共查询到20条相似文献,搜索用时 0 毫秒
1.
Betty K. Pun Rochelle T.F. Balmori Christian Seigneur 《Atmospheric environment (Oxford, England : 1994)》2009,43(2):402-409
A wintertime episode during the 2000 California Regional PM Air Quality Study (CRPAQS) was simulated with the air quality model CMAQ–MADRID. Model performance was evaluated with 24-h average measurements available from CRPAQS. Modeled organic matter (OM) was dominated by emissions, which were probably significantly under-represented, especially in urban areas. In one urban area, modeled daytime nitrate concentrations were low and evening concentrations were high. This diurnal profile was not explained by the partition of nitrate between the gas and particle phases, because gaseous nitric acid concentrations were low compared to PM nitrate. Both measured and simulated nitrate concentrations aloft were lower than at the surface at two tower locations during this episode. Heterogeneous reactions involving NO3 and N2O5 accounted for significant nitrate production in the model, resulting in a nighttime peak. The sensitivity of PM nitrate to precursor emissions varied with time and space. Nitrate formation was on average sensitive to NOx emissions. However, for some periods at urban locations, reductions in NOx caused the contrary response of nitrate increases. Nitrate was only weakly sensitive to reductions in anthropogenic VOC emissions. Nitrate formation tended to be insensitive to the availability of ammonia at locations with high nitrate, although the spatial extent of the nitrate plume was reduced when ammonia was reduced. Reductions in PM emissions caused OM to decrease, but had no effect on nitrate despite the role of heterogeneous reactions. A control strategy that focuses on NOx and PM emissions would be effective on average, but reductions in VOC and NH3 emissions would also be beneficial for certain times and locations. 相似文献
2.
《国际环境与污染杂志》2011,21(5):471-480
Two sampling sites in central Taiwan, at Hungkuang University (HKU) and Tunghai University (THU), were chosen to contrast the content of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere from November 2000 to April 2001. PAHs that arise from incomplete combustion of organic materials, especially fossil fuels, are the major toxic pollutants in central Taiwan. This study aimed to analyse PAHs, by using a PS-1 sampler and a gas chromatograph/mass selective detector (GC/MSD), and to identify the major sources of PAHs. At the HKU sampling site, the primary emission sources are probably vehicles and coal burning, and vehicular emissions are the primary contributor at the THU sampling site. 相似文献
3.
Comparison of particle light scattering and fine particulate matter mass in central California 总被引:2,自引:0,他引:2
Chow JC Watson JG Park K Lowenthal DH Robinson NF Park K Magliano KA 《Journal of the Air & Waste Management Association (1995)》2006,56(4):398-410
Particle light scattering (Bsp) from nephelometers and fine particulate matter (PM2.5) mass determined by filter samplers are compared for summer and winter at 35 locations in and around California's San Joaquin Valley from December 2, 1999 to February 3, 2001. The relationship is described using particle mass scattering efficiency (sigmasp) derived from linear regression of Bsp on PM2.5 that can be applied to estimated PM2.5 from nephelometer data within the 24-hr filter sampling periods and between the every-6th-day sampling frequency. An average of sigmaSp = 4.9 m2/g was found for all of the sites and seasons; however, sigmasp averaged by site type and season provided better PM2.5 estimates. On average, the sigmasp was lower in summer than winter, consistent with lower relative humidities, lower fractions of hygroscopic ammonium nitrate, and higher contributions from fugitive dust. Winter average sigmasp were similar at non-source-dominated sites, ranging from 4.8 m2/g to 5.9 m2/g. The sigmasp was 2.3 m2/g at the roadside, 3.7 m2/g at a dairy farm, and 4.1 m2/g in the Kern County oilfields. Comparison of Bsp from nephelometers with and without a PM2.5 inlet at the Fresno Supersite showed that coarse particles contributed minor amounts to light scattering. This was confirmed by poorer correlations between Bsp and coarse particulate matter measured during a fall sampling period. 相似文献
4.
Source contributions to fine particulate matter in an urban atmosphere 总被引:10,自引:0,他引:10
This paper proposes a practical method for estimating source attribution by using a three-step methodology. The main objective of this study is to explore the use of the three-step methodology for quantifying the source impacts of 24-h PM2.5 particles at an urban site in Seoul, Korea. 12-h PM2.5 samples were collected and analyzed for their elemental composition by ICP-AES/ICP-MS/AAS to generate the source composition profiles. In order to assess the daily average PM2.5 source impacts, 24-h PM2.5 and polycyclic aromatic hydrocarbons (PAH) ambient samples were simultaneously collected at the same site. The PM2.5 particle samples were then analyzed for trace elements. Ionic and carbonaceous species concentrations were measured by ICP-AES/ICP-MS/AAS, IC, and a selective thermal MnO2 oxidation method. The 12-h PM2.5 chemical data was used to estimate possible source signatures using the principal component analysis (PCA) and the absolute principal component scores method followed by the multiple linear regression analysis. The 24-h PM2.5 source categories were extracted with a combination of PM2.5 and some PAH chemical data using the PCA, and their quantitative source contributions were estimated by chemical mass balance (CMB) receptor model using the estimated source profiles and those in the literature. The results of PM2.5 source apportionment using the 12-h derived source composition profiles show that the CMB performance indices; chi2, R2, and percent of mass accounted for are 2.3%, 0.97%, and 100.7%, which are within the target range specified. According to the average PM2.5 source contribution estimate results, motor vehicle exhaust was the major contributor at the sampling site, contributing 26% on average of measured PM2.5 mass (41.8 microg m-3), followed by secondary sulfate (23%) and nitrate (16%), refuse incineration (15%), soil dust (13%), field burning (4%), oil combustion (2.7%), and marine aerosol (1.3%). It can be concluded that quantitative source attribution to PM2.5 in an urban area where source profiles have not been developed can be estimated using the proposed three-step methodology approach. 相似文献
5.
Chung A Chang DP Kleeman MJ Perry KD Cahill TA Dutcher D McDougall EM Stroud K 《Journal of the Air & Waste Management Association (1995)》2001,51(1):109-120
Measurements collected using five real-time continuous airborne particle monitors were compared to measurements made using reference filter-based samplers at Bakersfield, CA, between December 2, 1998, and January 31, 1999. The purpose of this analysis was to evaluate the suitability of each instrument for use in a real-time continuous monitoring network designed to measure the mass of airborne particles with an aerodynamic diam less than 2.5 microns (PM2.5) under wintertime conditions in the southern San Joaquin Valley. Measurements of airborne particulate mass made with a beta attenuation monitor (BAM), an integrating nephelometer, and a continuous aerosol mass monitor (CAMM) were found to correlate well with reference measurements made with a filter-based sampler. A Dusttrak aerosol sampler overestimated airborne particle concentrations by a factor of approximately 3 throughout the study. Measurements of airborne particulate matter made with a tapered element oscillating microbalance (TEOM) were found to be lower than the reference filter-based measurements by an amount approximately equal to the concentration of NH4NO3 observed to be present in the airborne particles. The performance of the Dusttrak sampler and the integrating nephelometer was affected by the size distribution of airborne particulate matter. The performance of the BAM, the integrating nephelometer, the CAMM, the Dusttrak sampler, and the TEOM was not strongly affected by temperature, relative humidity, wind speed, or wind direction within the range of conditions encountered in the current study. Based on instrument performance, the BAM, the integrating nephelometer, and the CAMM appear to be suitable candidates for deployment in a real-time continuous PM2.5 monitoring network in central California for the range of winter conditions and aerosol composition encountered during the study. 相似文献
6.
Hannigan MP Busby WF Cass GR 《Journal of the Air & Waste Management Association (1995)》2005,55(4):399-410
Using organic compounds as tracers, a chemical mass balance model was employed to investigate the relationship between the mutagenicity of the urban organic aerosol sources and the mutagenicity of the atmospheric samples. The fine particle organic mass concentration present in the 1993 annual average Los Angeles-area composite sample was apportioned among eight emission source types. The largest source contributions to fine particulate organic compound mass concentration were identified as smoke from meat cooking, diesel-powered vehicle exhaust, wood smoke, and paved road dust. However, the largest source contributions to the mutagenicity of the atmospheric sample were natural gas combustion and diesel-powered vehicles. In both the human cell and bacterial assay systems, the combined mutagenicity of the composite of primary source effluents predicted to be present in the atmosphere was statistically indistinguishable from the mutagenicity of the actual atmospheric sample composite. Known primary emissions sources appear to be capable of emitting mutagenic organic matter to the urban atmosphere in amounts sufficient to account for the observed mutagenicity of the ambient samples. The error bounds on this analysis, however, are wide enough to admit to the possible importance of additional mutagenic organics that are formed by atmospheric reaction (e.g., 2-nitrofluoranthene has been identified as an important human cell mutagen in the atmospheric composite studied here, accounting for approximately 1% of the total sample mutagenic potency). 相似文献
7.
Environmental occurrence of nitrotriphenylene observed in airborne particulate matter 总被引:1,自引:0,他引:1
1- and 2-Nitrotriphenylenes were found in the airborne particulate matter extracts collected in central Tokyo between the winter of 1998 and the winter of 1999. In particular, we have identified and quantified nitrotriphenylenes in the airborne particulate matter extracts collected over four consecutive 6-h periods on 2 December 1999. The concentrations of 1- and 2-nitrotriphenylene ranged from 0.04 to 0.44 and from 0.02 to 0.47 ng/m3, respectively, and the concentrations in the airborne particulate matter extracts collected during the 18:00-24:00 h time period were the highest of the four collection periods. 1-Nitropyrene and 2-nitrofluoranthene were also identified and quantified in the four 6-h samples. Although the concentrations of 1- and 2-nitrotriphenylenes were not higher than that of 2-nitrofluoranthene except during the 18:00-24:00 h time period, the concentrations were much higher than that of 1-nitropyrene during the four collection periods.The higher concentrations of 1- and 2-nitrotriphenylenes during the 18:00-24:00 h time period are presumably responsible for the high reactivity of parent triphenylene with NO2/NO3/N2O5, and high stability of 1- and 2-nitrotriphenylenes toward O3 + O2. In addition, the observed isomer distribution of nitrotriphenylenes suggested that direct emission of nitrotriphenylenes is also a source as well as their atmospheric formation. 相似文献
8.
Singh RB Desloges C Sloan JJ 《Journal of the Air & Waste Management Association (1995)》2006,56(1):37-47
This paper discusses the evaluation and application of a new generation of particulate matter (PM) emission factor model (MicroFacPM). MicroFacPM that was evaluated in Tuscarora Mountain Tunnel, Pennsylvania Turnpike, PA shows good agreement between measured and modeled emissions. MicroFacPM application is presented to the vehicle traffic on the main approach road to the Ambassador Bridge, which is one of the most important international border entry points in North America, connecting Detroit, MI, with Windsor, Ontario, Canada. An increase in border security has forced heavy-duty diesel vehicles to line up for several kilometers through the city of Windsor causing concern about elevated concentrations of ambient PM. MicroFacPM has been developed to model vehicle-generated PM (fine [PM2.5] and coarse < or = 10 microm [PM10]) from the on-road vehicle fleet, which in this case includes traffic at very low speeds (10 km/h). The Windsor case study gives vehicle generated PM2.5 sources and their breakdown by vehicle age and class. It shows that the primary sources of vehicle-generated PM2.5 emissions are the late-model heavy-duty diesel vehicles. We also applied CALINE4 and AERMOD in conjunction with MicroFacPM, using Canadian traffic and climate conditions, to describe the vehicle-generated PM2.5 dispersion near this roadway during the month of May in 2003. 相似文献
9.
Poore MW 《Journal of the Air & Waste Management Association (1995)》2000,50(11):1874-1875
Ambient air monitoring for organic acids in PM2.5 was conducted at several locations in California. During the study, it was found that oxalic acid (ethanedioc acid) was the most abundant organic acid found in the PM2.5 fraction. Samples from Azuza (in southern California), San Jose (in the San Francisco Bay area), and Fresno (in central California), a PM2.5 Super Site, were collected in 1999 and analyzed. The results for oxalic acid concentrations during this monitoring effort are presented. 相似文献
10.
Hong Ye Sun Junying Ma Yanjun Wang Yangfeng Li Xiaolan Zhang Yunhai Liu Ningwei Zhou Deping 《Environmental science and pollution research international》2022,29(45):67821-67836
Environmental Science and Pollution Research - The formation and evolution of sulfate (SO42?) and nitrate (NO3?) secondary contaminants under different stages of pollution episodes and... 相似文献
11.
A fungicide (Rovral) and an insecticide (Permethrin) were identified by GC/MS in cyclohexane extracts of airborne particulate matter sampled by filtration at Delft (The Netherlands) during 1981. 相似文献
12.
Eleonora Cuccia Vera Bernardoni Dario Massabò Paolo Prati Gianluigi Valli Roberta Vecchi 《Atmospheric environment (Oxford, England : 1994)》2010,44(27):3304-3313
We developed and tested a methodology to extract both the size-segregated source apportionment of atmospheric aerosol and the size distribution of each detected element. The experiment is based on the parallel use of a standard low-volume sampler to collect Particulate Matter (PM) and an Optical Particle Counter (OPC). The approach is complementary to size-segregated PM sampling, and it was tested versus a 12-stage cascade impactor. Samples were collected inside the urban area of Genoa (Italy) and their elemental composition was measured by Energy Dispersive-X Ray Fluorescence (ED-XRF). Positive Matrix Factorization (PMF) was applied to time series of elemental concentrations to identify major PM sources, and both PM mass concentration and size-segregated particle number concentration were apportioned. Source profiles and temporal trends extracted by PMF were analyzed together with the OPC data to obtain the size distribution for several elements. The new methodology proved to be reliable for the PM apportionment as well as in providing the elemental concentrations in PM10, PM2.5, and PM1 (PM with aerodynamic diameter, Dae < 10, 2.5, and 1 μm, respectively). The elemental size distributions are in good agreement with those obtained by the cascade impactor for several elements but some discrepancies, in particular for traffic emissions, are stressed and discussed in the text. The new methodology has two main advantages: it only requires standard semi-automatic sampling equipment and compositional analysis and it provides size-segregated information averaged over quite long periods (typically several months). This is particularly important since campaigns with cascade impactors are generally laborious and thus limited to short periods. 相似文献
13.
Assessment of population exposure to particulate matter pollution in Chongqing, China 总被引:1,自引:0,他引:1
Wang S Zhao Y Chen G Wang F Aunan K Hao J 《Environmental pollution (Barking, Essex : 1987)》2008,153(1):247-256
To determine the population exposure to PM(10) in Chongqing, China, we developed an indirect model by combining information on the time activity patterns of various demographic subgroups with estimates of the PM(10) concentrations in different microenvironments (MEs). The spatial and temporal variations of the exposure to PM(10) were illustrated in a geographical information system (GIS). The population weighted exposure (PWE) for the entire population was 229, 155 and 211 microg/m(3), respectively, in winter, summer and as the annual average. Indoor PM(10) level at home was the largest contributor to the PWE, especially for the rural areas where high pollution levels were found due to solid fuels burning. Elder people had higher PM(10) exposure than adults and youth, due to more time spent in indoor MEs. The highest health risk due to particulate was found in the city zone and northeast regions, suggesting that pollution abatement should be prioritized in these areas. 相似文献
14.
McDonald JD Zielinska B Sagebiel JC McDaniel MR Mousset-Jones P 《Journal of the Air & Waste Management Association (1995)》2003,53(4):386-395
The chemical mass balance source apportionment technique was applied to an underground gold mine to assess the contribution of diesel exhaust, rock dust, oil mists, and cigarette smoke to airborne fine (<2.5 microm) particulate matter (PM). Apportionments were conducted in two locations in the mine, one near the mining operations and one near the exit of the mine where the ventilated mine air was exhausted. Results showed that diesel exhaust contributed 78-98% of the fine particulate mass and greater than 90% of the fine particle carbon, with rock dust making up the remainder. Oil mists and cigarette smoke contributions were below detection limits for this study. The diesel exhaust fraction of the total fine PM was higher than the recently implemented mine air quality standards based on total carbon at both sample locations in the mine. 相似文献
15.
MacDonald CP McCarthy MC Dye TS Wheeler NJ Hafner HR Roberts PT 《Journal of the Air & Waste Management Association (1995)》2006,56(7):961-976
Data analysis and modeling were performed to characterize the spatial and temporal variability of wintertime transport and dispersion processes and the impact of these processes on particulate matter (PM) concentrations in the California San Joaquin Valley (SJV). Radar wind profiler (RWP) and radio acoustic sounding system (RASS) data collected from 18 sites throughout Central California were used to estimate hourly mixing heights for a 3-month period and to create case studies of high-resolution diagnostic wind fields, which were used for trajectory and dispersion analyses. Data analyses show that PM episodes were characterized by an upper-level ridge of high pressure that generally produced light winds through the entire depth of the atmospheric boundary layer and low mixing heights compared with nonepisode days. Peak daytime mixing heights during episodes were -400 m above ground level (agl) compared with -800 m agl during nonepisodes. These episode/nonepisode differences were observed throughout the SJV. Dispersion modeling indicates that the range of influence of primary PM emitted in major population centers within the SJV ranged from -15 to 50 km. Trajectory analyses revealed that little intrabasin pollutant transport occurred among major population centers in the SJV; however, interbasin transport from the northern SJV and Sacramento regions into the San Francisco Bay Area (SFBA) was often observed. In addition, this analysis demonstrates the usefulness of integrating RWP/RASS measurements into data analyses and modeling to improve the understanding of meteorological processes that impact pollution, such as aloft transport and boundary layer evolution. 相似文献
16.
Size and composition distribution of airborne particulate matter in northern California: I--particulate mass, carbon, and water-soluble ions 总被引:2,自引:0,他引:2
Herner JD Aw J Gao O Chang DP Kleeman MJ 《Journal of the Air & Waste Management Association (1995)》2005,55(1):30-51
The San Joaquin Valley (SJV) in California has one of the most severe particulate air quality problems in the United States during the winter season. In the current study, measurements of particulate matter (PM) smaller than 10 microm in aerodynamic diameter (PM10), fine particles (PM18), and ultrafine particles (PM0.1) made during the period December 16, 2000-February 3, 2001, at six locations near or within the SJV are discussed: Bodega Bay, Davis, Sacramento, Modesto, Bakersfield, and Sequoia National Park. Airborne PM1.8 concentrations at the most heavily polluted site (Bakersfield) increased from 20 to 172 microg/m3 during the period December 16, 2000-January 7, 2001. The majority of the fine particle mass was ammonium nitrate driven by an excess of gas-phase ammonia. Peak PM0.1 concentrations (8-12 hr average) were approximately 2.4 microg/m3 measured at night in Sacramento and Bakersfield. Ultrafine particle concentrations were distinctly diurnal, with daytime concentrations approximately 50% lower than nighttime concentrations. PMO.1 concentrations did not accumulate during the multiweek stagnation period; rather, PMO.1 mass decreased at Bakersfield as PM1.8 mass was increasing. The majority of the ultrafine particle mass was associated with carbonaceous material. The high concentrations of ultrafine particles in the SJV pose a potential serious public health threat that should be addressed. 相似文献
17.
Beck CM Geyh A Srinivasan A Breysse PN Eggleston PA Buckley TJ 《Journal of the Air & Waste Management Association (1995)》2003,53(10):1256-1264
In response to community concerns, the air quality impact of imploding a 22-story building in east Baltimore, MD, was studied. Time- and space-resolved concentrations of indoor and outdoor particulate matter (PM) (nominally 0.5-10 microm) were measured using a portable nephelometer at seven and four locations, respectively. PM10 levels varied in time and space; there was no measurable effect observed upwind of the implosion. The downwind peak PM10 levels varied with distance (54,000-589 microg/m3) exceeding pre-implosion levels for sites 100 and 1130 m 3000- and 20-fold, respectively. Estimated outdoor 24-hr integrated mass concentrations varied from 15 to 72 microg/m3. The implosion did not result in the U.S. Environmental Protection Agency (EPA) National Ambient Air Quality Standard (NAAQS) for PM10 being exceeded. X-ray fluorescence analysis indicated that the elemental composition was dominated by crustal elements: calcium (57%), silicon (23%), aluminum (7.6%), and iron (6.1%). Lead was above background but at a low level (0.17 microg/m3). Peak PM10 concentrations were short-lived; most sites returned to background within 15 min. No increase in indoor PM10 was observed even at the most proximate 250 m location. These results demonstrate that a building implosion can have a severe but short-lived impact on community air quality. Effective protection is offered by being indoors or upwind. 相似文献
18.
19.
Stig Hellebust Arnaud Allanic Ian P. O'Connor John C. Wenger John R. Sodeau 《Atmospheric environment (Oxford, England : 1994)》2010,44(8):1116-1125
Real-time chemical measurements have been made as part of a field study of air quality in the city and harbour of Cork, Ireland. The data relate to the year 2008, with particular attention paid to the period between May and August. Eight air quality parameters were measured: NO, O3, NO2, SO2, EC, OC, particulate SO42? and PM2.5. The data have been used in a novel way involving wind and temporal averaging, along with Principal Component Analysis (PCA) and Positive Matrix Factorisation (PMF) methodologies to extrapolate major source contributions for PM2.5. It is demonstrated that continuous monitoring of standard air quality parameters, such as NO, NO2, SO2, along with EC, OC and particulate SO42?, can be used to provide relevant, cost-effective initial estimates of source contributions to ambient PM2.5 levels. It is also shown that the benefit of including OC and particulate SO42? in the monitoring protocol is considerable. Three major source groups of ambient PM2.5 mass in Cork were identified and quantified using this combined monitoring and modelling approach; road transport (19%), domestic solid fuel burning (14%) and oil-fired domestic and industrial boilers, including power generation plants (31%). 相似文献
20.
Vega E Ruiz H Martínez-Villa G Sosa G González-Avalos E Reyes E García J 《Journal of the Air & Waste Management Association (1995)》2007,57(5):620-633
This paper presents the results of the first reported study on fine particulate matter (PM) chemical composition at Salamanca, a highly industrialized urban area of Central Mexico. Samples were collected at six sites within the urban area during February and March 2003. Several trace elements, organic carbon (OC), elemental carbon (EC), and six ions were analyzed to characterize aerosols. Average concentrations of PM with aerodynamic diameter of less than 10 microm (PM10) and fine PM with aerodynamic diameter of less than 2.5 microm (PM2.5) ranged from 32.2 to 76.6 [g m(-3) and 11.1 to 23.7 microg m(-3), respectively. OC (34%), SO4= (25.1%), EC (12.9%), and geological material (12.5%) were the major components of PM2.5. For PM10 geological material (57.9%), OC (17.3%), and SO4= (9.7%) were the major components. Coarse fraction (PM,, -PM2.5), geological material (81.7%), and OC (8.6%) were the dominant species, which amounted to 90.4%. Correlation analysis showed that sulfate in PM2.5 was present as ammonium sulfate. Sulfate showed a significant spatial variation with higher concentrations to the north resulting from predominantly southwesterly winds above the surface layer and by major SO2 sources that include a power plant and refinery. At the urban site of Cruz Roja it was observed that PM2.5 mass concentrations were similar to the submicron fraction concentrations. Furthermore, the correlation between EC in PM2.5 and EC measured from an aethalometer was r(2) = 0.710. Temporal variations of SO2 and nitrogen oxide were observed during a day when the maximum concentration of PM2.5 was measured, which was associated with emissions from the nearby refinery and power plant. From cascade impactor measurements, the three measured modes of airborne particles corresponded with diameters of 0.32, 1.8, and 5.6 microm. 相似文献