共查询到20条相似文献,搜索用时 15 毫秒
1.
The dust retention capacities of urban vegetation—a case study of Guangzhou, South China 总被引:1,自引:0,他引:1
Lu Liu Dongsheng Guan M. R. Peart Gang Wang Hui Zhang Zhiwei Li 《Environmental science and pollution research international》2013,20(9):6601-6610
Urban vegetation increasingly plays an important role in the improvement of the urban atmospheric environment. This paper deals with the dust retention capacities of four urban tree species (Ficus virens var. sublanceolata, Ficus microcarpa, Bauhinia blakeana, and Mangifera indica Linn) in Guangzhou. The dust-retaining capacities of four tree species are studied under different pollution intensities and for different seasons. Remote sensing imagery was used to estimate the total aboveground urban vegetation biomass in different functional areas of urban Guangzhou, information that was then used to estimate the dust-retaining capacities of the different functional areas and the total removal of airborne particulates in urban Guangzhou by foliage. The results showed that urban vegetation can remove dust from the atmosphere thereby improving air quality. The major findings are that dust retention, or capture, vary between the four species of tree studied; it also varied between season and between types of urban functional area, namely industrial, commercial/road traffic, residential, and clean areas. Dust accumulation over time was also studied and reached a maximum, and saturation, after about 24 days. The overall aboveground biomass of urban vegetation in Guangzhou was estimated to be 52.0?×?105 t, its total leaf area 459.01 km2, and the dust-retaining capacity was calculated at 8012.89 t per year. The present study demonstrated that the foliage of tree species used in urban greening make a substantial contribution to atmospheric dust removal and retention in urban Guangzhou. 相似文献
2.
Wang Ruibo Bai Yang Alatalo Juha M. Guo Guimei Yang Zhangqian Yang Zongbao Yang Wei 《Environmental science and pollution research international》2022,29(59):88852-88865
Environmental Science and Pollution Research - Urban agglomeration will be the main mode of future urbanization in China, greatly influencing social and economic development and ecosystem... 相似文献
3.
《Atmospheric environment (Oxford, England : 1994)》2001,35(25):4253-4263
In order to assess the temporal variabilities of atmospheric mercury (Hg) from an area moderately impacted by man-made source processes, the concentrations of total gaseous mercury were measured routinely from an urban monitoring station during January 1999–August 2000. The mean hourly concentration of Hg from overall measurements was computed to be 5.26±3.27 ng m−3 (N=11, 572). Using these measurement data, we inspected various aspects on the temporal distribution of Hg. When analyzed over 24 h scale, the pattern was characterized by high concentration during nighttime relative to daytime (e.g., values approaching 9 ng m−3). This pattern was prominent during winter and seen persistently across fall, spring, and summer. When divided seasonally, the highest mean of 6.01 ng m−3 was observed during winter. It appears that such wintertime dominance is most likely to come from the anthropogenic sources such as household heating systems from late fall to early spring. A close inspection of the Hg data however indicated that the seasonal variation proceeded quite dynamically. Inspection of seasonally divided data groups generally showed substantial variabilities among different months. In order to analyze the factors affecting Hg distributions over different time scale, we conducted the correlation analysis. Whereas Hg generally exhibited strong correlations with such parameters as PM, SO2, and NO2, its relationship varied diurnally and seasonally. The overall results of the present study suggest that changes in its source signatures can vary over varying time scale under the influence of strong man-made source processes. 相似文献
4.
Yu-Hsiang Cheng Ben-Tzung Shiu Meng-Hsien Lin Jhih-Wei Yan 《Environmental science and pollution research international》2013,20(3):1537-1545
Information on the relationship between black carbon (BC) and particle number levels in urban areas is limited. Therefore, investigating the relationship between BC and particle number levels in different particle size ranges at an urban area is worthwhile. This study used an aethalometer and scanning mobility particle sizer to measure the levels of BC and particle number simultaneously at an urban roadside in Taipei City. Measurement results show that hourly BC levels are 0.62–8.80 μg m?3 (mean?=?3.50 μg m?3) and hourly particle number levels are 4.21?×?103–4.64?×?104 particles cm?3 (mean?=?2.00?×?104 particles cm?3) in Taipei urban area. The BC and particle number levels peak during morning (7:00–9:00) and evening (16:00–18:00) rush hours on weekdays. Low BC and particle number levels exist in the early morning hours. Time variations in BC levels are the same as those of particle number levels in this study, clearly indicating that BC and particles are likely released from the same emission source. Additionally, BC levels in the urban area are more strongly associated with ultrafine particle levels than with total particle number levels, particularly in the size range of 56–180 nm. According to measurement results, most BC in aerosols in urban areas can be in the ultrafine size range. 相似文献
5.
Wang Yi Miao Zhuanying 《Environmental science and pollution research international》2022,29(40):60153-60172
Environmental Science and Pollution Research - The increasing drift of urbanization and its impact on urban human settlements are of major concern for China cities. Therefore, demystifying the... 相似文献
6.
《国际环境与污染杂志》2011,45(4):297-309
Effects of heavy metals caused by urbanisation on soil nematode communities were investigated along an urban–suburban–rural gradient in southern Shenyang, China. The numbers of total nematodes increased significantly along the urban–rural gradient. Similar trends were observed in the values of Structure Index (SI), with lower values found in urban site and higher in the rural site. Generic richness and SI were sensitive indicators for assessing the effect of heavy metals on soil nematode communities. The Canonical Correspondence Analysis (CCA) indicated that copper concentration and Cation Exchange Capacity (CEC) were most important environmental parameters that influenced nematode distribution. 相似文献
7.
《Atmospheric environment (Oxford, England : 1994)》1999,33(23):3765-3775
Emissions of greenhouse gases for the City of Barcelona are estimated for the period 1987–1994. The sources considered are: public and private transportation; industrial, commercial and domestic activities; and municipal solid waste disposal. The results show that the main source of CO2 emissions in Barcelona is private vehicle transportation, which accounts, as an average for the period studied, for 35% of total emissions. The second most important source is the municipal solid waste landfill facility of the city (24% of total emissions). The percentages for the remaining sources under consideration were: 14% electricity, 12% natural gas, 5% incineration, and 3% liquefied petroleum gases. However, the values for CO2 emissions per inhabitant over the period studied are lower than those for any other industrialized city available for comparison. This is closely related to the high percentage of electricity generation from nuclear power stations and hydro power facilities, and also to the extensive use of natural gas for domestic uses. 相似文献
8.
Mengyuan Zhu Guangwei Zhu Linlin Zhao Xin Yao Yunlin Zhang Guang Gao Boqiang Qin 《Environmental science and pollution research international》2013,20(3):1803-1811
Algal bloom could drastically influence the nutrient cycling in lakes. To understand how the internal nutrient release responds to algal bloom decay, water and sediment columns were sampled at 22 sites from four distinct regions of China’s eutrophic Lake Taihu and incubated in the laboratory to examine the influence of massive algal bloom decay on nutrient release from sediment. The column experiment involved three treatments: (1) water and sediment (WS); (2) water and algal bloom (WA); and (3) water, sediment, and algal bloom (WSA). Concentrations of dissolved oxygen (DO), total nitrogen (TN), total phosphorus (TP), ammonium (NH 4 + -N), and orthophosphate (PO 4 3? -P) were recorded during incubation. The decay of algal material caused a more rapid decrease in DO than in the algae-free controls and led to significant increases in NH 4 + -N and PO 4 3? -P in the water. The presence of algae during the incubation had a regionally variable effect on sediment nutrient profiles. In the absence of decaying algae (treatment WS), sediment nutrient concentrations decreased during the incubation. In the presence of blooms (WSA), sediments from the river mouth released P to the overlying water, while sediments from other regions absorbed surplus P from the water. This experiment showed that large-scale algal decay will dramatically affect nutrient cycling at the sediment–water interface and would potentially transfer the function of sediment as “container” or “supplier” in Taihu, although oxygen exchange with atmosphere in lake water was stronger than in columns. The magnitude of the effect depends on the physical–chemical character of the sediments. 相似文献
9.
Liqian Yin Zhenchuan Niu Xiaoqiu Chen Jinsheng Chen Fuwang Zhang Lingling Xu 《Environmental science and pollution research international》2014,21(7):5141-5156
PM2.5 and PM2.5–10 aerosol samples were collected in four seasons during November 2010, January, April, and August 2011 at 13 urban/suburban sites and one background site in Western Taiwan Straits Region (WTSR), which is the coastal area with rapid urbanization, high population density, and deteriorating air quality. The 10 days average PM2.5 concentrations were 92.92, 51.96, 74.48, and 89.69 μg/m3 in spring, summer, autumn, and winter, respectively, exceeding the Chinese ambient air quality standard for annual average value of PM2.5 (grade II, 35 μg/m3). Temporal distribution of water-soluble inorganic ions (WSIIs) in PM2.5 was coincident with PM2.5 mass concentrations, showing highest in spring, lowest in summer, and middle in autumn and winter. WSIIs took considerable proportion (42.2~50.1 %) in PM2.5 and PM2.5–10. Generally, urban/suburban sites had obviously suffered severer pollution of fine particles compared with the background site. The WSIIs concentrations and characteristics were closely related to the local anthropogenic activities and natural environment, urban sites in cities with higher urbanization level, or sites with weaker diffuse condition suffered severer WSIIs pollution. Fossil fuel combustion, traffic emissions, crustal/soil dust, municipal constructions, and sea salt and biomass burnings were the major potential sources of WSIIs in PM2.5 in WTSR according to the result of principal component analysis. 相似文献
10.
《Atmospheric environment (Oxford, England : 1994)》1999,33(23):3739-3750
The constancy, both temporal and spatial, of the profile of polycyclic aromatic hydrocarbons (PAHs) relative to benzo[a]pyrene (BaP) is a prerequisite to using the BaP-indicator approach in the carcinogenic risk assessment for PAHs. The principal aim of this study was to provide a contribution to validate this approach, by studying the variability of the profile at a typical urban site through a multi-year data set and by comparing the profiles available for different cities. Seven carcinogenic PAHs (benz[a]anthracene, benzo[b+j+k]fluoranthenes, BaP, indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene) were determined in PM10 24-h samples collected every third day at a road site; moreover, benzo[e]pyrene was determined as a reference PAH due to its stability. The profile was found stable from year to year. Besides, it was similar to those recently found in other European cities (observed differences within a factor of four) and to those elaborated from earlier (1970s–1980s) investigations. The substantial similarity of profiles, both temporal (on an annual basis) and spatial, supports the validity of the BaP-indicator approach. Large PAH-to-PAH differences were, however, found in the seasonal pattern of profile: they were explained by the different atmospheric degradability of PAHs, whose effect is enhanced under the meteoclimatic conditions typical of the European Mediterranean countries. PAH annual means showed a slight declining trend since 1994. In the last sampling year, mean concentration of BaP was 1.2 ng m−3. Within-year differences among monthly averaged PAH concentrations were observed, as large as up to 44-fold for BaP, underlining the need for whole-year monitoring. 相似文献
11.
Tang Peng Liang Jun Liao Qian Huang Huishen Guo Xiaojing Lin Mengrui Liu Bihu Wei Bincai Zeng Xiaoyun Liu Shun Huang Dongping Qiu Xiaoqiang 《Environmental science and pollution research international》2023,30(10):25170-25180
Environmental Science and Pollution Research - A growing number of epidemiologic studies have estimated the associations between endocrine-disrupting chemicals and gestational diabetes mellitus... 相似文献
12.
《Atmospheric environment (Oxford, England : 1994)》2001,35(15):2669-2678
Elemental compositions were measured for TSP (total suspended particulate matter), PM2−10 and PM2 (particulate matter with aerodynamic diameters from 2 to 10 μm and less than 2 μm, respectively) in Ho Chi Minh City. Concentrations of 23 elements and particulate mass (PM) were used for receptor modelling to identify and quantify aerosol sources using principal component factor analysis (PCFA). A suite of factors containing similar elements with significant factor loadings were revealed among the factor matrices, thus facilitating the identification of common sources for different aerosol types. These sources include vehicular emissions (Br and Zn), coal burning (Se), industrial processes (Ce, Co, Cr, Pb and Sb), road dust (Al, Ti, V), soil dust (Fe and Th) and biomass burning (K). Marine aerosols (Na and Cl) and mineral fly ash (Sc and La) were revealed only in the PM2−10 model. For TSP, the last four sources are combined in one factor. The last (9th) factor in the PM2 model, characterised by a high loading from PM and insignificant loadings from elements, was attributed to secondary sulphates and organics, although these constituents were not measured in the experiments. Such a remarkable source identification capability of the modelling technique highlights the significance of achieving an optimal factor solution as a crucial step in PCFA, that was done by systematically varying the number of factors retained and carefully evaluating each factor matrix for both model fitting performance and physical reasonableness. 相似文献
13.
Kevin L. Steffey J.D. Reynolds H.B. Petty 《Journal of environmental science and health. Part. B》2013,48(8-9):773-783
Abstract Bovine fat samples in Illinois were monitored for residues of chlorinated hydrocarbon insecticides from 1972 through 1982. The percentage of fat samples that were contaminated with all chlorinated hydrocarbons decreased during the 11‐year study. The percentage of samples contaminated with DDT and its analogs decreased most markedly from 82.4% in 1972 to 2.1% in 1982. The percentage of samples contaminated with aldrin/dieldrin and heptachlor/heptachlor epoxide began to decline in 1980 and continued to decrease through 1982. 相似文献
14.
J. Wichmann T. Lind M.A.-M. Nilsson T. Bellander 《Atmospheric environment (Oxford, England : 1994)》2010,44(36):4536-4544
In developed nations people spend about 90% of their time indoors. The relationship between indoor and outdoor air pollution levels is important for the understanding of the health effects of outdoor air pollution. Although other studies describe both the outdoor and indoor atmospheric environment, few excluded a priori major indoor sources, measured the air exchange rate, included more than one micro-environment and included the presence of human activity. PM2.5, soot, NO2 and the air exchange rate were measured during winter and summer indoors and outdoors at 18 homes (mostly apartments) of 18 children (6–11-years-old) and also at the six schools and 10 pre-schools that the children attended. The three types of indoor environments were free of environmental tobacco smoke and gas appliances, as the aim was to asses to what extent PM2.5, soot and NO2 infiltrate from outdoors to indoors. The median indoor and outdoor PM2.5 levels were 8.4 μg m?3 and 9.3 μg m?3, respectively. The median indoor levels for soot and NO2 were 0.66 m?1 × 10?5 and 10.0 μg m?3, respectively. The respective outdoor levels were 0.96 m?1 × 10?5 and 12.4 μg m?3. The median indoor/outdoor (I/O) ratios were 0.93, 0.76 and 0.92 for PM2.5, soot and NO2, respectively. Their infiltration factors were influenced by the micro-environment, ventilation type and air exchange rate, with aggregated values of 0.25, 0.55 and 0.64, respectively. Indoor and outdoor NO2 levels were strongly associated (R2 = 0.71), followed by soot (R2 = 0.50) and PM2.5 (R2 = 0.16). In Stockholm, the three major indoor environments occupied by children offer little protection against combustion-related particles and gases in the outdoor air. Outdoor PM2.5 seems to infiltrate less, but indoor sources compensate. 相似文献
15.
16.
17.
《Atmospheric environment (Oxford, England : 1994)》2001,35(29):5007-5018
Aerosol samples were collected from Northwest China desert region (Minqin), coastal suburb (Qingdao) and interior of the Yellow Sea (Qianliyan) in spring and summer of 1995 and 1996. Samples were analysed for major components, carbon and sulphur. The results show that concentrations of aerosols change considerably in time and space. The crustal materials carried by cold front system increase notably the aerosol concentration (mass/unit vol.) over the Yellow Sea but reduce the percentage contribution of pollutants and sea-salt. The sea-salt and regional aerosols become dominant fractions in coastal atmosphere in summer when the dust storms are expired in source region and the Southeast monsoon starts in the Pacific Ocean. 相似文献
18.
Yang Dong Yi Liu Jining Chen 《Environmental science and pollution research international》2014,21(11):7024-7034
Urban expansion is a major driving force changing regional hydrology and nonpoint source pollution. The Haihe River Basin, the political, economic, and cultural center of northeastern China, has undergone rapid urbanization in recent decades. To investigate the consequences of future urban sprawl on nonpoint source water pollutant emissions in the river basin, the urban sprawl in 2030 was estimated, and the annual runoff and nonpoint source pollution in the Haihe River basin were simulated. The Integrated Model of Non-Point Sources Pollution Processes (IMPULSE) was used to simulate the effects of urban sprawl on nonpoint source pollution emissions. The outcomes indicated that the urban expansion through 2030 increased the nonpoint source total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD) emissions by 8.08, 0.14, and 149.57 kg/km2, respectively. Compared to 2008, the total nonpoint emissions rose by 15.33, 0.57, and 12.39 %, respectively. Twelve percent of the 25 cities in the basin would increase by more than 50 % in nonpoint source TN and COD emissions in 2030. In particular, the nonpoint source TN emissions in Xinxiang, Jiaozuo, and Puyang would rise by 73.31, 67.25, and 58.61 %, and the nonpoint source COD emissions in these cities would rise by 74.02, 51.99, and 53.27 %, respectively. The point source pollution emissions in 2008 and 2030 were also estimated to explore the effects of urban sprawl on total water pollution loads. Urban sprawl through 2030 would bring significant structural changes of total TN, TP, and COD emissions for each city in the area. The results of this study could provide insights into the effects of urbanization in the study area and the methods could help to recognize the role that future urban sprawl plays in the total water pollution loads in the water quality management process. 相似文献
19.
《Atmospheric environment(England)》1988,22(6):1161-1168
Source contributions to the surface O3 concentrations in southern Ontario were assessed for the 1979–1985 period. Ozone episode analyses indicate a frequency of about nine episodes per year (15 episode-days). These occur primarily in the summer months and are generally manifestations of the northern extent of the O3 problem in eastern North America. Widespread elevated O3 levels tend to occur under weather classes indicative of back or centre of the high pressure situations and associated flow/trajectory from areas south/southwest of the lower Great Lakes. These episodes vary considerably from year-to-year. Local impacts on O3 levels are generally small.A study of O3 levels during cloud-free summer days for the period 1981–1985 gave local ‘background’ O3 levels of about 20–30 ppb daily and 30–50 ppb hourly maxima. The O3 contributions from the U.S. to southern Canada (assuming local ‘background’ O3 levels to be independent of wind direction) were estimated to be 30–35 ppb daily and 30–50 ppb hourly maxima. These results indicate an overall O3 contribution of about 50–60% from the U.S. to southern Ontario. For episode-days, the U.S. contribution is even more significant. 相似文献
20.
Knowledge of the characteristics of Pb and its isotopic transfer in different compartments is scant, especially for the mobility of Pb isotopes in the geochemical cycle. The present study characterizes differential Pb transport mechanism and the mobility of Pb isotopes in the pedogenic parent rock–pedosphere–irrigated riverwater–cereal–atmosphere system in the Yangtze River delta region, by determining Pb concentration and Pb isotopic ratios of pedogenic parent rocks, fluvial suspended particle matter, tillage soils, soil profiles, irrigated riverwater, fertilizer, Pb ore, cereal roots and grains. The results show that Pb isotopes in the geochemical cycle generally follow the equation of 208Pb/206Pb = −1.157 × 206Pb/207Pb + 3.46 (r2 = 0.941). However, Pb isotopes have different mobility in different environmental matrixes. Whereas in the pedosphere, the heavier Pb (208Pb) usually shows stronger mobility relative to the lighter Pb, and is more likely to transfer into soil exchangeable Pb fraction and carbonates phase. The lighter Pb shows stronger transfer ability from soil to cereal grain via root compared to the heavier Pb. However, the cereal grains have lower 206Pb/207Pb and higher 208Pb/206Pb ratios than root and tillage soil, similar to the airborne Pb and anthropogenic Pb, implying that a considerable amount of Pb in cereal grains comes from the atmosphere. The estimate model shows that 16.7–52.6% (average: 33.5%) of Pb in rice grain is the airborne Pb. 相似文献