首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface ozone is mainly produced by photochemical reactions involving various anthropogenic pollutants, whose emissions are increasing rapidly in India due to fast-growing anthropogenic activities. This study estimates the losses of wheat and rice crop yields using surface ozone observations from a group of 17 sites, for the first time, covering different parts of India. We used the mean ozone for 7 h during the day (M7) and accumulated ozone over a threshold of 40 ppbv (AOT40) metrics for the calculation of crop losses for the northern, eastern, western and southern regions of India. Our estimates show the highest annual loss of wheat (about 9 million ton) in the northern India, one of the most polluted regions in India, and that of rice (about 2.6 million ton) in the eastern region. The total all India annual loss of 4.0–14.2 million ton (4.2–15.0%) for wheat and 0.3–6.7 million ton (0.3–6.3%) for rice are estimated. The results show lower crop loss for rice than that of wheat mainly due to lower surface ozone levels during the cropping season after the Indian summer monsoon. These estimates based on a network of observation sites show lower losses than earlier estimates based on limited observations and much lower losses compared to global model estimates. However, these losses are slightly higher compared to a regional model estimate. Further, the results show large differences in the loss rates of both the two crops using the M7 and AOT40 metrics. This study also confirms that AOT40 cannot be fit with a linear relation over the Indian region and suggests for the need of new metrics that are based on factors suitable for this region.  相似文献   

2.
In this study, we estimate yield losses and economic damage of two major crops (winter wheat and rabi rice) due to surface ozone (O3) exposure using hourly O3 concentrations for the period 2002–2007 in India. This study estimates crop yield losses according to two indices of O3 exposure: 7-h seasonal daytime (0900–1600 hours) mean measured O3 concentration (M7) and AOT40 (accumulation exposure of O3 concentration over a threshold of 40 parts per billion by volume during daylight hours (0700–1800 hours), established by field studies. Our results indicate that relative yield loss from 5 to 11 % (6–30 %) for winter wheat and 3–6 % (9–16 %) for rabi rice using M7 (AOT40) index of the mean total winter wheat 81 million metric tons (Mt) and rabi rice 12 Mt production per year for the period 2002–2007. The estimated mean crop production loss (CPL) for winter wheat are from 9 to 29 Mt, account for economic cost loss was from 1,222 to 4,091 million US$ annually. Similarly, the mean CPL for rabi rice are from 0.64 to 2.1 Mt, worth 86–276 million US$. Our calculated winter wheat and rabi rice losses agree well with previous results, providing the further evidence that large crop yield losses occurring in India due to current O3 concentration and further elevated O3 concentration in future may pose threat to food security.  相似文献   

3.
The impacts of ambient ozone pollution on crops in the Mediterranean countries have been recorded regularly in the so-called “grey literature” of UN/ECE Workshop Reports for the Convention on Long-range Transboundary Air Pollution, and less frequently in the peer-reviewed literature. This short communication reviews such records and shows that ambient ozone episodes have been reported to cause visible injury on 24 agricultural and horticultural crops grown in commercial fields including three of the most important crops in the region (wheat, maize, and grapevine). On one occasion, the damage was so extensive that complete crop loss occurred in commercial glasshouses of Butterhead lettuce in one area of Greece. Experiments with open-top chambers have indicated that ambient ozone caused 17–39% yield loss in crops such as wheat, bean, watermelon and tomato. The applicability of the long-term critical level of ozone described by Fuhrer et al. (Environ. Pollut. 97 (1997) 91) for the Mediterranean areas is also considered.  相似文献   

4.
Modelling-based studies to assess the extent and magnitude of ozone (O3) risk to agriculture in Asia suggest that yield losses of 5–20% for important crops may be common in areas experiencing elevated O3 concentrations. These assessments have relied on European and North American dose–response relationships and hence assumed an equivalent Asian crop response to O3 for local cultivars, pollutant conditions and climate. To test this assumption we collated comparable dose–response data derived from fumigation, filtration and EDU experiments conducted in Asia on wheat, rice and leguminous crop species. These data are pooled and compared with equivalent North American dose–response relationships. The Asian data show that at ambient O3 concentrations found at the study sites (which vary between ~35–75 ppb 4–8 h growing season mean), yield losses for wheat, rice and legumes range between 5–48, 3–47 and 10–65%, respectively. The results indicate that Asian grown wheat and rice cultivars are more sensitive to O3 than the North American dose–response relationships would suggest. For legumes the scatter in the data makes it difficult to reach any equivalent conclusion in relative sensitivities. As such, existing modelling-based risk assessments may have substantially underestimated the scale of the problem in Asia through use of North American derived dose–response relationships.  相似文献   

5.
Meta-analysis was conducted to quantitatively assess the effects of rising ozone concentrations ([O3]) on yield and yield components of major food crops: potato, barley, wheat, rice, bean and soybean in 406 experimental observations. Yield loss of the crops under current and future [O3] was expressed relative to the yield under base [O3] (≤26 ppb). With potato, current [O3] (31–50 ppb) reduced the yield by 5.3%, and it reduced the yield of barley, wheat and rice by 8.9%, 9.7% and 17.5%, respectively. In bean and soybean, the yield losses were 19.0% and 7.7%, respectively. Compared with yield loss at current [O3], future [O3] (51–75 ppb) drove a further 10% loss in yield of soybean, wheat and rice, and 20% loss in bean. Mass of individual grain, seed, or tuber was often the major cause of the yield loss at current and future [O3], whereas other yield components also contributed to the yield loss in some cases. No significant difference was found between the responses in crops grown in pots and those in the ground for any yield parameters. The ameliorating effect of elevated [CO2] was significant in the yields of wheat and potato, and the individual grain weight in wheat exposed to future [O3]. These findings confirm the rising [O3] as a threat to food security for the growing global population in this century.  相似文献   

6.
The information presented in this paper is concerned with the effects of ambient ozone on crop yield reduction and the resultant economic losses. Yield data for nine crops within the South Coast Air Basin (SCAB) of California were obtained for the 12-year period, 1964 through 1975. Ozone concentrations, temperature, precipitation, and relative humidity data were related to the yields by using regression models. Estimated yield reductions due to ozone for 1975, varied from zero to 57% depending on crop and location. Economic welfare losses calculated from the yield reductions were $57.3 and $45.7 million for producer’s and consumer’s surplus, respectively. The total loss from ozone to agriculture related economic sectors determined by input-output analysis was $276 million in the SCAB and $36.6 million in the remainder of the state.  相似文献   

7.
Ground level ozone concentrations, in combination with the prevailing climate, at the estate Ostads S?teri in southwestern Sweden were estimated to reduce the yield of wheat and potato ranging between 5% and 10%. Occasionally, in years with the highest ozone concentrations and/or climatic conditions favoring high rates of ozone uptake to the leaves, yield loss levels above 10% may occur. Based on simple extrapolation, these ozone-induced reductions of crop yields at Ostads S?teri represent a potential total annual yield loss in Sweden in the range of 24.5 million Euro for wheat and 7.3 million Euro for potato, respectively. A simulation of forest growth at Ostad S?teri predicted that prevailing mean ozone exposure during 1993-2003 had the potential to reduce forest growth by 2.2% and the economic return of forest production by 2.6%. Using this value for extrapolation to the national level, the potential annual economic loss for Sweden due to negative impacts of ozone on forest production would be in the range of 56 million Euro (2004 prices).  相似文献   

8.
Elevated concentrations of ground-level ozone (O3) are frequently measured over farmland regions in many parts of the world. While numerous experimental studies show that O3 can significantly decrease crop productivity, independent verifications of yield losses at current ambient O3 concentrations in rural locations are sparse. In this study, soybean crop yield data during a 5-year period over the Midwest of the United States were combined with ground and satellite O3 measurements to provide evidence that yield losses on the order of 10% could be estimated through the use of a multiple linear regression model. Yield loss trends based on both conventional ground-based instrumentation and satellite-derived tropospheric O3 measurements were statistically significant and were consistent with results obtained from open-top chamber experiments and an open-air experimental facility (SoyFACE, Soybean Free Air Concentration Enrichment) in central Illinois. Our analysis suggests that such losses are a relatively new phenomenon due to the increase in background tropospheric O3 levels over recent decades. Extrapolation of these findings supports previous studies that estimate the global economic loss to the farming community of more than $10 billion annually.  相似文献   

9.
Brookhaven National Laboratory has critically evaluated the structure and results of the Stanford Research Institute model (SRI model) for assessing national-level economic impacts of oxidants on plants. In response to inherent weaknesses in the SRI approach, a new model (DAMAGE) was constructed to estimate national-level damage from oxidants for alfalfa. DAMAGE uses actual oxidant measurements and the Oshima dose-response function for alfalfa to estimate effects on yield. Economic loss is then simply calculated by multiplying crop value by percent loss. Estimates of oxidant effects on alfalfa in 1974 were calculated with both DAMAGE and the SRI model. Results of the SRI model closely approach those of DAMAGE when the dose estimate is approximated by the seasonal total of the hourly averages. Other methods of estimating dose in DAMAGE give distinctly higher estimates of economic loss. The lower bound estimates suggest losses equal to $20 million or 4% of the total yield in the counties examined. Upper estimates suggest losses as high as $200 million or a 36% reduction in yield.  相似文献   

10.
Ground-level ozone in China: distribution and effects on crop yields   总被引:10,自引:0,他引:10  
Rapid economic development and an increasing demand for food in China have drawn attention to the role of ozone at pollution levels on crop yields. Some assessments of ozone effects on crop yields have been carried out in China. Determination of ozone distribution by geographical location and resulting crop loss estimations have been made by Chinese investigators and others from abroad. It is evident that surface level ozone levels in China exceed critical levels for occurrence of crop losses. Current levels of information from ozone dose/response studies are limited. Given the size of China, existing ozone monitoring sites are too few to provide enough data to scale ozone distribution to a national level. There are large uncertainties in the database for ozone effects on crop loss and for ozone distribution. Considerable research needs to be done to allow accurate estimation of crop losses caused by ozone in China.  相似文献   

11.
Rural and urban ozone (O3) monitoring data for the Tennessee Valley and crop loss models developed under the National Crop Loss Assessment Network (NCLAN) were used to estimate potential yield reductions for winter wheat, corn, soybean, cotton, and tobacco during the 1982 to 1984 growing seasons. Reductions from 0 to 20% of potential crop yields were estimated due to ambient O3. Rural O3 exposures measured in the Tennessee Valley were significantly higher than the measured urban exposures, suggesting that spatial interpolation from urban O3 records may underestimate rural O3 and thereby potential crop loss. Seasonal mean O3 exposures were highest in summer 1983, and similar in 1982 and 1984. Although a consistent inverse relationship was found between measured crop yields in the Tennessee Valley and seasonal O3 exposures, annual variation in yields was much greater than attributable to the annual variation in O3. Moisture stress, as indicated by the Palmer Drought Severity Indices, is likely the major determinant for yields of nonirrigated crops. This is consistent with field studies that demonstrate that ambient O3 levels can reduce crop yields under ideal soil moisture conditions, but cause little to no detectable yield reduction for nonirrigated crops. These models could be improved if crop response to O3 were allowed to vary as a function of environmental factors such as moisture stress.  相似文献   

12.
Spring wheat (Triticum aestivum L.) cv. Turbo was exposed to different levels of ozone and water supply in open-top chambers in 1991. The plants were grown either in charcoal filtered air (CF), not filtered air (NF), in charcoal filtered air with proportional addition of ambient ozone (CF1), or in charcoal filtered air with twice proportional addition of ambient ozone (CF2). The mean seasonal ozone concentrations (24 h mean) were 2.3, 20.6, 17.3, and 24.5 nl litre(-1) for CF, NF, CF1, and CF2 treatments, respectively. Ozone enhanced senescence and reduced growth and yield of the wheat plants. At final harvest, dry weight reductions were mainly due to reductions in ear weight. Grain yield loss by ozone mainly resulted from depressions of 1000 grain weight, whereas numbers of ears per plant and of grains per ear remained unchanged. Pollutants other than ozone did not alter the response to ozone, as was obvious from comparisons between CF1 and NF responses. Water stress alone did not enhance senescence, but also reduced growth and yield. However, yield loss mainly resulted from reductions in the number of ears per plant; 1000 grain weight was not influenced by water stress. No water supply by ozone treatment interactions were detected for any of the estimated parameters.  相似文献   

13.
Spring wheat, Triticum aestivum, was grown in open-top field chambers and exposed during the whole life cycle to filtered and non-filtered ambient air. The relatively low ambient pollution level did affect plant growth but had no effect on the overall grain yield of the two spring wheat cultivars Echo (1987) and Pelican (1988). A reduced root growth was found in both years which could be attributed mainly to the deposition of NO2 and SO2. Effects on crop development most likely due to ozone were limited to the 1987 growing season during which the ambient ozone concentrations were enhanced compared to 1988. This resulted in a slightly increased grain harvest index, a reduced 1000-grain weight, straw yield and a greater reduction in root growth. Visible damage resembling ozone injury appeared both years during seedling growth.  相似文献   

14.
This study examined the effects of varying future reductions in emissions of oxides of nitrogen (NOx) and volatile organic compounds (VOC) on the location and magnitude of peak ozone levels within California’s South Coast Air Basin (SoCAB or Basin). As ozone formation is currently VOC-limited in the Basin, model simulations with 2030 baseline emissions (?61% for NOx and ?32% for VOC from 2008) predict 10–20% higher peak ozone levels (i.e., NOx disbenefit) in the western and central SoCAB compared with the 2008 base simulation. With additional NOx reductions of 50% beyond the 2030 baseline emissions (?81% from 2008), the predicted ozone levels are reduced by about 15% in the eastern SoCAB but remain comparable to 2008 levels in the western and central Basin. The Basin maximum ozone site shifts westward to more populated areas of the Basin and will result potentially in greater population-weighted exposure to ozone with even a relatively small shortfall in the required NOx reductions unless accompanied by additional VOC reductions beyond 2030 baseline levels. Once committed to a NOx-focused control strategy, NOx reductions exceeding 90% from 2008 levels will be necessary to attain the ozone National Ambient Air Quality Standards (NAAQS). The findings from this study and other recent work that the current VOC emission estimates are underestimated by about 50% suggest that greater future VOC reductions will be necessary to reach the projected 2030 baseline emissions. Increasing the base year VOC emissions by a factor of 1.5 result in higher 2008 baseline ozone predictions, lower relative response factors, and about 20% lower projected design values. If correct, these findings have important implications for the total and optimum mix of VOC and NOx emission reductions that will be required to attain the ozone NAAQS in the SoCAB.

Implications: Results of this study indicate that ozone levels in the western and central SoCAB would remain the same or increase with even a relatively small shortfall in the projected NOx reductions under planned NOx-focused controls. This possibility, therefore, warrants a rigorous analysis of the costs and effects of varying reductions of VOC and NOx on the formation and combined health impacts of ozone and secondary particles. Given the nonlinearity of ozone formation, such analyses should include the implications of gradually increasing global background ozone concentrations and the Basin’s topography and meteorology on the practical limits of alternative emission control strategies.  相似文献   

15.
Crop yield losses were estimated for ambient O3 concentrations and for a series of potential O3 air quality standards for California, including the current statewide 1-h oxidant (O3) standard of 0.10 ppm (196 microg m(-3)), 12-h growing season averages, and other models. A model for statewide losses was developed using hourly O3 data for all sites in the State, county crop productivity data, and available O3 concentration-yield loss equations to determine potential yield losses for each crop in each county in California for 1984. Losses were based on comparison to an estimated background filtered air concentration of 0.025 or 0.027 ppm, for 12 or 7 h, respectively. Potential losses due to ambient air in 1984 were estimated at 19% to 25% for dry beans, cotton, grapes, lemons, onions, and oranges. Losses of 5% to 9% were estimated for alfalfa and sweet corn. Losses of 4% or less were estimated for barley, field corn, lettuce, grain sorghum, rice, corn silage, spinach, strawberries, sugar beets, fresh tomatoes, processing tomatoes, and wheat. Implementation of either a modified rollback to meet the current 1 h California O3 standard (0.10 ppm) or a three-month, 12-h growing season average of 0.045 ppm was necessary to produce large reductions in potential crop losses.  相似文献   

16.
In this United States-focused analysis we use outputs from two general circulation models (GCMs) driven by different greenhouse gas forcing scenarios as inputs to regional climate and chemical transport models to investigate potential changes in near-term U.S. air quality due to climate change. We conduct multiyear simulations to account for interannual variability and characterize the near-term influence of a changing climate on tropospheric ozone-related health impacts near the year 2030, which is a policy-relevant time frame that is subject to fewer uncertainties than other approaches employed in the literature. We adopt a 2030 emissions inventory that accounts for fully implementing anthropogenic emissions controls required by federal, state, and/or local policies, which is projected to strongly influence future ozone levels. We quantify a comprehensive suite of ozone-related mortality and morbidity impacts including emergency department visits, hospital admissions, acute respiratory symptoms, and lost school days, and estimate the economic value of these impacts. Both GCMs project average daily maximum temperature to increase by 1–4°C and 1–5 ppb increases in daily 8-hr maximum ozone at 2030, though each climate scenario produces ozone levels that vary greatly over space and time. We estimate tens to thousands of additional ozone-related premature deaths and illnesses per year for these two scenarios and calculate an economic burden of these health outcomes of hundreds of millions to tens of billions of U.S. dollars (2010$).

Implications:?Near-term changes to the climate have the potential to greatly affect ground-level ozone. Using a 2030 emission inventory with regional climate fields downscaled from two general circulation models, we project mean temperature increases of 1 to 4°C and climate-driven mean daily 8-hr maximum ozone increases of 1–5 ppb, though each climate scenario produces ozone levels that vary significantly over space and time. These increased ozone levels are estimated to result in tens to thousands of ozone-related premature deaths and illnesses per year and an economic burden of hundreds of millions to tens of billions of U.S. dollars (2010$).  相似文献   

17.
Which is the best standard for protecting plants from ozone? To answer this question, we must validate the standards by testing biological responses vs. ambient data in the field. A validation is missing for European and USA standards, because the networks for ozone, meteorology and plant responses are spatially independent. We proposed geostatistics as validation tool, and used durum wheat in central Italy as a test. The standards summarized ozone impact on yield better than hourly averages. Although USA criteria explained ozone-induced yield losses better than European criteria, USA legal level (75 ppb) protected only 39% of sites. European exposure-based standards protected ≥90%. Reducing the USA level to the Canadian 65 ppb or using W126 protected 91% and 97%, respectively. For a no-threshold accumulated stomatal flux, 22 mmol m−2 was suggested to protect 97% of sites. In a multiple regression, precipitation explained 22% and ozone explained <0.9% of yield variability.  相似文献   

18.
This study aims to evaluate near surface ozone simulated with the modelling system RegCM3/CAMx against ozone measurements from the EMEP database for the recent decade 1991–2000. The RegCM3/CAMx simulations were performed on a 50 km × 50 km grid over Europe driven either by ERA-40 reanalysis (hereafter referred as ERA simulation) or the global circulation model (GCM) ECHAM5 (hereafter referred as ECHAM simulation). A set of statistical metrics is used for the model evaluation, including temporal correlation coefficient, the ratio of the standard deviations and the bias of simulated versus observed values. Overall, a good agreement is found for both ERA and ECHAM simulations at the majority of the selected EMEP stations in all metrics throughout the year based either on monthly or daily ozone values. Based on these results, it is assessed that the modelling system RegCM3/CAMx is suitable to be used for present and future regional climate-air quality simulations with emphasis on near surface ozone. The ERA simulations reproduce more accurately the observed ozone values in comparison to ECHAM simulations because the meteorology of the ERA experiment is closer to real atmospheric conditions than the GCM based experiment. On a seasonal basis, both ERA and ECHAM simulations exhibit a seasonally dependent bias, with winter and spring ozone values being generally under-estimated by the model and summer and autumn values being slightly overestimated. This seasonally dependent bias is also evident from median and peak midday ozone values. However, the highest observed midday ozone peaks in summer, with values higher than 80 ppbv, could not be captured either by ERA or ECHAM simulations. An analysis of day-time and night-time ERA and ECHAM modelled ozone values shows that CAMx performs better during the day-time.  相似文献   

19.
The work outlined in this paper had three objectives. The first was to explore the effects of ozone pollution on grain yield and quality of commercially-grown winter wheat cultivars. The second was to derive a stomatal ozone flux model for winter wheat and compare with those already developed for spring wheat. The third was to evaluate exposure- versus flux–response approaches from a risk assessment perspective, and explore the implications of genetic variation in modelled ozone flux.Fifteen winter wheat cultivars were grown in open-top chambers where they were exposed to four levels of ozone. During fumigation, stomatal conductance measurements were made over the lifespan of the flag leaf across a range of environmental conditions. Although significant intra-specific variation in ‘ozone sensitivity’ (in terms of impacts on yield) was identified, yield was inversely related (R2 = 0.63, P < 0.001) to the accumulated hourly averaged ozone exposure above 40 ppb during daylight hours (AOT40) across the dataset. The adverse effect of ozone on yield was principally due to a decline in seed weight. Algorithms defining the influence of environmental variables on stomatal uptake were subtly different from those currently in use, based on data for spring wheat, to map ozone impacts on pan-European cereal yield. Considerable intra-specific variation in phenological effects was identified. This meant that an ‘average behaviour’ had to be derived which reduced the predictive capability of the derived stomatal flux model (R2 = 0.49, P < 0.001, 15 cultivars included). Indeed, given the intra-specific variability encountered, the flux model that was derived from the full dataset was no better in predicting O3 impacts on wheat yield than was the AOT40 index. The study highlights the need to use ozone risk assessment tools appropriate to specific vegetation types when modelling and mapping ozone impacts at the regional level.  相似文献   

20.
Three rates of ethylenediurea were used to assess the impact of ambient ozone on growth and productivity of wheat (Triticum aestivum L) cultivars "Malviya 533" (M 533) and "Malviya 234" (M 234) at a suburban site near Varanasi, India, beginning in December. Wheat plants were treated with EDU at 0, 150, 300 and 450 ppm as soil drenches at 10-day intervals. EDU treatment affected plant growth, with effects varying with cultivar, age, and EDU concentration. Seed yield was improved for M 533 at 150 ppm EDU, while yield improved for M 234 at 300 and 450 ppm EDU. M 533 appears to be more resistant to ozone than M 234. Overall results confirmed that EDU is very useful in assessing the effect of ambient ozone in India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号