearl River Delta and Guangdong Province, where agricultural activities and field burning of crop residues are common practices. The relative contributions of biomass burning smoke to organic carbon in PM10 were estimated from levoglucosan data to be on average 7.0 and 14% at daytime and nighttime, respectively, with maxima of 9.7 and 32% during the episodic transport events, indicating that biomass and biofuel burning activities in the rural parts of the Pearl River Delta and neighboring regions could have a significant impact on ambient urban aerosol levels.  相似文献   

12.
The concentrations of monosaccharide anhydrides (levoglucosan, mannosan, galactosan) in PM1 and PM2.5 aerosol samples were measured in Brno and ?lapanice in the Czech Republic in winter and summer 2009. 56 aerosol samples were collected together at both sites to investigate the different sources that contribute to aerosol composition in studied localities. Daily PM1 and PM2.5 aerosol samples were collected on pre-fired quartz fibre filters.The sum of average atmospheric concentration of levoglucosan, mannosan and galactosan in PM1 aerosol in ?lapanice and Brno during winter was 513 and 273 ng m?3, while in summer the sum of average atmospheric concentration of monosaccharide anhydrides (MAs) was 42 and 38 ng m?3, respectively. The sum of average atmospheric concentration of MAs in PM1 aerosol formed 71 and 63% of the sum of MA concentration in PM2.5 aerosol collected in winter in ?lapanice and Brno, whereas in summer the sum of average atmospheric concentration of MAs in PM1 aerosol formed 45 and 43% of the sum of MA concentration in PM2.5 aerosol in ?lapanice and Brno, respectively.In winter, the sum of MAs contributed significantly to PM1 mass ranging between 1.37% and 2.67% of PM1 mass (Brno – ?lapanice), while in summer the contribution of the sum of MAs was smaller (0.28–0.32%). Contribution of the sum of MAs to PM2.5 mass is similar both in winter (1.37–2.71%) and summer (0.44–0.55%).The higher concentrations of monosaccharide anhydrides in aerosols in ?lapanice indicate higher biomass combustion in this location than in Brno during winter season. The comparison of levoglucosan concentration in PM1 and PM2.5 aerosol shows prevailing presence of levoglucosan in PM1 aerosol both in winter (72% on average) and summer (60% on average).The aerosol samples collected in ?lapanice and Brno in winter and summer show comparable contributions of levoglucosan, mannosan and galactosan to the total amount of monosaccharide anhydrides in both aerosol size fractions. Levoglucosan was the most abundant monosaccharide anhydride with a relative average contribution to the total amount of MAs in the range of 71–82% for PM1 aerosols and 52–79% for PM2.5 aerosols.  相似文献   

13.
Positive matrix factorization (PMF) was used to infer the sources of PM2.5 observed at four sites in Georgia and Alabama. One pair of urban and rural sites in each state is used to examine the regional and urban influence on PM2.5 concentrations in the Southeast. Eight factors were resolved for the two urban sites and seven factors were resolved for the two rural sites. Spatial correlations of factors were investigated using the square of correlation coefficient (R2) calculated from the resolved G factors. Fourier transform was used to define the temporal characteristics of PM2.5 factors at these sites. Factors were normalized by using aerosol fine mass concentration data through multiple linear regression to obtain the quantitative factor contributions for each resolved factor. Common factors include: (1) secondary sulfate dominated by high concentrations of sulfate and ammonium with a strong seasonal variation peaking in summer; (2) nitrate and the associated ammonium with a seasonal maximum in winter; (3) “coal combustion/other” factor with presence of sulfate, EC, OC, and Se; (4) soil represented by Al, Ca, Fe, K, Si and Ti; and (5) wood smoke with the high concentrations of EC, OC and K. The motor vehicle factor with high concentrations of EC and OC and the presence of some soil dust components is found at the urban sites, but cannot be resolved for the two rural sites. Among the other factors, two similar industry factors are found at the two sites in each state. For the wood smoke factor, different seasonal trends are found between urban and rural sites, suggesting different wood burning patterns between urban and rural regions. For the industry factors, different seasonal variations are also found between urban and rural sites, suggesting that this factor may come from different sources or a common source may impact the two sites differently. Generally, sulfate, soil, and nitrate factors at the four sites showed similar chemical composition profiles and seasonal variation patterns reflecting the regional characteristics of these factors. These regional factors have predominantly low frequency variations while local factors such as coal combustion, motor vehicle, wood smoke, and industry factors have high frequency variations in addition to low frequency variations.  相似文献   

14.
During the winters of 2006/2007 and 2007/2008, PM2.5 source apportionment programs were carried out within five western Montana valley communities. Filter samples were analyzed for mass and chemical composition. Information was utilized in a Chemical Mass Balance (CMB) computer model to apportion the sources of PM2.5. Results showed that wood smoke (likely residential woodstoves) was the major source of PM2.5 in each of the communities, contributing from 56% to 77% of the measured wintertime PM2.5. Results of 14C analyses showed that between 44% and 76% of the measured PM2.5 came from a new carbon (wood smoke) source, confirming the results of the CMB modeling. In summary, the CMB model results, coupled with the 14C results, support that wood smoke is the major contributor to the overall PM2.5 mass in these rural, northern Rocky Mountain airsheds throughout the winter months.  相似文献   

15.
Ambient concentrations of PM10 and associated elemental and ionic species were measured over the cold and the warm months of 2010 at an urban and two rural sites located in the lignite-fired power generation area of Megalopolis in Peloponnese, southern Greece. The PM10 concentrations at the urban site (44.2?±?33.6 μg m?3) were significantly higher than those at the rural sites (23.7?±?20.4 and 22.7?±?26.9 μg m?3). Source apportionment of PM10 and associated components was accomplished by an advanced computational procedure, the robotic chemical mass balance model (RCMB), using chemical profiles for a variety of local fugitive dust sources (power plant fly ash, flue gas desulfurization wet ash, feeding lignite, infertile material from the opencast mines, paved and unpaved road dusts, soil), which were resuspended and sampled through a PM10 inlet onto filters and then chemically analyzed, as well as of other common sources such as vehicular traffic, residential oil combustion, biomass burning, uncontrolled waste burning, marine aerosol, and secondary aerosol formation. Geological dusts (road/soil dust) were found to be major PM10 contributors in both the cold and warm periods of the year, with average annual contribution of 32.6 % at the urban site vs. 22.0 and 29.0 % at the rural sites. Secondary aerosol also appeared to be a significant source, contributing 22.1 % at the urban site in comparison to 30.6 and 28.7 % at the rural sites. At all sites, the contribution of biomass burning was most significant in winter (28.2 % at the urban site vs. 14.6 and 24.6 % at the rural sites), whereas vehicular exhaust contribution appeared to be important mostly in the summer (21.9 % at the urban site vs. 11.5 and 10.5 % at the rural sites). The highest contribution of fly ash (33.2 %) was found at the rural site located to the north of the power plants during wintertime, when winds are favorable. In the warm period, the highest contribution of fly ash was found at the rural site located to the south of the power plants, although it was less important (7.2 %). Moderate contributions of fly ash were found at the urban site (5.4 and 2.7 % in the cold and the warm period, respectively). Finally, the mine field was identified as a minor PM10 source, occasionally contributing with lignite dust and/or deposited wet ash dust under dry summer conditions, with the summertime contributions ranging between 3.1 and 11.0 % among the three sites. The non-parametric bootstrapped potential source contribution function analysis was further applied to localize the regions of sources apportioned by the RCMB. For the majority of sources, source regions appeared as being located within short distances from the sampling sites (within the Peloponnesse Peninsula). More distant Greek areas of the NNE sector also appeared to be source regions for traffic emissions and secondary calcium sulfate dust.  相似文献   

16.
A series of source tests was performed to evaluate the chemical composition of particle emissions from the woodstove combustion of four prevalent Portuguese species of woods: Pinus pinaster (maritime pine), Eucalyptus globulus (eucalyptus), Quercus suber (cork oak) and Acacia longifolia (golden wattle). Analyses included water-soluble ions, metals, radionuclides, organic and elemental carbon (OC and EC), humic-like substances (HULIS), cellulose and approximately l80 organic compounds. Particle (PM10) emission factors from eucalyptus and oak were higher than those from pine and acacia. The carbonaceous matter represented 44–63% of the particulate mass emitted during the combustion process, regardless of species burned. The major organic components of smoke particles, for all the wood species studied, with the exception of the golden wattle (0.07–1.9% w/w), were anhydrosugars (0.2–17% w/w). Conflicting with what was expected, only small amounts of cellulose were found in wood smoke. As for HULIS, average particle mass concentrations ranged from 1.5% to 3.0%. The golden wattle wood smoke presented much higher concentrations of ions and metal species than the emissions from the other wood types. The results of the analysis of radionuclides revealed that the 226Ra was the naturally occurring radionuclide more enriched in PM10. The chromatographically resolved organics included n-alkanes, n-alkenes, PAH, oxygenated PAH, n-alkanals, ketones, n-alkanols, terpenoids, triterpenoids, phenolic compounds, phytosterols, alcohols, n-alkanoic acids, n-di-acids, unsaturated acids and alkyl ester acids.  相似文献   

17.
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study was conducted in Big Bend National Park, Texas, July through October 1999. Daily PM2.5 organic aerosol samples were collected on pre-fired quartz fiber filters. Daily concentrations were too low for detailed organic analysis by gas chromatography-mass spectrometry (GC-MS) and were grouped based on their air mass trajectories. A total of 12 composites, each containing 3–10 daily samples, were analyzed. Alkane carbon preference indices suggest primary biogenic emissions were small contributors to primary PM2.5 organic matter (OM) during the first 3 months, while in October air masses advecting from the north and south were more strongly influenced by biogenic sources. A series of trace organic compounds previously shown to serve as particle phase tracers for various carbonaceous aerosol source types were examined. Molecular tracer species were generally at or below detection limits, except for the wood smoke tracer levoglucosan in one composite, so maximum possible source influences were calculated using the detection limit as an upper bound to the tracer concentration. Wood smoke was found not to contribute significantly to PM2.5 OM, with contributions for most samples at <1% of the total organic particulate matter. Vehicular exhaust also appeared to make only minor contributions, with maximum possible influences calculated to be 1–4% of PM2.5 OM. Several factors indicate that secondary organic aerosol formation was important throughout the study, and may have significantly altered the molecular composition of the aerosol during transport.  相似文献   

18.
Organic carbon (OC) and elemental carbon (EC) concentrations, associated to PM10 and PM2.5 particle fractions, were concurrently determined during the warm and the cold months of the year (July–September 2011 and February–April 2012, respectively) at two urban sites in the city of Thessaloniki, northern Greece, an urban-traffic site (UT) and an urban-background site (UB). Concentrations at the UT site (11.3?±?5.0 and 8.44?±?4.08 14 μg m?3 for OC10 and OC2.5 vs. 6.56?±?2.14 and 5.29?±?1.54 μg m?3 for EC10 and EC2.5) were among the highest values reported for urban sites in European cities. Significantly lower concentrations were found at the UB site for both carbonaceous species, particularly for EC (6.62?±?4.59 and 5.72?±?4.36 μg m?3 for OC10 and OC2.5 vs. 0.93?±?0.61 and 0.69?±?0.39 μg m?3 for EC10 and EC2.5). Despite that, a negative UT-UB increment was frequently evidenced for OC2.5 and PM2.5 in the cold months possibly indicative of emissions from residential wood burning at the urban-background site. At both sites, cconcentrations of OC fractions were significantly higher in the cold months; on the contrary, EC fractions at the UT site were prominent in the warm season suggesting some influence from maritime emissions in the nearby harbor area. Secondary organic carbon, being estimated using the EC tracer method and seasonally minimum OC/EC ratios, was found to be an appreciable component of particle mass particularly in the cold season. The calculated secondary contributions to OC ranged between 35 and 59 % in the PM10 fraction, with relatively higher values in the PM2.5 fraction (39–61 %). The source origin of carbonaceous species was investigated by means of air parcel back trajectories, satellite fire maps, and concentration roses. A local origin was mainly concluded for OC and EC with limited possibility for long range transport of biomass (agricultural waste) burning aerosol.  相似文献   

19.
The present study tested the extraction efficiency and quantification reproducibility of anhydrosugars in a series of NIST SRMs using two extraction protocols and isotopically-labeled (d7-levoglucosan) vs. chemically analogous (sedoheptulosan) surrogates. In both instances, levoglucosan concentrations in the different versions of the Washington, D.C. urban dust standard (SRM 1649, 1649a, 1649b, and RM 8785) were similar. The present test also showed that levoglucosan concentrations were not affected by long-term shelf storage of dry material. Variability of analyses were similar for both surrogates and averaged <5%. Surrogate recoveries were shown to average 103 ± 7% and 97 ± 7% for d7-levoglucosan and sedoheptulosan, respectively. The choice of solvent was shown to affect recoveries the most (but not variability). Levoglucosan concentrations were either seriously underestimated or overestimated with ethyl acetate extraction when d7-levoglucosan or sedoheptulosan was used as surrogate, respectively. These results point to the need to use some fraction of polar solvent (i.e. methanol) in the solvent mixture. Anhydrosugar concentrations in the urban dust from the Czech Republic (candidate SRMs 2786 and 2787) were characterized by 3- to 7-fold higher anhydrosugar concentrations than those observed in the Washington, D.C. urban dust. The internal anhydrosugar signatures (i.e. levoglucosan/mannosan ratio: L/M) confirm the predominance of biomass combustion sources in both SRM series with mixed inputs from hardwood and softwood combustion in the Washington, D.C. urban dust and a predominantly softwood source in the Prague urban dust. The uniform distribution of anhydrosugars, across the particle size distribution of both SRM series, confirms earlier studies that low temperature charred materials contribute significant inputs to atmospheric ultrafine particles with long atmospheric residence time and transport ranges.  相似文献   

20.
The objective of this study was to describe the ambient levels of particulate matter (PM) and its influence to air quality situation on the dry Mediterranean island of Cyprus. From October 2002 to August 2003 PM10 and PM2.5 samples were collected at 31 different sampling sites in Cyprus. In addition, continuous measurements of PM10 were carried out from 2003 to 2007 at a traffic and a rural site. It can be recognised that at all traffic and at some residential and urban background sites, the actual EU limit values have been exceeded. Special events e.g. long-range transport of Sahara dust storms were recorded over urban as well as rural areas in the order of 6–8 events per year, with a major frequency in summer and spring periods. The comparison of the PM10 concentrations in Cyprus cities with values of other European cities demonstrates the PM10 problem in Cyprus, especially in the dry summer season, when no rain is cleaning the air and the dry surfaces. This underlines the necessity of PM abatement strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号