首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Environmental Science and Pollution Research - Brown carbon (BrC) has recently received much attention because of its light absorption features. The chemical compositions, optical properties, and...  相似文献   

2.
During a field campaign the chemical character of fine (d<2.5 μm) aerosol particles was studied at K-puszta, Hungary within the framework of a project of the European Union. The organic and elemental carbon fraction, as well as the concentration of major inorganic constituents with respect to the total fine aerosol mass are presented in this paper. It was found that organic compounds constituted a significant fraction of the total fine aerosol mass, their contribution is comparable to or larger than that of the major water soluble ions. The diurnal variation of aerosol composition was also studied. It can be concluded that the relative abundance of the major constituents is practically the same during the day and at night. The samples were also classified and studied according to the air mass history. It is stated that the aerosol can be separated into two populations with different regression lines between organic and elemental carbon.  相似文献   

3.
A novel approach is described for the fractionation of water-soluble organic carbon (WSOC) in atmospheric aerosols and cloud drops. The method is based on the preliminary adsorption of the sample, acidified at pH 2, on a polymeric styrene-divinylbenzene resin (XAD-2) and subsequent elution with a series of solvents, which leads to the fractionation of the sample into three classes of compounds. The method was set up using synthetic mixtures of organic compounds and then applied to selected samples of atmospheric aerosols and cloud drops. All samples and collected fractions were analysed using size exclusion chromatography (SEC). This method proved particularly useful both in providing information on the organic content of the samples and for the characterisation of the macromolecular compounds (MMCs) in the samples. Synthetic samples were prepared using humic, fulvic and tannic acid to simulate naturally occurring MMCs. In the first fraction, eluted with HCl, only the most soluble organic compounds (oxalic acid, formic acid and acetic acid) were collected. In the second fraction, eluted with methanol, the major part of the organic material was collected together with the more hydrophilic constituents of the humic substances. In the third fraction, it was possible to separately recover the more hydrophobic component of the humic substances. A large number of atmospheric samples (fog, aerosol, cloud) were then analysed using SEC. Most of these samples evidenced a noteworthy chromatogram at 254 nm. Moreover, the chromatographic area evidenced a clear linear correlation with the total organic carbon (TOC) values. The fractionation method on XAD-2 was finally applied to selected atmospheric samples, yielding three classes of organic compounds. In each sample, a non-negligible amount of compounds with dimensional and chemical properties similar to humic substances were collected in the third fraction. The carbon content in this latter fraction was estimated both by TOC and by means of the correlation between TOC and SEC area.  相似文献   

4.
In this study, the water cycles of nine water-soluble organic salts of atmospheric interest were studied using an electrodynamic balance (EDB) at 25°C. Sodium formate, sodium acetate, sodium succinate, sodium pyruvate and sodium methanesulfonate (Na-MSA) particles crystallize as the relative humidity (RH) decreases and they deliquesce as the RH increases. Sodium oxalate and ammonium oxalate form supersaturated particles at low RH before crystallization but they do not deliquesce even at RH=90%. Sodium malonate and sodium maleate particles neither crystallize nor deliquesce. These two salts absorb and evaporate water reversibly without hysteresis. In most cases, the solid states of single particles resulting from the crystallization of supersaturated droplets do not form the most thermodynamically stable state found in bulk studies. Sodium formate, sodium oxalate, ammonium oxalate, sodium succinate, sodium pyruvate and Na-MSA form anhydrous particles after crystallization. Sodium acetate forms particles with a water/salt molar ratio of 0.5 after crystallization. In salts with several hydrated states including sodium formate and sodium acetate, the particles deliquesce at the lowest deliquescence relative humidity (DRH) of the hydrates. Except sodium oxalate and ammonium oxalate, all the salts studied here are as hygroscopic as typical inorganic hygroscopic aerosols. The hygroscopic organic salts have a growth factor of 1.76–2.18 from RH=10–90%, comparable to that of typical hygroscopic inorganic salts such as NaCl and (NH4)2SO4. Further study of other atmospheric water-soluble organic compounds and their mixtures with inorganic salts is needed to explain the field observations of the hygroscopic growth of ambient aerosols.  相似文献   

5.
Water-soluble organic carbon (WSOC) and atmospheric humic-like substances (HULIS) were investigated for urban PM2.5-fraction aerosol samples, which were collected with the tandem filter method on quartz fibre filters over a non-heating spring season. Sampling artefacts were of importance for all organic chemical fractions, and the back-to-front-filter concentration ratios were on average 28% for WSOC and 17% for HULIS and organic carbon (OC). The difference in the ratios indicates that the water-soluble organics play a more important role in adsorptive artefacts than the organic matter (OM) in general. The results emphasize the need for an appropriate sampling and/or correction method for measuring particulate organic substances in urban environments. The corrected atmospheric concentration of HULIS, obtained by subtracting the back-filter from the front-filter data, was on average 2 μg m−3; which represented 6% of the mean PM2.5 particulate mass, and it made up 45% of the secondary OC. The HULIS carbon accounted for 20% of the OC and 62% of the WSOC, while WSOC made up 32% of OC. The major element composition of HULIS, expressed in molar ratios, was C:H:O:N=22:32:10:1. The molar H/C ratio of 1.49 implies the presence of unsaturated organic compounds, although these were depleted in comparison with rural aerosol or standard fulvic acids. The molar O/C ratio of 0.47 indicates the existence of oxygenated functional groups; comparison to rural aerosol suggests that the (fresh) urban-type aerosol is less oxidized (and, therefore, less water soluble as well) than the rural one. The OM/OC mass conversion factor for the isolated (water-soluble) HULIS was derived to be 1.81. It was inferred from comparisons with published data that there are substantial differences in abundance and chemical composition of HULIS for different environments.  相似文献   

6.
A scanning transmission X-ray microscope at the Lawrence Berkeley National Laboratory is used to measure organic functional group abundance and morphology of atmospheric aerosols. We present a summary of spectra, sizes, and shapes observed in 595 particles that were collected and analyzed between 2000 and 2006. These particles ranged between 0.1 and 12 μm and represent aerosols found in a large range of geographical areas, altitudes, and times. They include samples from seven different field campaigns: PELTI, ACE-ASIA, DYCOMS II, Princeton, MILAGRO (urban), MILAGRO (C-130), and INTEX-B. At least 14 different classes of organic particles show different types of spectroscopic signatures. Different particle types are found within the same region while the same particle types are also found in different geographical domains. Particles chemically resembling black carbon, humic-like aerosols, pine ultisol, and secondary or processed aerosol have been identified from functional group abundance and comparison of spectra with those published in the literature.  相似文献   

7.
The measurements of C2–C9 volatile organic compounds (VOC) were carried out at a site in Seoul, the capital of Korea from August 1998 to July 1999. Air samples were collected for 24 h in 6 l SUMMA canisters every 6 days. The canister samples were quantitatively analyzed by a GC/FID and GC/MS. The species with the highest mean concentration among the 70 identified was propane (7.8 ppb), followed by toluene (6.4 ppb) and ethylene (5.9 ppb). The high concentration of propane was mainly attributed to the emissions by liquefied petroleum gas (LPG) usage for cooking and heating, and butane fuel for transportation. The general trend of the seasonal variation shows higher concentrations in winter and lower ones in summer. This behavior was mainly caused by the variations of temperature, and resultant VOC source strengths, coupled with the variations of the mixing depth. According to the analysis of concentration ratios, the seasonal contributions of the major emission sources to the VOC concentrations were influenced by ambient temperature. Further, it was identified that the contributions by the use of solvents, natural gas, LPG, and butane fuel were closely related to the variations of consumption pattern according to seasons. Through the analysis of the concentration correlations between less reactive compound and highly reactive ones for summer and winter months, it was found that photochemical reactivity affects relative concentration of reactive compound.  相似文献   

8.
Ohura T  Kitazawa A  Amagai T 《Chemosphere》2004,57(8):831-837
The occurrence of a mutagenic compound, 1-chloropyrene (Cl-Py), in extracts of ambient particulate matter at an urban site in Japan has been investigated. Samples were collected with a high-volume air sampler for 24 h periods over the course of 1 week in winter (February), spring (May), summer (August), and autumn (November) 2002. The Cl-Py levels showed seasonal variation, ranging from 2.4 pg/m(3) (summer) to 18.9 pg/m(3) (winter). This variation would indicate that the lower temperatures in winter results in an increased distribution of Cl-Py from vapor phase to the particle phase. In addition, there is also the possibility that ambient Cl-Py is emitted from seasonal sources or is susceptible to photodegradation by sunlight, or both. The photodegradation of Cl-Py in a laboratory experiment was conducted to simulate the compound's fate on airborne particle surfaces. The degradation of Cl-Py proceeded by a first-order reaction with a rate constant of 0.72 h(-1). In the presence of a radical sensitizer, 9,10-anthraquinone (AQ), the photodegradation rate of Cl-Py was elevated in comparison with the rate in the absence of AQ. In addition, the dechlorination of Cl-Py (i.e., the formation of Py) occurred in the presence of AQ.  相似文献   

9.
The concentrations of persistent organic pollutants (POPs), such as HCB, alpha-, beta-, gamma- and delta-HCH, trans- and cis-chlordane (t-CHL, c-CHL), DDE, DDD and DDT, in ambient air have been measured at five sampling points in Niigata area, Japan (Niigata, Maki, Tsubame, Jouzo and Yahiko) during the period from September 1999 to November 2001. HCB, alpha-HCH, t-CHL and c-CHL showed higher concentrations than the other chemicals in all locations. All the POPs except t-CHL and c-CHL collected at urban sites of the Niigata Plain was almost the same in their concentration levels. Higher concentrations of t-CHL and c-CHL in residential areas should be attributed to the past usage of the chemical as a termiticide. At Yahiko (remote site), most of the POPs showed lower concentrations than those measured at the other sampling sites, although alpha-HCH and gamma-HCH were comparable with the concentrations found at the other sampling sites. All POPs except alpha-HCH and gamma-HCH tend to decrease 41-80% in their concentrations from 2000 to 2001. The lower POPs concentrations in winter and the higher POPs concentrations in summer at every sampling point can be partly explained by temperature differences. Applying the equation of the logarithm of the POP partial pressure in air versus reciprocal temperature (lnPa=m/T+b) to our data, linear relations were observed. HCB gave a poor linearity and the smallest slope, while beta-HCH, t-CHL and c-CHL gave good linearities and large slopes in the equation. The results suggest that HCB level is influenced by not only the emission from terrestrial sources but the global-scale background pollution. A peculiar observation is that beta-HCH concentration measured in our study showed large temperature dependence, indicating there could be a source of contamination in the surrounding areas.  相似文献   

10.
11.
Aerosol water content (AWC) of urban atmospheric particles was investigated based on the hygroscopic growth measurements for 100 and 200 nm particles using a hygroscopicity tandem differential mobility analyzer in Sapporo, Japan in July 2006. In most of the humidogram measurements, presence of less and more hygroscopic mode was evident from the different dependence on relative humidity (RH). The volume of liquid water normalized by that of dry particle (Vw(RH)/Vdry) was estimated from the HTDMA data for 100 and 200 nm particles. The RH dependence of Vw(RH)/Vdry was well represented by a fitted curve with a hygroscopicity parameter κeff. The κeff values for 200 nm particles were in general higher than those for 100 nm particles, indicating a higher hygroscopicity of 200 nm particles. Based on the κeff values, the volume mixing ratios of water-soluble inorganic compounds (ammonium sulfate equivalent) were estimated to be on average 31% and 45% for 100 and 200 nm particles, respectively. The diurnal variation of κeff, with relatively higher values in the noontime and nighttime and lower values in the morning and evening hours, was observed for both particle sizes. The Vw(RH)/Vdry values under ambient RH conditions were estimated from κeff to range from 0.05 to 2.32 and 0.06 to 2.43 for 100 nm and 200 nm particles, respectively. The degree of correlation between κeff and Vw(RH)/Vdry at ambient RH suggests a significant contribution of the variation of κeff to atmospheric AWC in Sapporo.  相似文献   

12.
We used an environmental transmission electron microscope to observe deliquescence and hygroscopic growth of atmospheric particles with hygroscopic coatings over the range 0–100% relative humidity (RH). The particles were collected from polluted and clean environments. Types included a sulfate-coated NaCl/silicate aggregate particle, a sulfate-coated sea-salt particle, and a Mg-rich, chloride-coated sea-salt particle. They all exhibited initial water uptake between 50% and 60% RH, although the first major morphological changes occurred at 70% RH. A deliquescence sphere, adjacent to the core particle, formed between 70% and 76% RH when deliquescence occurred or when the liquid phase was able to break out of the solid exterior coating. The deliquescence sphere grew to engulf the particle with increasing RH. Some particles developed a splatter zone associated with a particle coating. Efflorescence occurred over the range 49–44% RH. Our results indicate that some coated particles undergo a multi-step deliquescence process and that composition of the different phases within the coating affects deliquescence and hygroscopic growth below 76% RH. Above 76% RH, the dominant hygroscopic growth was due to water uptake by NaCl. Efflorescence of these particles also was strongly linked to NaCl, although the presence of other phases inhibited formation of a single NaCl crystal. Our results show that the observed coatings can both enhance particle solubility and lower the effective deliquescence RH of the particle. Thus, these coatings cause important phase and size changes for aerosol particles that could feed back into many other chemical and physical processes that contribute to radiative forcing within the atmosphere.  相似文献   

13.
There are a number of difficulties associated with the quantitative analysis of volatile organic compounds (VOCs) in atmospheric particles. Therefore, majority of the previous studies on VOCs associated with particles have been qualitative. Air samples were collected in Izmir, Turkey to determine ambient particle and gas phase concentrations of several aromatic, oxygenated and halogenated VOCs. Samples were quantitatively analyzed using thermal desorption–gas chromatography/mass spectrometry. Gas-phase concentrations ranged between 0.02 (bromoform) and 4.65 μg m−3 (toluene) and were similar to those previously measured at the same site. Particle-phase concentrations ranged from 1 (1,3-dichlorobenzene) to 933 pg m−3 (butanol). VOCs were mostly found in gas-phase (99.9±0.25%). However, the particulate VOCs had comparable concentrations to those reported previously for semivolatile organic compounds. The distribution of particle-phase VOCs between fine (dp<2.5 μm) and coarse (2.5 μm<dp<10 μm) fractions was also investigated. It was found that VOCs were mostly associated with fine particles.  相似文献   

14.
Atmospheric water-soluble organic nitrogen (WSON) was determined on size-segregated aerosol particles collected during a two years period (2005–2006) in a remote marine location in the Eastern Mediterranean (Finokalia, Crete island). Average concentration of WSON was 5.5 ± 3.9 nmol m?3 and 11.6 ± 14.0 nmol m?3 for coarse (PM1.3-10) and fine (PM1.3) mode respectively, corresponding to 13% of Total Dissolved Nitrogen (TDN) in both modes. Air masses origin and correlation with tracers of natural and anthropogenic sources indicate that combustion process (biomass burning and fossil fuel) and African dust play an important role in regulating levels of WSON in both coarse and fine aerosol fractions. Chemical speciation of organic nitrogen pool was attempted by analyzing 47 fine aerosol samples (PM1) for 17 free amino acids (N-FAA), dimethylamine (DMA) and trimethylamine (TMA). The average concentration of N-FAA was 0.5 ± 0.5 nmol m?3, while the average concentration of DMA was 0.2 ± 0.8 nmol m?3, TMA was below detection limit. The percentage contribution of N-FAA and DMA to WSON was 2.1 ± 2.3% and 0.9 ± 3.4%, respectively.  相似文献   

15.

Purpose  

The purpose of this study was to evaluate the influences of volatile organic compounds (VOCs) emissions on hazardousness and photochemical reactivity and to propose efficient VOCs abatement strategies.  相似文献   

16.
A study of carbonaceous particulate matter (PM) was conducted in the Middle East at sites in Israel, Jordan, and Palestine. The sources and seasonal variation of organic carbon, as well as the contribution to fine aerosol (PM2.5) mass, were determined. Of the 11 sites studied, Nablus had the highest contribution of organic carbon (OC), 29%, and elemental carbon (EC), 19%, to total PM2.5 mass. The lowest concentrations of PM2.5 mass, OC, and EC were measured at southern desert sites, located in Aqaba, Eilat, and Rachma. The OC contribution to PM2.5 mass at these sites ranged between 9.4% and 16%, with mean annual PM2.5 mass concentrations ranging from 21 to 25 ug m?3. These sites were also observed to have the highest OC to EC ratios (4.1–5.0), indicative of smaller contributions from primary combustion sources and/or a higher contribution of secondary organic aerosol. Biomass burning and vehicular emissions were found to be important sources of carbonaceous PM in this region at the non-southern desert sites, which together accounted for 30%–55% of the fine particle organic carbon at these sites. The fraction of measured OC unapportioned to primary sources (1.4 μgC m?3 to 4.9 μgC m?3; 30%–74%), which has been shown to be largely from secondary organic aerosol, is relatively constant at the sites examined in this study. This suggests that secondary organic aerosol is important in the Middle East during all seasons of the year.  相似文献   

17.
The concentrations and compositions of free and bound organic acids in total suspended particles from typical urban, suburban and forest park sites of Guangzhou were determined in this study. The free form of organic acids (solvent extractable) in aerosols in Guangzhou varied with site and season. The suburban samples contained the highest contents of alkanoic, alkenoic and dicarboxylic acids. These findings were consistent with a higher supply of hydrocarbons and NOx in the suburban area. However, concentrations of aromatic acids were similar in the urban, suburban and forest park sites. Generally, winter season samples of the acids from anthropogenic sources contained more organic acids than summer season samples due to stronger removal by wet deposition in the summer. For the acids from botanic sources, the summer season samples were higher. In addition to the free acids, bound acids (solvent non-extractable) mainly formed by esterification of free acids were also found in the samples. In general, bound acids were higher than free acids. Esterification is mainly controlled by the pKa of organic acids and the atmospheric pH value. This explains why aromatic and dicarboxylic acids occur mainly as bound forms and why the samples from urban sites contained high levels of bound acids as the pH of rain water can reach 4.53.Concentrations of alkanoic and alkenoic acids in the aerosols of Guangzhou were much higher than those in the other areas studied.  相似文献   

18.
Ogura I  Masunaga S  Nakanishi J 《Chemosphere》2001,44(6):1473-1487
The atmospheric bulk (dry and wet) deposition of dioxins was investigated at four locations (Tokyo, Yokohama, Tsukuba, and Tanzawa) in the Kanto region (in Japan) over one year using a stainless-steel pot. Annual average polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDF) deposition fluxes were estimated to be from 450 to 1300 ng/m2/yr, and the annual average TEQ fluxes from 5.7 to 17 ng-TEQ/m2/yr at the four locations. The PCDD/PCDF deposition flux was higher in winter than in summer. The deposition flux could be related to ambient temperature, particularly for less chlorinated PCDDs/PCDFs, while the deposition flux is not necessarily related to the amount of precipitation. The PCDD/PCDF deposition flux increased as the particle deposition flux increased, for the winter samples. Based on the ratio of the PCDD/PCDF deposition fluxes to the particle deposition fluxes, the contribution of the reentrainment of soil particles to the TEQ of PCDD/PCDF deposition was considered to be negligible in this region. Based on the air concentrations monitored near our deposition sampling points by the municipalities, the ratio of the annual deposition flux to the annual average air concentration was roughly estimated to be 0.082 cm/s. The range of deposition flux in the Kanto region was estimated to be from 1.5 to 31 (median: 9.8) ng-TEQ/m2/yr based on the range of air concentration data measured by the municipalities. The total annual deposition flux in the entire Kanto region was estimated to range from 50 to 900 g-TEQ/yr (median 320 g-TEQ/yr). This estimated flux was of the same order as the sum of estimated emissions from municipal solid waste incinerators and industrial waste incinerators in the Kanto region. The contributions of dioxin-like PCBs in Yokohama, Tsukuba, and Tanzawa depositions were less than 10% of the total TEQ; however, in Tokyo it was almost equal to or more than 50%.  相似文献   

19.
The photooxidation of α-pinene in the presence of NO2, with and without added NaNO3 seed particles, has been studied in a large-diameter flow tube. Particles formed by homogeneous nucleation and by condensation on the pre-existing seeds were sampled at various stages of the reaction, dried using four diffusion dryers, size selected at different mobility diameters (dm) using a differential mobility analyzer (DMA), and characterized with a single particle mass spectrometer (SPLAT II). It was found that homogeneously nucleated particles are spherical, have a density (ρ) of 1.25 ± 0.02 g cm?3 (±2σ) and contain a significant amount of organic nitrates. The mass spectra of the low volatility products condensed on the NaNO3 seed particles were found to be virtually the same as in the case of homogeneous nucleation. The data show that the presence of even a submonolayer of organics on the NaNO3 particles causes water retention that leads to a decrease in particle density and that the amount of water retained increases with organic coating thickness. Thicker coatings appear to inhibit water evaporation from the particle seeds altogether. This suggests that in the atmosphere, where low volatility organics are plentiful, some hygroscopic salts will retain water and have different densities and refractive indices than expected in the absence of the organic coating. This water retention combined with the organic shell on the particles can potentially impact light scattering by these particles and activity as cloud condensation nuclei (CCN), as well as heterogeneous chemistry and photochemistry on the particles.  相似文献   

20.
通过对兰州市区4个在线大气监测点冬季细颗粒成分进行测定,测得微量金属元素和无机可溶性离子分别占细颗粒浓度的1%、52%。微量金属元素中Pb的检出量最高,占本文所测微量金属元素总含量的39.3%;无机可溶性离子含量最高的是SO2-4,其次为NO-3、Na+,分别占本文所测9种无机可溶性离子的23.3%、20.5%和19.7%。采用富集因子法与因子分析法对微量金属元素来源进行分析,结果表明,微量金属元素的来源为燃煤源、风沙土壤源、金属加工,燃煤源成因率最高,为61.2%;采用因子分析法对无机可溶性离子来源进行分析,结果表明,无机可溶性离子的来源为二次转化、人为排放、土壤源(包括风沙土壤尘和道路扬尘),土壤源成因率最高,为49.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号